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Abstract
The future of machining lies in the fully autonomous machine tool. New technologies must be developed that predict, sense and
action intelligent decisions autonomously. Digital twins are one component on this journey and are already having significant
impact in the manufacturing industries. Despite this, the implementation of machining Digital Twins has been slow due to the
computational burden of simulating cutting forces online resulting in no commercially available Digital Twin that can automat-
ically control the machining process in real time. Addressing this problem, this research presents a machining Digital Twin
capable of real-time adaptive control of intelligent machining operations. The computational bottleneck of calculating cutter
workpiece engagements online has been overcome using a novel method which combines a priori calculation with real-time tool
centre point position data. For the first time, a novel online machine-induced residual stress control system is presented which
integrates real-time model-based simulations with online feedback for closed loop residual stress control. Autonomous Digital
Twin technologies presented also include chatter prediction and control and adaptive feed rate control. The proposed machining
Digital Twin system has been implemented on a large-scale CNC machine tool designed for high-speed machining of
aerostructure parts. Validation case studies have been conducted and are presented for each of the machining Digital Twin
applications.
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1 Introduction

The digital transformation from legacy systems of CNC ma-
chine tools to Industry 4.0 within the machining sector is
crucial to achieving higher productivity, reducing costs and
working towards circular economies. The introduction of con-
cepts like Digital Twins(DT) [1] and virtual manufacturing [2]
have become instrumental in adding value to the production
cycle by predicting manufacturing process conditions and
optimising both real-time and future processes. A Digital
Twin for machining is a real-time digital replica of the pro-
cess; within machining this comprises real-time data, data-
driven digital models or model-based simulations updated in
real-time with information from the computer numerically
controlled (CNC) machining centre.

Digital twins, by virtue of the real-time simulations, enable
users to access process information without the requirement
for a full suite of sensors. The use of “virtual sensors” results
in an ability to add intelligent machining capabilities to an
existing machining centre without the need for installation of
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expensive sensors (such as dynamometers), additional main-
tenance or calibration. This research presents Digital Twin
capabilities for machining, which include a novel
machining-induced residual stress (MIRS) control, chatter de-
tection and control and adaptive feed rate control. A brief
survey on the state of the art of these functions is hereby
presented.

1.1 MIRS control

MIRS represents a crucial factor that influences fatigue life,
distortion and other aspects of the mechanical properties of the
materials such as their strength, plasticity or surface quality of
a machined part. Whilst experimental methods exist to mea-
sure residual stress values in machined parts post-machining,
a significant challenge in research has been to predict them
accurately through modelling techniques [3]. In the prediction
of MIRS, an important advantage of analytical models is the
capability of processing data within short time scales enabling
their use in the real-time domain as opposed to slower analysis
techniques such as numerical finite element analysis. These
analytical models have been generated for various machining
conditions and platforms, including the prediction of MIRS in
turning and milling machining operations. In the turning pro-
cess, analytical models have been developed for orthogonal
cutting of various materials by looking at the mechanical
stresses and the thermal loads involved [4, 5], whereas other
pieces of research have also included the influence of the
thermal stresses [6]. Similarly, in the milling process, analyt-
ical models have been developed for both orthogonal [7, 8]
and oblique cutting [9–12]. These analytical methods have
shown good progress in research in terms of accuracy and
efficiency for MIRS predictions. However, the existing appli-
cations of experimental measurements and simulation
methods are offline techniques. Hence, the application of on-
line MIRS simulation methods can have broad prospects for
the characterisation of the development of residual stresses
and their control during machining, which is a gap in litera-
ture. This research demonstrates the bases of a Digital Twin
system for the prediction and control of MIRS in real time
using online machining data.

1.2 Chatter detection and control

Chatter is a self-excited vibration experienced during machin-
ing [13]. In marginal cases, where the spindle speed is close to
the stability boundary, chatter may result in poor surface fin-
ish; but in the most severe cases, it can damage cutting tools
[14], workpieces and even spindles. As it can severely limit
the performance of machining, the ability to detect and miti-
gate against chatter is essential. Prior to machining, cutting
parameters for stable machining conditions are selected based
upon stability lobe diagrams (SLDs). The SLDs are generated

from tap testing the tool/holder in situ and using frequency
response data to predict stable conditions [15]. However, with
this offline simulation and optimisation prior to machining,
chatter may still occur due to poor process models, incorrect
testing, poorly calibrated equipment and/or position-
dependent machine tool dynamics. This has led to the require-
ment for online chatter detection and control [16].

During chatter, vibrations occur at both the tool passing
frequency and chatter frequency. The objective of detection
methods is to decouple these chatter vibrations and identify
the chatter frequency from the frequency spectrum. Two main
sources of signals have been widely adopted in research: ex-
ternal data from additional sensors and internal data from the
numerical controller (NC). The external measurement ap-
proaches mainly use signals such as sound measurements
from microphones [17, 18] and cutting force data and accel-
eration from accelerometers [19–21]. The internal measure-
ment approaches use high frequency data from the machine
tool. Accessing high-speed data can require special modifica-
tions, in particular to access the current loop and signals of the
spindle or feed drives. Recent research has also included the
use of observers [22, 23] to uncouple the effects of structural
dynamics and servo dynamics from the internal NC data.
Most research has focused on internal or external
measurement-based chatter detection where additional sensors
or very high frequency controller signals are required. There is
a gap in literature, which considers real-time chatter simula-
tions as virtual sensors for inputs to closed loop feedback
systems. Moreover, the above online chatter control methods
are based on the measurement when chatter has already hap-
pened and left chatter marks on the workpiece surface. In this
research, with the lookahead and lookup function, the online
chatter control methods were able to predict and control the
stability of the process before chatter occurred.

1.3 Adaptive feed rate control

Standard machine tools employ classical cascaded control
loops to control the feed drives. The controller parameters
are designed based on position and velocity feedback, and
not on the drive or spindle loads. The controller gains are
designed such that large loads from cutting forces will not
affect the performance of the drives in terms of position accu-
racy or deviation from commanded feed rate. Despite this,
there is a desire for adaptive machining, and for the machine
tool to respond online to changing process conditions.
Benefits such as improved surface quality, reduced
manufacturing cycle times and prevention of tool breakage
drive the requirement for such functions.

Early work on adaptive machining control was based on
integrating cutting force and feed rate control systems. The
research focused on the design of fixed controller gains and
the stability of the systems as the process parameters varied for
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simple machining operations. A common thread to the early
work was the use of online identification methods to model
the cutting process in order to generate a system transfer func-
tion for controller design. These models formed the basis of
model reference adaptive control [24]. Several parameter
adaptive control strategies were researched to regulate the cut-
ting forces in end milling under varying conditions most using
online system identification via recursive least squares
methods [25]. The online methods were complemented with
offline calculated cutting forces via computer-aided design
(CAD)-based models [26, 27]. Adding further fidelity, the
servo models of the drives were integrated into the modelling
process for both direct adaptive control [28] and real-time tool
breakage monitoring using servo drive currents [29].
Subsequently, many adaptive control methodologies have
been applied to machining such as quantitative feedback the-
ory [30], Kalman filters for state estimation [31], neural net-
works and fuzzy control [32], model-based control [33, 34],
optimal control [35] and model predictive control [36].

1.4 Digital Twin and Virtual Machine Tools

In addition to measurement-based process control and monitor-
ing, utilising real-timemodel-based simulations or virtual models
with live process data has demonstrated improved performance
during the machining process. The integration of real-time NC
data with advanced cutting force models [1, 37, 38] has been
successful in predicting real-time cutting forces for 5-axis ma-
chining operations [39], which provided a valuable tool for pro-
cess visualisation and a method to improve process design. This
smart approach enabled cutting force prediction without the need
for direct measurement. Further exploiting the range of NC data,
machine drive currents were used to support a Digital Twin-
based system able to predict tool breakage and adaptively control
the feed rate to constrain tool deflections [40]. The research re-
moved the requirement for expensive dynamometers and for the
first time provided virtual model-based feedback directly to the
machine tool. More recently, the online prediction of flank wear
width was successfully demonstrated combining synchronised
process simulation, real-timeNC data andmachine learning [41].

Despite the successful previously highlighted applications
of machining Digital Twins, the use of online feedback to
optimise machining processes remains in its infancy. A road-
block to progression has been the computational burden when
simulating cutting force models in real time [42] as the calcu-
lation of cutter workpiece engagements (CWEs) for complex
tool geometries and toolpaths requires significant computing
power thereby limiting the bandwidth of the system. This
research addresses and overcomes this limitation and by doing
so enables multiple machining applications to benefit from the
fast online calculation of cutting forces. The research objec-
tive of the presented Digital Twin is to accurately model the
machining process online and automatically update the

machining parameters to satisfy a control objective, further
progressing the route to the fully autonomous machine tool.

This paper presents a real-time machining Digital Twin for
autonomous closed loop control applications. Significantly, a
novel online machine-induced residual stress control system
has been developed for the first time; this is presented alongside
a Digital Twin-based chatter detection and control system capa-
ble of predicting and preventing chatter during machining oper-
ations. Also presented is an adaptive feed rate control system
which supports the Digital Twin-based feedback system by ap-
propriately tuning the feedback gain based on predicted tool load.
The Digital Twin machining applications have been implement-
ed on a CNC machining centre and validated by machining
experimental trials.

The paper is presented as follows. Section 2 gives an over-
view of the architecture of the integrated Digital Twin.
Section 3 describes the theory and modelling behind the cut-
ting force model, method to address the associated computa-
tional bottleneck, descriptions of machine-induced residual
control system, chatter detection and control system and adap-
tive feedback control system. Section 4 presents the experi-
mental validation of the proposedmachining applications, and
section 5 closes the paper with research conclusions.

2 Architecture of the integrated Digital Twin

The proposedmachiningDigital Twin, as shown in Fig. 1, consists
of the physical CNCmachining centre, a monitoring system, real-
time model-based simulations and a closed loop control system
providing online feedback. The physical positions and velocities of
themachine drives are sent from theNCvia themonitoring system
to themodel-based simulations. The blue and red arrows represent
the real-time and offline components to the system respectively.
The NC code is the external input to the system and does not form
part of the closed loop system. The simulations are, however,
updated in real time and create a synchronised Digital Twin of
themachining process. The Digital Twin is able to feedback to the
machining process through closed loop control of both the spindle
speed and feed rate. The type of feedback is dependent upon the
machining application. The digital machining platform consists of
a number ofmodules, and three of these are presented in this paper,
namely an online MIRS control system, chatter detection and
control system and adaptive feed rate control system.

3 Real-time model-based simulations
and control

3.1 Simulated cutting force model

Estimating cutting forces within the Digital Twin was realised
by integrating a developed cutting force model [38] with real-
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time controller data from the NC. The real-time model uses
position information from the NC in conjunction with a CAD
workpiece model to determine the CWEs at the tool centre
point (TCP) position. The instantaneous spindle speed and
feed rate data from the NC are coupled with the CWEs to
generate the real-time simulated cutting force and power at
each cutter location (CL) throughout the toolpath. These are
then subsequently used within the closed loop Digital Twin
control applications.

A brief overview of the cutting force model is presented;
however, further details are described in Berglind [38] and
Armendia [1]. To simulate the milling process, cutting forces
are modelled considering the contribution of the edge forces
and the chip load-dependent cutting force components. The
cutting force model calculates these components for each ele-
ment of a discretised tool and sums the effects each element
has on the global cutting forces. Geometric software calculates
the CWE for a discretised tool for each CL along the toolpath.

The cutting forces Fel for each element of the tool mesh are
calculated from the sum of the edge and cutting forces, which
are calculated by multiplying the respective cutting force co-
efficients (CFCs), edgeKe, rta and cutting forceKc, rta, with the
effective chip width, bel, and uncut chip thickness, hel, as

follows in Eq. 1:

Fr;el

Ft;el

Fa;el

8<
:

9=
; ¼

Ke;r

Ke;t

Ke;a

8<
:

9=
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8<
:

9=
;helbel ð1Þ

The cutting force equations can be represented as a func-
tion of local feed vector, fxyz, in the tool coordinate system as
shown in Eq. 2.

FXYZ pð Þf g ¼ Fe;XYZ pð Þ� �þ QXYZ pð Þ½ � f XYZf g ð2Þ

The real-timeNCdata streamprovides the individual axis feeds
for the local feed vector. Therefore, Eq. 2 represents themethod for
calculating the simulated cutting forces for both the online and
offline CWE methods, with the main difference whether the cal-
culation of edge force vector Fe, XYZ and cutting force matrix
QXYZ is done prior to or during machining. As the values in the
cutting force vector and matrix in Eq. 2 change throughout the
toolpath as the CWEs vary, then globally the simulated cutting
force becomes a function of TCP position, p.

In summary, the cutting force matrices are calculated for
each element of a discretised tool mesh. Following coordinate

Fig. 1 System architecture of the digital machining platform

3618 Int J Adv Manuf Technol (2021) 117:3615–3629



transformations from the local coordinate system (CS) to the
tool CS, the element cutting forces as a function of feed are
generated. The effects of active cutting elements engaged
within the cut are then summed up to calculate the cutting
forces. The proposed method of computing online simulated
cutting forces is applied to the digital machining control
applications.

3.2 Lookahead and lookup functions

Prior to machining, the CWEs are calculated along the
toolpath, and a CWE map is generated and indexed by the
high-resolution CL positions. The pre-calculation of CWEs
removes the computation restrictions on sizes of mesh
discretisation, complexity of tool and workpiece geometry
and toolpath/CL resolution. During machining, the module
looks ahead at the indexed CL positions and calculates the
Euclidian distance between the current TCP position from
real-time NC data, and the local and future CL points in the
CWEmap. The number of points included in the calculation is
determined by the lookahead value; this is indicated by the red
highlighted portion of the toolpath in Fig. 2a. The local min-
imum shown in Fig. 2c corresponds to indexed pre-calculated
data for the current TCP position as shown in Fig. 2b. The
CWE for the current TCP position is then looked up from the
data (Fig. 2c). The online simulated cutting forces are calcu-
lated from the CWE for the TCP position, and the live feed
rate and spindle speed from the NC data. The additional ben-
efit of this approach is that it enables complex toolpaths with
repeating passes over the same CL to be used. for example in
trochoidal milling. The method extracts the CWE on the first
pass and would return a different CWE on the second pass
eliminating multi-solution issues. The lookahead and lookup
functions are used within the three digital machining applica-
tions; they are described in the following sections.

3.3 MIRS real-time model-based simulation and
control

To demonstrate the capabilities of the current real-time digital
machining platform, an analytical model was generated to
predict elastic MIRS behaviour from computed mechanical
and thermal loading during a milling operation based on the
release boundary conditions for the strain rates εrij and γ

r
ij and

the stresses σr
ij and τ

r
ij. The release boundary conditions are as

follows:

εrxx ¼ 0; εryy ¼ 0; εrzz ¼ f zð Þ; γrxz ¼ f zð Þ; σr
xx

¼ f zð Þ; σr
yy ¼ f zð Þ; σr

zz ¼ 0; τ rxz ¼ 0 ð3Þ

The stress and strain increments, Δσzz, Δτxz and Δεxx, and
cutting temperature increment ΔT are relaxed in M steps, as
expressed by Eq. 4 in order to calculate the stress increments
under the elastic release Δσr

x and Δσr
y described by Eq. 5:

Δσzz ¼ −
σr
zz

M
; Δτ xz ¼ −

τ rxz
M

; Δεxx ¼ −
εrxx
M

; ΔT

¼ −
Tr

M
ð4Þ

Δσxx ¼ EΔεxx þ 1þ vð Þ Δσzzv−EαwΔTð Þ
1−v2ð Þ

Δσyy ¼ vEΔεxx þ 1þ vð Þ Δσzzv−EαwΔTð Þ
1−v2ð Þ

8>><
>>:

ð5Þ

where E is the elastic modulus, v is the Poisson’s ratio and αw

is the expansion thermal coefficient of the workpiece.

Fig. 2 Lookahead and lookup function
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This model was integrated with the online cutting force
simulation model described in Section 3.1 to calculate and
update machining cutting forces and thus find a set of machin-
ing parameters that would generate acceptable MIRS behav-
iour. This MIRS control module is illustrated in Fig. 3, where
actual feed rates and spindle speeds are used to simulate cut-
ting forces and elastic MIRS. If the simulated elastic MIRS are
higher than a reference, the feed rate and spindle speed are
updated to calculate new cutting forces and elasticMIRS. This
iteration is continued until a feed rate and spindle speed are
found to induce lower elastic stresses than the reference.

3.4 Chatter real-time model-based simulation and
control

The objective for this application is to predict the chatter
throughout the toolpath and automatically prevent it occur-
ring. As stated in Section 1.2, previous research in literature
focused on internal or external measurement-based chatter
detection to predict the process stability and change the spin-
dle speed before chatter occurs. Here, the proposed Digital
Twin capabilities demonstrate a proactive system and not re-
active, ensuring that the required workpiece surface quality is
maintained.

At the heart of the software is the stability roadmap (SRM),
which is a time or spatial coordinate-based stability represen-
tation of the machining process [1]. As shown in Fig. 4, the
SRM provides a visual method of selecting stable spindle
speeds throughout a toolpath as engagements vary. The
SRM is able to select stable cutting conditions by avoiding
chatter frequencies. Chatter frequencies correspond to eigen-
values over the threshold value of 0.5 when the maximum real
eigenvalues are calculated over a range of frequencies for each
CWE. The start and end chatter frequencies ωc, (1, 2) for each
of the j lobes for each engagement correspond to stability
boundaries. A stable cutting process is shown as the white
regions in the SRM. The spindle speeds for these frequencies
are calculated to provide a map of stable and unstable cutting
conditions as expressed in Eq. 6.

Ωc; 1;2ð Þ ¼
60ωc; 1;2ð Þ

N f ∈ ωc; 1;2ð Þ
� �þ 2πj

� � ð6Þ

The proposed chatter stability simulation and control sys-
tem is shown in Fig. 5. As machining starts, the system reads
the real-time spindle speed and TCP position data from the
NC. The lookahead method, as described in Section 3.2,
searches n positions ahead using the live TCP position and
indexed CLs. The closest indexed CWE is identified, and thus
the Digital Twin extracts the CWE for the current TCP posi-
tion. The online system then calculates the SRM based on the
lookahead CWEs to find a stable spindle speed range. Once
the stable spindle speed is selected, the control system auto-
matically sends the new spindle speed command to the ma-
chine tool controller and the spindle speed automatically
changes. The benefit of this approach is that the spindle speed
can adapt online to varying conditions throughout the
toolpath. The automated process removes the requirement
for the machine operator to modify the spindle speed as the
process predicts chatter and mitigates against it prior to chatter
occurring.

Fig. 3 Machining-induced residual stresses control module flowchart

Fig. 4 Stability road map as a function of time
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3.5 Closed loop feedback

The generalised method of generating the closed loop feed-
back, as presented in Fig. 6, is as follows. First, the feed rate is
set within the NC code and then interpolated within the nu-
merical controller unit (NCU). The NCU generates the nom-

inal feed rate, bf nom, which is multiplied with the feed rate
override command [43, 44] from the Digital Twin adaptive

control function. The commanded feed rate, bf com, commands

the feed drives, and the actual feed rate bf act is measured and
read in real time by the high-speed monitoring system. The
actual feed rate is then used to calculate the simulated cutting
forces online. The lookahead and lookup function, fed by
position data from the NC, calculates the TCP position and
CWE gain. The real-time simulated cutting force is then cal-
culated at the exact TCP position using the actual feed rate.

The online simulated cutting force (or power), Fsim ¼
QXY pð Þk k 2 � bf act, is compared against a reference value.

The cutter location-based reference Fref(p) is calculated a
priori based on a desired cutting force or power by a reference
generator. The error signal is multiplied by the CWE-based
gainK(p) to provide the feedback signal, as described in Eq. 7.

Δbf ¼ K pð Þ Fref pð Þ− QXY pð Þk k�

2 � bf actÞThe adaptive feed rate function is able to modulate the feed
rate command to compensate for changes in the CWEs and
simulated cutting force or power through the CWE-dependent

feedback gain. This method also prevents fast entries and exits
from the part, protecting both the tool and workpiece.

4 Digital machining applications

The previous section described the machining Digital Twin,
lookahead and lookup function and the three integrated intel-
ligent machining applications. The following section de-
scribes the experimental setup and case studies for each of
the 3 applications.

4.1 Experimental setup

The research was conducted on a Starrag Scharmann
Ecospeed 2538 5-axis high performance machining centre
controlled by a Siemens 840D Power Line controller (Fig.
7). The commercial machining centre, designed for machining
large aluminium aerospace structural components, has been
modified to add capability for externally generated control
inputs and high-speed monitoring. The Digital Twin system
is controlled from MATLAB which runs the simulation and
control applications. To support this, the machining centre
was retrofitted with four fast analogue input/output (IO) mod-
ules installed on a NC unit terminal Bus. The IO modules are
connected by coaxial cable to a multi-function data acquisition
device (NI USB-6343) controlled by a local computer running
the Digital Twin software. Externally generated inputs from
the Digital Twin software are transmitted from the analogue

Fig. 5 Machining stability online simulation and control diagram

Fig. 6 Adaptive feed rate control system
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modules to the numerical controller kernel (NCK) within the
machining centre directly via the PROFIBUS network en-
abling a control input at 125 Hz. The inputs can be read di-
rectly within the NCK and accessed via synchronous actions.
The system is fitted with Siemens ADAS monitoring which
has the capability to send up to 30 pre-selected axis data
streams to a computer fitted with a communications processor
card. The device acts as a slave for the PROFIBUS cycle,
transferring data equal to the position controller cycle of
250Hz. The selected data consisting of actual and commanded
drive positions and velocities, spindle speed and drive currents
streamed directly in to MATLAB in real time. The monitoring
and control components described synchronise the Digital
Twin model with the machining centre and the physical pro-
cess. Alongside the Digital Twin system, during the machin-
ing trials, a Kistler 9255C dynamometer was used for record-
ing and validating cutting force data.

Two experimental setups were implemented to demon-
strate the Digital Twin platform. For the MIRS control exper-
imental case study, aluminium (Al7050 T7451) coupons sized
250 × 190 × 40 mm were used for the high-speed milling
trials. The milling trials were performed under minimum
quantity lubrication (MQL) cutting conditions; and the
toolpath strategy of the milling operation consisted of a five-
axis roughing operation, followed by a high-performance
roughing toolpath and a spiral out toolpath finishing operation
to produce a thin plate. The finishing operation was the focus
of the MIRS case study; the toolpath and finished workpiece
are shown in Fig. 8a and b, respectively. The roughing and
finishing operations used a 20 mm solid carbide end mill
(Walter MB266-20.0A3X400B-WJ30UU) and 16 mm end
mill (SGS Solid Carbide APF 44753) respectively. For the
chatter and feed rate case studies, similar AI7050 T7451 cou-
pons sized 250 × 190 × 43 mm were used on a roughing
toolpath for an open pocket with two cylindrical bosses and

a rectangular prism; the toolpath and roughed workpiece are
shown in Fig. 8c and d, respectively. A 16 mm solid end mill
(Sandvik 2P121-1600-NC-H10F) was used for the chatter and
feed rate case studies along with flood coolant.

The cutting force coefficients used for the testing were
derived from previous machining trials conducted on the tar-
get material and tool system, but under different cutting con-
ditions; these were as follows (Table 1):

where Ktc, Krc and Kac represent the tangential, radial and
axial cutting force coefficients and Kte, Kre and Kae represent
the edge force coefficients.

4.2 Discussions of the machining-induced residual
stress control

The objective of MIRS case study is to demonstrate a reduc-
tion in MIRS online by the use of a novel real-time model-
based simulation and online feedback from the predicted elas-
tic MIRS. The control objective of the case study was an
automatic 30% reduction in MIRS during the finishing oper-
ation. The MIRS of the high-performance roughing operation
was neglected in this study due to its low magnitude induced
into the finishing surface, as shown in Fig. 9. It was assumed
that the finishing pass with an axial depth of cut of 0.25 mm
would wipe out those remaining roughing residual stresses
instantaneously, which in reality would be a gradual removal
and a level of re-distribution of induced stresses. Therefore,
the MIRS control was focused on the final residual stress state
of the part produced by the finishing operation.

The initial machining parameters for the finishing opera-
tion were set at 30000 rpm spindle speed and 14400 mm/min
feed rate. When machining, the lookahead and lookup func-
tion calculated the CWE using the real-time position informa-
tion (Fig. 10a). The online simulated cutting force was calcu-
lated using the position-based CWE and real-time feed rate

Fig. 7 Inside Ecospeed
machining centre (AMRC,
Sheffield, UK), hardware and IO
modules

3622 Int J Adv Manuf Technol (2021) 117:3615–3629



(Fig. 10b). The MIRS module is automatically triggered after
calculating the maximum simulated cutting force, and the on-
line calculation of elastic MIRS commenced. TheMIRSmod-
ule iteratively calculated new machining parameters until a
predicted 30% online reduction in MIRS was achieved. This
was achieved after four iterations, as shown in Fig. 10c, where
the four predicted elastic MIRS trends at the four sets of ma-
chining parameters are shown. The maximum elastic MIRS
were reduced from 113 to 64 MPa by automatically com-
manding the initial parameters to a modified spindle speed
of 18750 rpm and 5760 mm/min feed rate as shown in Fig.
10d. The decrease in residual stress could mean a significant
reduction in distortions, especially for monolithic thin-walled
aluminium components [45, 46], regardless of the loss in pro-
ductivity by reducing speed and feed rate.

Due to online computation of elastic stresses, a number of
passes using the initial machining parameters were conducted

prior to updating the controller. These are shown in the red
box in Fig. 10. Despite latency of the MIRS simulation, the
control of the machining parameters was successfully execut-
ed during the cut, and the machining within the region
highlighted with the blue box in Fig. 10 was conducted at
the modified parameters. On completion of machining, the
residual stresses on the workpiece were measured using a
targeted strain gauge hole drilling technique [47] at points
located in each one of these sections at half the distance of
the maximum coupon length.

Fig. 8 Toolpaths and machined parts for MIRS case study (a, b) and feed rate and chatter case study (c, d).

Table 1 Cutting force coefficients used for cutting force prediction

Ktc Krc Kac Kte Kre Kae

749.94 51.33 190.65 9.05 11.44 −3.77
Fig. 9 Measured longitudinal residual stresses from roughing operation.
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Overall, there was an acceptable level of stress distribution,
and the objective of achieving at least 30% reduction inMIRS
was accomplished. As Fig. 11 shows, the measured residual
stress on the aluminium coupons was successfully decreased
from 96 to 40 MPa demonstrating a 58% reduction in MIRS.
The prediction presented a root mean-squared error (RMSE)
of 26.9 MPa. This prediction error, which was more evident
between the depths of 20 to 80 μm, might be contributed by
the fact that only elastic MIRS were calculated as discussed in
Section 3.3. However, the predicted elastic MIRS trend rea-
sonably matched the measured values, particularly in terms of
the maximum stress magnitudes on the part surface, showing
that the model-based simulation was successful in providing a
reference for real-time MIRS control.

4.3 Discussions of the chatter detection and control

The stability control module was implemented during
roughing milling trials using the hardware configuration de-
scribed in Section 3.4. The nominal spindle speed in the NC
programme was 18700 rpm, and nominal feed rate was 0.05
mm/tooth. Axial depth of cut was 10mm and radial depth of
cut was changing along the toolpath. Figure 12 shows the
SRM for the initial section of the toolpath. It shows that at
18700 rpm, the SRM predicts the presence of chatter with a
frequency around 4000 Hz. Then the controller automatically
modified the spindle speed to a stable spindle speed. For ex-
ample, at the beginning and end, the controller changed the
spindle speed to 19675 rpm to avoid this according to the

Fig. 10 MIRS system functions
and their respective locations
during the case study.
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SRM. Figure 11 shows the commanded spindle speed avoided
unstable machining parameters.

Figure 13 shows the validation workpiece where machin-
ing was conducted during two roughing stages, the first at
18700 rpm with 10mm depth of cut and the second at
19675 rpm with the same 10mm depth of cut. The surface
quality demonstrating the two cases is presented alongside
the associated fast Fourier transform FFTs. For the
18700 rpm case, the dominant chatter frequency is shown at
4591 Hz, and the corresponding chatter marks are visible. The
dominant frequency during the roughing process at
19675 rpm was at the tooth passing frequency 656 Hz, as
demonstrated by the smooth surface condition, showing that
the process is stable, thereby validating the stability road map.

4.4 Discussion of the feed rate control

The objective of the adaptive control is to provide real-time
closed loop feed rate control through the use of Digital Twin
feedback. The machining Digital Twin is able to predict both
cutting force and spindle power in real time; and these signals
are used as virtual inputs to the controller. The Digital Twin
can predict the changing cutting forces at the tooltip

throughout the machining operation and responds in such a
way to maintain a reference force or power level.

The CWEs are calculated prior to machining. The CWE
map of a roughing toolpath is shown in Fig. 14. The figure
shows high CWE values during the initial full slot (yellow)
and zero CWE during the air cuts (blue). The cutting forces
are, however, calculated online by using the lookahead and
lookup method. This allows real-time calculation of simulated
cutting force for use in the adaptive control function.

A machining trial based on simulated cutting force was
conducted on the machining centre described in Section 4.1.
The machining parameters were as follows: nominal feed rate
1000 mm/min, spindle speed 18760 rpm, axial depth of cut
10 mm and radial depth of cut varying from full (16mm) to
half (8mm) immersion.

The pre-calculated CWEs for the machining operations are
shown in Fig. 14a. The values represent the CWE gain as a
function of feed rate. The navy blue represents low CWE gain
values, for example during tool entry and exits and during air
cuts. The yellow represents higher CWE gains, for example
around the square internal features. The adaptive feed rate for
this machining operation is shown in Fig. 14b. The
commanded feed rate, calculated using Eq. 7, is a function
of the real-time simulated cutting force and a reference force.
The yellow represents high feed rates, and the blue feed rate
signal shows low feed rates as can be seen around the low
CWE gain area of the internal square feature.

To show the difference in simulated cutting forces, the
average resultant simulated cutting force using a constant feed
rate is shown in Fig. 15a. The large spikes in cutting force can
be seen for the sharp changes in CWEs. Figure 15b shows the
simulated cutting force when using adaptive feed rate control.
The force spikes have been eliminated, and the average cut-
ting force has been commanded to a pre-defined reference of
120 N.

The limitation of the adaptive feed rate is that the simulated
cutting force is only as accurate as the engagement model,
feed rate signal and the cutting force coefficients. This case
study validated the engagement model for complex toolpaths
with the feed rate signal; but as can be seen in the measured
and simulated cutting force in Fig. 16a, for the toolpath section

Fig. 11 Measured and predicted
longitudinal σxxMIRS for a initial
and b final machining parameters

Fig. 12 Stability road map as a function of toolpath showing commanded
stable spindle speed.
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highlighted in Fig. 16b, there is an offset between the average
resultant cutting forces. This is due to inaccurate CFCs used
within the trial. Automatic CFC update overcomes this issue;
however, it was not used in the case study.

4.5 Integrated machining Digital Twin

The previous section described the case studies for the 3 dig-
ital machining applications. However, the benefit of the ma-
chining Digital Twin is the flexible integration of the applica-
tions. The core of the Digital Twin is the real-time cutting

force prediction model supported by the lookahead and look-
up function; however, by integrating closed loop control
based on the multiple machining Digital Twin applications
(included in the novel MIRS control), this research distin-
guishes itself from previously published works as presented
in the introduction section.

5 Conclusions and future work

This paper has taken a step closer to the future machine tool by
proposing a novel machining Digital Twin capable of auton-
omous control of machining operations. Based on the research
and results presented in this paper, the following conclusions
can be drawn.

A model-based Digital Twin was successfully integrated
with live NC data from a CNC machining centre to generate
real-time Digital Twin simulations of machining operations.
Integrating with Digital Twin, adaptive closed loop control
was achieved by providing feedback through the use of newly

Fig. 13 Chatter prediction
validation showing surface
quality and corresponding FFTs
at cutting conditions 18700 rpm
and 19675 rpm.

Fig. 14 CWE map and feed rate control signal for adaptive feed rate
trials.

Fig. 15 Adaptive feed rate control signals as a function of tool
displacement
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installed analogue input/output modules to the machining
centre.

The proposed Digital Twin system predicts real-time sim-
ulated cutting forces, power and process stability for complex
toolpaths, workpieces and CWEs. A method of overcoming
computational bottlenecks for calculating highly discretised
and complex CWEs was demonstrated, which used a priori
computations combined with real-time TCP position data and
a lookup method. Through this method, the overall stability of
the computational model was vastly improved which laid the
foundations for using closed loop control.

For the first time, a Digital Twin which predicts and con-
trols machine-induced residual stress was implemented. The
method utilised the real-time machining Digital Twin to com-
pute cutting forces and MIRS online during a roughing
toolpath. Online machining parameter optimisation automati-
cally calculated the required machining conditions which sat-
isfied the MIRS control objective. The machining Digital
Twin updated the machining parameters via the closed loop
feedback to modify the cutting conditions. This was an impor-
tant first step towards automatically controlling part distortion
which will be a component for future research objectives.

A Digital Twin-based chatter prediction and control meth-
od was demonstrated. The method used real-time model-
based simulations to predict stability conditions and calculate
stable cutting conditions. The closed loop feedback updated
the spindle speed and feed rate in real time to adapt and pre-
vent chatter before it occurred. This method showed that with-
out the use of additional sensors, chatter could be predicted
and prevented, thereby protecting the tool, workpiece and ma-
chine whilst preventing unnecessary downtime during
production.

An adaptive feed rate method was proposed which uses
CWEs to vary the control system gain and ultimately the sys-
tem response to feedback. The method was demonstrated for
low feed rates, and future work will require greater bandwidth
in the system response.

The proposed Digital Twin control applications are key
components in the roadmap to achieve unattended operation
of the intelligent future machine tool. Further work must ad-
dress the computational demands of Digital Twins during
complex high-speed machining operations and in particular

5-axis machining. A priori computations of CWEs will con-
tinue to play a significant part in future research alongside
windowing and parallel processing.
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