The International Journal of Advanced Manufacturing Technology (2021) 117:3873-3893
https://doi.org/10.1007/500170-021-07824-7

APPLICATION ")

Check for
updates

ViTroVo: in vitro assembly search for in vivo adaptive operator
guidance

An artificial intelligence framework for highly customised manufacturing

Corrado Grappiolo' @ . Raimon Pruim? - Matthias Faeth' - Paolo de Heer?

Received: 26 February 2021 / Accepted: 27 July 2021 / Published online: 31 August 2021
© The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021

Abstract

Product customisation is a topic of growing interest in Smart Manufacturing. Allowing customers to design intended
products brings additional challenges to the manufacturing task, such as the increase in flexibility of the assembly theatre,
the compilation of assembly instructions for possibly unique products, and stress-related risks for human operators. This
work introduces ViTroVo, an artificial intelligence framework capable of (1) autonomously building a graph of assembly
steps via trial-and-error (in vitro Assembly Search) and (2) presenting relevant instructions to a human operator and, by
autonomously detecting her progress and affective state, adapting accordingly (in vivo Adaptive Operator Guidance). The
power of ViTroVo resides in its versatile way to manipulate a given product’s component Augmented Computer Aided
Design (CAD+) models throughout the whole assembly task. We conducted an empirical evaluation involving participants
instructed to assemble a previously unseen product. The encouraging results make us believe ViTroVo’s architecture could

become the foundations of highly customised flexible manufacturing.

Keywords Customised manufacturing - Assembly Sequence Planning - Adaptive Operator Guidance -
Augmented CAD models - Virtual Environment - Artificial Intelligence

1 Introduction

The last years have been witnessing an enormous contribu-
tion of Information and Communication Technology (ICT)

P4 Corrado Grappiolo
corrado.grappiolo@tno.nl

Raimon Pruim
raimon.pruim @tno.nl

Matthias Faeth
matthias.faeth@tno.nl

Paolo de Heer
paolo.deheer@tno.nl

I TNO Data Science, Anna van Buerenplein 1, NL-2595 DA
The Hague, The Netherlands

2 TNO Intelligent Imaging, Oude Waalsdorperweg 63, NL-2597
AK The Hague, The Netherlands

TNO Modelling, Simulation and Gaming, Oude Waalsdorper-
weg 63, NL-2597 AK The Hague, The Netherlands

in many physical domains. Industrie or Industry 4.0, a term
coined to clearly distinguish new, ICT-enhanced industrial
processes from those proper of the second half of the twen-
tieth century, such as mass-scale manufacturing [1, 27], is a
clear example. A term extremely related to Industry 4.0, to
the point that sometimes it is also used as synonym, is Smart
Manufacturing [26, 30, 72]. Smart Manufacturing covers a
huge spectrum of paradigms, such as human-robot cooper-
ation [12], (big) data collection from physical sensors [60]
and simulation/modelling [59].

A growing trend in Smart Manufacturing is product
customisation [43, 71] which, in a nutshell, aims to give
higher levels of control to customers. Companies have
already started providing basic customisation services (see
for instance [23, 53]) and the newly coined Industry 5.0
term — which aims to characterise human-centric industry
by means of, e.g., mass-customisation — starts to emerge,
both in research [9, 46] and political domains [6, 44].
Product customisation will increase in importance and
versatility in the coming years, to the point that customers
could, for instance, design their idealised products by
selecting components from generic online repositories [5]

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s00170-021-07824-7&domain=pdf
http://orcid.org/0000-0001-5391-4971
mailto: corrado.grappiolo@tno.nl
mailto: raimon.pruim@tno.nl
mailto: matthias.faeth@tno.nl
mailto: paolo.deheer@tno.nl

3874

Int J Adv Manuf Technol (2021) 117:3873-3893

and, subsequently, modify their morphologies or even add
customer-made parts. We would, in other words, witness the
transformation of traditional manufacturing into a service-
on-demand process. We will refer to this not-so-futuristic
scenario as Highly Customised Manufacturing (HCM).

Customised manufacturing requires such a high degree of
flexibility in the assembly theatre/process that it can hardly
exist without human operators [7, 10].

Operators have to be guided throughout the assembly
task via instructions, commonly compiled either manually
or algorithmically. The manual compilation is a rather
expensive process, usually performed for large batch sizes,
as the compilation costs can be amortised. Intuitively, such
approach would become unfeasible for HCM, which instead
pushes the manufacturing process towards the batch-of-one
scenario. Although the algorithmic way is to some extent
cost-invariant against the batch size, the most commonly
implemented approaches follow a disassemble-assemble
strategy [52]. Starting from the final product’s full design
— usually handcrafted by domain experts — the algorithms
first disassemble the product until loose components are
obtained, then revert the result to create a graph of assembly
steps. As HCM would allow customers to modify products
with a high level of agency, it is likely that full knowledge
on the final product’s design might cease to exist, with
the consequence that a disassembly-assembly approach
would no longer be feasible. To be effective, HCM needs
algorithmic approaches which can still generate assembly
instructions based on less-than-full knowledge on the final
product, hence by skipping the preliminary disassemble
step.

HCM should not only give a centric role to the customer,
it should also enhance the operator experience and make
sure her well-being is as high as possible [39]. This
can be achieved by monitoring her physiological state
throughout the assembly task and by intervening in case
this worsens, for example, if the algorithmically generated
instructions are misunderstood, hence misexecuted. In these
circumstances the interventions could correct the operator
by suggesting to reverse the erroneous assembly step or, in
case the misexecution could still lead to the final product,
seamlessly guide the operator by presenting alternative
instructions.

All in all, HCM would require a large body of auto-
mated computing techniques which would not only
make possible to engineer end-user-driven (nearly)
unique products, it would achieve so by tailoring the
assembly task to the human operator’s affective state and
experience level [38].

Based on these considerations, the work presented in this
manuscript assumes a Highly Customised Manufacturing
scenario in which only partial knowledge regarding the final
product to be assembled by a human operator is in possess.

@ Springer

It then centres its attention on the following three research
questions:

RQ1 how can assembly steps from loose components to
final product be procedurally generated without relying
on disassemble-assemble algorithmic approaches?

RQ2 How can these be used to adaptively guide a
human operator so that her misunderstandings and/or
misexecutions can be promptly corrected?

RQ3 How can her affective state throughout the given
task be taken into account?

We tackled the questions by leveraging Artificial
Intelligence (AI) and virtualisation. The outcome is
ViTroVol, a framework which seamlessly transitions from
a virtual phase (in vitro), in which assembly steps are
sought, to a physical phase (in vivo), in which the product is
assembled. The in vivo phase realises two communication
flows, Operator-to-ViTroVo and vice versa. The former
monitors the assembly stage, gathers the operator’s affective
state and other performance-related information, and
updates the data structure used by the second, ViTroVo-to-
Operator flow, in charge of presenting the most appropriate
instructions?.

We conducted an early experimental investigation on
a fictional product composed of five parts. ViTroVo
managed to efficiently find the appropriate sequences
of assembly steps and, based on them, to successfully
guide the participants of our experiment throughout the
given task. We believe that ViTroVo has the potential to
become the reference architecture for Highly Customised
Manufacturing, given its modular composition — which
makes it easily extendable — and the fact that the
whole manufacturing journey leverages the same virtual
environment and component models — albeit with ad hoc
configurations.

The remainder of this manuscript is organised as follows:
Section 2 provides an overview of the most relevant
work to our research. Section 3 introduces the architecture
of ViTroVo. Section 4 presents the case study of our
investigation. The framework’s technical details begin with
Section 5, in which the virtualisation aspects are introduced;
Section 6 delves into the task of retrieving the assembly
steps; Section 7 describes the processes needed to prepare
the module in charge of monitoring the physical assembly
stage. Section 8 goes into the intricacies of operator
guidance and its two information flows. Section 9 delves
into the initial evaluation of our framework. Section 10
dissects the strengths and weaknesses of our framework and
outlines future work. Section 11 concludes the manuscript.

1“Vi trovo”, in Italian, means “I am going to find you (plural)”.

2ZA video overview of ViTroVo can be found at the following link:
https://vimeo.com/567089060

https://vimeo.com/567089060

Int J Adv Manuf Technol (2021) 117:3873-3893

3875

2 Related work

Our research tackles three main topics: retrieving assembly
steps, adaptively presenting instructions to a human
operator, and training neural networks with synthetic data
to understand real-world assembly stages. Intuitively, all
of them are supported by a large amount of research. The
current section presents the work most closely related to
ours.

Assembly Sequence Planning [52] (ASP) is a research
field much similar to our Assembly Search process. ASP
refers to a task for which planners, on the basis of their
particular heuristics in assembling all the components of
a product, arrange a specific assembly sequence according
to the product design description [64]. Generally speaking,
given a fully assembled product specification (components
and how they are connected), ASP aims to first disassemble
the product [33] — so that all possible steps leading to
loose components can be found — and then to reverse
the result, in order to obtain an assembly graph, usually
represented via AND/OR graphs [8, 37, 45]. The most
important difference between ViTroVo’s Assembly Search
(AS) and ASP is in the lack of a fully assembled product
description, hence the fact that AS does not perform any
disassembly-based search. Nonetheless, it is likely that
the soft-computing algorithms used by ASP — e.g. ant
colony optimisation [66], particle swarm optimisation [67]
or evolutionary computation [50] — could not only compete
with our Monte Carlo Graph Search (MCGS) algorithm
(see Section 6.1) in generating a graph more efficiently,
but also work in symbiosis with each other, as outlined
in Section 10.

AND/OR graphs provide a compact representation
of assembly plans, are extremely powerful in enabling
parallel assembly, and are equivalent to the directed
graph of assembly states [52]. It is therefore clear that
ViTroVo should attempt to achieve such translation, as it
would facilitate its application to teamed assemblies [45]
and, furthermore, assembly line balancing [17, 56], a
fundamental research domain linked to ASP. For a non-
exhaustive overview on ASP, its approaches and techniques
we recommend the literature review work of Rashid
etal. [50], Suetal. [57], Guo et al. [18], and Lambert [31]. A
closely ASP-related line of research is motion planning. The
idea is much similar to the one we use for the join assembly
action (see Section 6.1.1): executing disassembly motions
in simulated environments to retrieve the (dis)assembly
order. With this respect, the work of Xiong et al. [70]
or Morato et al. [42] on Rapid-growing Random Trees
(RRT) should also be investigated for ViTroVo. Along these
lines, we highlight the promising work of Kaipa et al. [25],
which relied on RRT to procedurally generate animated
instructions of a product composed of 71 parts.

Arguably, the research on operator guidance is even
bigger than ASP’s, as it can easily ramify in multiple
fields, e.g. human-computer interaction, user experience
and cognitive psychology research. By focusing on the
mere technical aspects related to animated instruction
generation, Hotejsi et al. [20] developed a module for the
Unity Software suite — the same used by ViTroVo (see
Section 5) — to generate assembly instruction videos. More
remarkably, they conducted a thorough investigation on
what instruction modalities — paper, virtual and video —
have a better impact on the assembly performance. Similar
work, conducted, e.g., by Watson et al. [69], empirically
motivate our aim to generate animated virtual instructions.
Nonetheless, their studies do not take into account the
affective state of the operator but only the time taken
to assemble a given product. Other work on adaptive
instruction formalisation and design are those of Funk
et al. [16], in which they outline requirements for cognitive-
driven adaptive assistance, and the work of Mattsson and
Fast-Berglund [38, 40], in which they provide guidelines to
generate instructions facilitating the operator’s expertise.

Cognitive modelling of an operator for her guidance is
tightly related to her affective modelling. ViTroVo has just
scratched the surface of this extremely important topic,
by facilitating the affective data collection via computer
vision (see Section 8.1). Further research and enrichment of
our framework should definitely take into account, among
others, the work of bin Khairai et al. [28], who examined the
correlation between operator stress and work performance,
and Mattsson et al. [41], in which they relied on wearable
devices — a perfect additional modality ViTroVo could
leverage — to monitor physiological features such as heart
rate and skin temperature.

An effective adaptive operator guidance needs automated
ways to detect the (mis)execution of given instructions.
Antifakos et al. [2] centre their attention in detecting
the assembly actions performed by human operators
and in mapping them to a pre-defined assembly graph.
They identify three very relevant modalities to present
instructions: full-walk-through, assistance-on-demand and
rescue-from-trap. Our work, currently, has a single modality
of instruction; it would hence be beneficial to find ways
to integrate their approach with Operator Modelling (see
Section 10). Their assembly stage perception is achieved via
motion sensors embedded in each component, rather than
our vision-based, and their localisation process relies on
Markov chains.

Another remarkable work with a focus on video-
based localisation is done by Wang et al. [65]. They
rely on probabilistic inference, an approach which could
certainly improve ViTroVo’s greedy localisation (outlined
in Algorithm 2). Moreover, Wang et al. assume some
additional information to the component’s virtual models.

@ Springer

3876

Int J Adv Manuf Technol (2021) 117:3873-3893

Their so-called part-interaction rules are extremely similar
to the Augmented Computer Aided Design (CAD+)
connection points/groups that will be used in our work
(see Section 5). Our models, however, expect additional
information (reported in Table 1), as they are used in
different ways by different processes.

In order to provide appropriate guidance to the human
operator using instructions, the progress of the assembly
needs to be monitored. Most practically, this is done using a
video-based system. This requires functionalities to analyse
the video-stream, captured by a camera above the assembly
table, to determine the assembly stage. Essential for such a
system is to recognise and localise the components in view.
Deep learning models are superior in performing such visual
tasks, albeit that training such models typically requires
large sets of manually annotated ground truth data. Such an
annotation effort is not only very time consuming, it is also
not available for our current use case. A promising approach
to circumvent manual annotation is through the use of
automatically generated labelled data using simulation. In a
virtual environment, images can be captured from simulated
scenes which are representative for the real world. This
provides an automated process for the fully controlled
generation of large amounts of labelled data. However, such
approach is not sufficient to let a neural network operate
on real-world images. This is due to the “reality gap”
between the simulated environment and the real world [62].
Various techniques are developed to bridge this gap, such as
photorealistic simulations [24], domain randomisation [62,
63] and structured domain randomisation [49].

Photorealistic simulations aim to bring the simulated
environment as close to the real world as possible. Domain
randomisation focuses on generating simulated scenes
using highly randomised parameters (e.g. positioning,
orientation, lighting, colour, texture). By varying over these
parameters and rendering non-realistic images, the neural
network is trained to become invariant of these variations
and only learn essential features which would transfer
to the real world, hence enforcing domain invariance.
Structured domain randomisation aims to leverage the

benefits of both realistic simulations and randomisation, by
only randomising parameters within realistic ranges which
take into account the structure and context of a scene.
This method outperforms domain randomisation and can
achieve performances closer to those obtained after
trained on real-world data, albeit at the cost of higher
simulation complexity and efforts [49].

3 The ViTroVo framework

The overall architecture of ViTroVo is presented in Fig. 1.
The framework bridges the customer’s Product Ideation
phase with her Final Product. It does that by transitioning
from a purely virtual phase — hereafter called in vitro
— during which all data and computational modules are
generated, to a physical phase — hereafter called in vivo —
in which a human operator is guided throughout the actual
assembly task.

The two maximum common divisors for the ideation,
in vitro and in vivo phases correspond to the customised
product’s component models and a Virtual Environment.
The former, which we will hereafter refer to as Augmented
Computer Aided Design (CAD+) models, represent compo-
nents with different configurations, so that each process can
utilise them at best. The latter is the tool processes lever-
age to ad hoc manipulate CAD+ models. Currently, our
framework relies on the Unity Software suite [61].

The highly customised manufacturing journey begins with
Product Customisation. In this process the customer designs
the final product, for instance, by selecting components from
a database, by modifying their morphology, by combining
them with customer-made models, and by configuring global
functionalities. The output of this process are the Product
Specifications. Intuitively, the richer the specifications, the
more powerful ViTroVo. As our research has not fully delved
into Product Customisation yet, the design of our frame-
work assumed two minimal specifications: the exhaustive
list of CAD+ models composing the product and the final
product’s partial look. As soon as Product Specifications are

Table 1 ViTroVo’s CAD+ Models and Virtual Environment key-properties

Process CAD+ Models

Uses Virtual Collision Component Connection Connection

Environment Detection Motion Type Medium
Product Customisation Yes Detailed No Yes No
Assembly Search Yes Detailed Detailed Yes No
Assembly Stage Detector Preparation Yes No No No Yes
Adaptive Operator Guidance Yes No Detailed Yes Yes
Component Manufacturing No No No No Yes

@ Springer

Int J Adv Manuf Technol (2021) 117:3873-3893

3877

Customer's

Product Ideation in vitro

Customer's

i

'

f R

i vy Final Product
'

[Augmented Computer Aided Design (CAD+) Models @]

) 3
Adaptive Operator

oo oo (
Product Product Assembly
[of i i ifi i Search
&

'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
Guidance '
'
'

4‘_,{ Assembled Product }

*
Assembly Stage
Detector
Preparation

Assembly Stage

Detector

Virtual Environment ¢

Fig. 1T The schematic representation of ViTroVo. The framework is
presented with a left-to-right information/processing flow and an
indicative timeline, so that concurrent processes and dependencies
can easily be observed. Since the CAD+ models and the Virtual
Environment are used throughout the whole manufacturing journey,
albeit in different configurations, their link with other processes is

defined, the in vivo Component Manufacturing process
begins. The process, which is not covered in our work, can
be executed, e.g., via three-dimensional (3D) printing of the
CAD+ component models.

Product Specifications are also necessary to begin the
in vitro phase. This phase is composed of two concurrent
processes, Assembly Search and Assembly Stage Detector
Preparation. Both of them rely on CAD+ models and the
Virtual Environment. Assembly Search is the process in
charge of exploring the combinatorial space of assembly
steps, of evaluating their effectiveness with respect to
the Product Specifications, and of ultimately storing them
into an Assembly Graph. The graph has five distinctive
characteristics: (1) its nodes represent assembly stages (e.g.
how components are joined with each other), (2) its edges
represent assembly actions (e.g. joining two components),
(3) it contains one initial assembly stage (i.e. no incoming
edges), corresponding to all loose components (root node),
(4) it contains one unique node, representing the final
assembly stage, corresponding to all components assembled
into the final product (goal node), and finally (5) it
contains more than one path from the root to the goal
node. Essentially, Assembly Search simulates the physical
assembly task by manipulating CAD+ models in the Virtual
Environment.

The Assembly Graph contains the needed (in vitro) steps
to guide the human operator throughout the assembly
task via the in vivo Adaptive Operator Guidance process.
The process leverages CAD+ models and the Virtual
Environment to generate animated instructions. Adaptive
Operator Guidance also needs to keep track of the physical

time

represented by, respectively, the circle and rhombus symbols. Round-
edge square items correspond to data and models; sharp-edge square
items to processes. The two in vitro and in vivo phases are also out-
lined. The details of Assembly Search, Assembly Stage Detector
Preparation and Adaptive Operator Guidance can be found, respec-
tively, in Figs. 6, 11 and 14

assembly stage — which we assume it has a corresponding
node in the Assembly Graph — so that the most appropriate
instruction can be provided. One way is to let the operator
query the framework for the next instruction. Although this
can be sufficient in case of correct execution of the last
given instruction, it would fail in case of misexecutions.
For this reason, Adaptive Operator Guidance relies on
a deep learning model (Assembly Stage Detector) to
visually perceive the current physical stage and to identify
the corresponding node into the graph (localisation).
Adaptive Operator Guidance augments the assembly graph
with operator’s performance and affective data. This can
additionally be used to generate more personalised paths
and instructions, for instance, to minimise the operator’s
stress levels.

The last in vitro process, Assembly Stage Detector
Preparation, is in charge of preparing the detector. This
is done by exploiting deep learning models to detect the
location and orientation of components, respectively using
object detection and image retrieval methodology. Both of
them are based on component images. However, as the real-
world images do not exist yet, ViTroVo leverages the CAD+
models and the Virtual Environment to generate synthetic
images.

4 A case study: product specifications
We imagine a customer designing a remotely connected

luminaire. Five components make the final product: a
Printed Circuit Board (PCB), a Light Emitting Diode (LED)

@ Springer

3878

Int J Adv Manuf Technol (2021) 117:3873-3893

Fig.2 The CAD models of our
case study. (a) PCB. (b) LED
board. (c) Antenna. (d)
Encasing. (e) Stand

board, a radio-signal receiver (antenna), an encasing and a
hollow stand connector. The related virtual models, which
we assume were chosen by the customer, are designed by
means of FreeCAD [51]. Figure 2 depicts the component
CAD models designed in FreeCAD. Figure 3 depicts the
derived CAD+ models used in our work (see Section 5).
Figure 4 depicts their 3D-printed version, that is, the output
of Product Manufacturing.

We assume that the only information regarding the final
product specifications corresponds to its final assembled
look. We do not have any information regarding (1) what
component connects to which other, (2) in which order and
(3) with which orientation. A snapshot of such assembly can
be observed in Fig. 5.

5 CAD+ models and Virtual Environment

The vast majority of industrial manufacturing relies on
Computer Aided Design (CAD) models of products and
components. These models, often made by specialists,
have the purpose to describe, in details, components for
product manufacturing and/or final, assembled products.
Essentially, their definition is narrowly scoped. CAD
models for Highly Customised Manufacturing necessarily
require additional (meta) information, as the models have
a much broader scope — the very assumption made of a
HCM’s component database makes these compatible with a
multitude of other components in yet-to-exist products —
and are also algorithmically manipulated to determine the
assembly steps. We will refer to them as Augmented CAD
(CAD+) models.

(a)

(b)

Fig. 3 The CAD+ component models of our case study. For each
component, connection points with normal vectors (cones and their
directions) are shown. Connection points with the same colour belong

@ Springer

In the research work we here present, the augmentation
is obtained by storing the meta information in external
comma-separated values tables and by manually shaping
collider meshes within ViTroVo’s Virtual Environment.
Nonetheless, as we will state in Section 10, CAD+ models
should become the standard representation for Highly
Customised Manufacturing. This means that CAD software
editors should equip themselves with functionalities aimed
at creating CAD+ models seamlessly.

Aside from Component Manufacturing, the other four
processes that use CAD+ models — i.e. Product Customi-
sation, Assembly Search, Assembly Stage Detector Prepa-
ration and Adaptive Operator Guidance — also leverage
the Virtual Environment. These processes actively manip-
ulate the models, albeit with different purposes and level
of details. We identified four key-properties. These are
summarised in Table 1.

The first property is Collision Detection, that is, the
ability to simulate the physical rigidity of the models and
to determine whether two or more components intersect
each other. Collision detection is fundamental for Product
Customisation — as the customer should design realistic
products — and Assembly Search — as this information is
used to ultimately determine the order of the assembly steps.
For these processes, collision detection has to be realised
with the highest level of detail, that is, it must be able to take
into account convexities and cavities in the models. On the
other hand, neither Assembly Stage Detector Preparation
nor Adaptive Operator Guidance need collision detection:
the former treats collisions as partial occlusions Assembly
Stage Detector must learn to cope with, the latter simply
replays the (collision-free) steps in the Assembly Graph.

(d)

to the same group. In the encasing (d) and stand (e) it is possible to
observe the threading detail. (a) PCB. (b) LED board. (c) Antenna. (d)
Encasing. (e) Stand

Int J Adv Manuf Technol (2021) 117:3873-3893

3879

Fig.4 The 3D-printed components as perceived by the camera used in our empirical investigation (see Section 9). (a) PCB. (b) LED board. (c)

Antenna. (d) Encasing. (e) Stand

The second property is the dynamic motion of com-
ponents in the Virtual Environment. We assume Product
Customisation is realised via a software tool which allows
the customer to manipulate objects within ViTroVo’s Virtual
Environment. The customer can drag and drop components,
hence, no motion is required. Different case is for Assem-
bly Search: the process sets the CAD+ models in motion to
allow them to combine with others, to detect possible colli-
sions, hence to identify promising assembly steps. Assem-
bly Stage Detector Preparation does not need any form of
motion, as its purpose is solely to generate images. Adap-
tive Operator Guidance, intuitively, does generate animated
instructions with the same detail of Assembly Search.

The third and fourth properties specify how components
can connect with each other by, respectively, the type
and medium. Connection types, e.g. screw hole or pin,
help in constraining which components can connect with
each other. This information is essential during Product
Customisation — to subtly coerce the customer to design
feasible products —, Assembly Search — to restrict the
combinatorial space of possible component combinations
— and, intuitively, Adaptive Operator Guidance. Assembly
Stage Detector Preparation does not need such information,
as it does not aim to generate examples of combined
components. Connection medium is the information that

Fig.5 The assembled product

specifies how the connection type is realised in the physical
world. Example of mediums are screws and threaded
component sockets. Connection medium is needed by
Assembly Stage Detector Preparation — as the generated
images must contain as many physical details as possible
—, Adaptive Operator Guidance — as an operator must
know, e.g., whether, how many and where screws should be
placed — and, needless to say, Component Manufacturing.
Product Customisation does not necessarily need this level
of detail. Assembly Search does not need it at all, as it
would bring additional and not needed collision detection
hindrances. All CAD+ models specify the position and
orientation of their connection points (see, for instance,
Fig. 3). Connection points are also grouped together: two
components can combine with each other by means of two
connection groups if and only if these have the same type,
all points can virtually overlap without collisions, and that
their respective normal vectors are inverted.

One final remark regarding the Virtual Environment
is due. As we will thoroughly explain in Section 6.1.1,
Assembly Search visually compares its generated product
with the partial view stored in Product Specifications. As
both processes share the same Virtual Environment, the two
assembled and customised images would be taken from the
same virtual camera position and orientation.

@ Springer

3880

Int J Adv Manuf Technol (2021) 117:3873-3893

6 Assembly Search

Assembly Search explores the combinatorial space of
assembly stages to retrieve those which, form loose
components, can ultimately lead to the final product which
satisfies the constraints defined by Product Specifications.
The output of Assembly Search is an Assembly Graph
which will be subsequently used by Adaptive Operator
Guidance. Assembly Search is composed of two sequential
sub-processes, namely Monte Carlo Graph Search (MCGS)
and Graph Completion (see Fig. 6).

Monte Carlo Graph Search is the core process of
Assembly Search. It leverages the Virtual Environment
to manipulate the components to determine whether a
certain assembly action is feasible. MCGS’ output is a
forward-directed graph, that is, all its possible paths attempt
to assemble the product (either correctly or wrongly).
Subsequently, Graph Completion enriches the forward-
directed graph to make it suitable for Adaptive Operator
Guidance, e.g. by creating edges allowing partial product
disassembly.

6.1 Monte Carlo Graph Search

MCSG builds upon Monte Carlo Tree Search (MCTS),
a model-based reinforcement learning algorithm which
showed its power especially in the Game Artificial
Intelligence domain [54, 58]. The main difference between
MCTS and MCGS is that — since MCGS’ transition
function is deterministic (see Section 6.1.1) — the latter
relies on a node similarity function to determine whether its
expansion tasks attempt to generate already existing nodes.
In that case, the algorithm does not duplicate the nodes,
rather it allows nodes to have more than one parent, hence
creating a graph.

6.1.1 Markov Decision Problem

Each state encodes a unique assembly stage. The state is
composed of a tuple representing three regions: bucket,
picked and assembled. Each component, uniquely identi-
fied, can be in one and only one region at a time. The initial

state is the only one in which all components are in the
bucket. MCGS can perform four parametrised actions:

— first placement (id)
pick(id)

Orient(xdega Ydeg» Zdeg)
Jjoin(pida, pg, did, dg)

ey

First placement is the only action that can be performed
in the initial state and is not performed anywhere else. Then,
MCGS will execute the remaining three actions iteratively
and in that order (pick, orient, join, pick, ...) unless a
terminal state is reached.

Pick moves a component from bucket to picked.
Orient sets a 3D orientation to the picked component.
Join connects the picked component (p;g) with another
already present in assembled (a;q), by specifying the
two components’ connection groups (p, and ag). The
successful join action moves the picked object to assembled.
Bucket solely contains component ids. Picked contains
the picked component id, its available connection groups
and, after the orient action, the set orientation. Assembled
contains all the assembled ids, their orientations, all the
join group pairs, and all the remaining available connection
groups. First placement corresponds to the concatenation of
pick(id), orient(0,0,0) and join(id, _, _, _), that is, join
with nothing.

The reward function is depicted in Fig. 7. Given a state
and action in input, the function returns a reward signal and
determines whether the input state is terminal or not. If the
action is not a join, the function returns the “no reward”
signal and the current state is non-terminal. Otherwise, the
function determines the signal by leveraging the Virtual
Environment.

First, the Virtual Environment places p;s, with its
specified orientation, in the 3D space so that its p, overlaps
a;jq’s group ag. Then, by following the reversed direction of
the normal associated to pg , the Virtual Environment sets
piqd in motion, with constant speed, moving away from its
starting position (“assemble and disassemble”).

The component will move along a straight line. It
can then either collide with another assembled component

Fig.6 The diagram representing
the Assembly Search process

CAD+ Models

Y

Monte Carlo

Product
Graph Search

Specifications

-

—)[Forward Graph]—)

Graph Completion

—)l Assembly Graph

A

Y

Virtual Environment

@ Springer

Int J Adv Manuf Technol (2021) 117:3873-3893

3881

no reward

assemble and

disassemble

get next state

empty bucket?

no

take snapshot

Wi
P €
wronge;saizmbly] [no reward]
A AN
correct assembly
reward
A
matches product
specifications? no
- available yes

Fig.7 MCGS’ reward function. The concentric black-white circle cor-
responds to the current state the action is performed, that is the state
the reward signal is calculated upon. The black circle, which can be
reached only in case join is performed, means that the current state is

or reach a pre-defined limit distance (“collision?”). If
a collision is not “valid”, that is, it does not occur
between p;q and a;4 in a limited region around p, and a,
(possible, for instance, in case of unavoidable floating point
approximations), then the function returns the “collision
reward” signal and the input state is terminal (invalid join
action).

Algorithm 1 State similarity function.

1 function state similarity(statey, statey)
2 ifleading action| # leading action, then return
false
if buckety # bucket, then return false
if picked) # picked, then return false
if assembled; # assembled, then return false
if picked orientationy # picked orientation; then
return false
7 ifavailable connections; # available connections;
then return false
8 if connection pairs; # connection pairs; then
return false
9 return frue

(= WY | B~

In case of no or valid collision, the Virtual Environ-
ment re-places p;q in its assembled position and retrieves
the newly available connection groups (“get next state”). If
the next state’s bucket is not empty (“empty bucket?”’) and
no available connection group remains (“available connec-
tions?””), then spare components are left behind. Therefore,
the reward function returns the “wrong assembly” signal

connections?

also a terminal state (unsuccessful join action). The non-filled circles
means that the current state is non-terminal (either a successful join or
any other action)

and the input state is terminal. If the bucket is not empty and
there are available connections, then there are spare parts
that can still be connected. Therefore, the returned signal
will be “no reward” and the input state is non-terminal.

If the bucket is empty, then a full product is assembled.
It is now time to evaluate whether it adheres the
Product Specifications. The Virtual Environment generates
a snapshot of the assembled product (“take snapshot™)
and this is compared — currently via Structural Similarity
Index Measure (SSIM) [68] with window size w —
with Product Specification’s product partial look (“matches
product specifications?”). If the similarity score is above
a pre-defined threshold 7, then the virtually assembled
product is considered adhering the specifications. This leads
to a “correct assembly” signal, the input state is non-
terminal and, intuitively, the next state is the terminal goal
state. Otherwise, the function returns the “wrong assembly”
signal and the input state is terminal.

Figure 8 presents a fragment of the transition and reward
function for a fictional three-component product to be
assembled. It depicts the initial state (SO, at the top) and two
terminal states (S9 and S14). S9 is the result of a wrongly
executed join action (“wrong assembly” reward signal), as
the next state (S11, showed below the dashed line to indicate
that it was solely generated to determine the reward signal)
has a non-empty bucket and no available connections. S14,
instead, is the result of a correctly executed join action.

The graph initially splits into three branches, one for
each component in the bucket. It is also possible to
see that the first two branches eventually merge at S10,

@ Springer

3882

Int J Adv Manuf Technol (2021) 117:3873-3893

bucket picked

S0 (root node)

assembled

(01
Ul
2

first placement (0)

)
l

first placement (1) first placement (2)

s1

bucket picked assembled bucket picked

s2

s3

assembled bucket picked assembled

(0]
U]
2

] En][o,w.z][o.o,o]

2]

] ﬁﬂ[o](o 0,0]

(0]
[l

] ﬂz][nl[a 0,0]

l pick (1)

|

pick (0)

l pick (1)

sS4

bucket picked assembled bucket picked

S5

S6

assembled bucket picked assembled

(101
2]

j Eo}[n,1.2][o.o,o] j Eo}[o 12]
2]

j [[1][0][0.0‘01

(o1

] Ez][uuu,o 0

l orient (90,180,0)

lorlenl (-90,180,0)

l orient (90,180,0)

s7

bucket picked assembled bucket picked

St

s9

assembled bucket picked assembled

101(0.1.21(0,0,0]
[1][0]120,180,0)
2

8
[0)(0.1,2][-90,180,0]
[1][0](0.0,0]
2]

[1][0][90,180,0]

)

join (1,0,0,2) +

s10

bucket assembled

[0I1.2[000] (1.0.02)
[1]0(¢0,180,0]

pick (2)
assembled

s
[0I1.2000] (1.0.02)
[1]01120,180,0]

l orient (90,180,0)
assembled

513
(woz;]

picked

12

bucket picked

(2101

bucket picked

[0)[1,2][0,0.0]
[1]11120,180,0]
[21(0]190,180,0]

l join (2,0,0,1)

s14

bucket assembled

[ol[2][0.0.0] (1002)
[1090,180,0] (2,0,0,1)
210)190,180,0]

Fig. 8 An example of transition function and related graph in accor-
dance with Section 6.1.1. Each node, depicted by a rectangle, repre-
sents a state. Each state label has prefix “S” followed by a number.
Fifteen states are depicted. States with a solid black circle on their
upper right corner represent terminal states for the Monte Carlo Graph
Search algorithm. S10, depicted below a dashed line, represents a
state which was only estimated by the reward function: it is part of
the transition function but the algorithm would never reach this state.
Each state defines the three bucket, picked and assembled regions.
Each region maintains the relevant information of each component:

picked

after their respective join actions. This is achieved by
means of the state similarity function, which pseudo-code
can be found in Algorithm 1. The function is rather
straightforward: two states (i.e. the next states of S7 and
S8) are equal if their regions and the parameters they
hold are the same. The so-called leading action is the
action that generated the function’s input states (join in this
example).

As it can also be seen, the orientation check is done only
for components in the picked region, as the assembled ones
might be in different orientations depending on the order
of the assembly, yet represent the same partially assembled

@ Springer

ﬁﬂ[“llﬂv0 0]
(

join(1,0,2.0)
(111.2.0]

join (0,2,1,0)

s10
bucket

[

assembled

[11090,180,0]
[2100,0,0)

picked

id for the bucket region; id and, if specified, available connection
groups and orientation for the picked region; id, available connec-
tion groups and orientation for the assembled region. The component
information is encapsulated in square brackets and is represented as a
horizontal vector. The assembled region also holds a list of component
id-connection group pairs encapsulated by round brackets. Each edge
connecting two nodes represents an action. Each action label specifies
its parameters in accordance with the action space defined in Eq. 1.
Some details have been omitted in order not to overcomplicate the
figure

product. What is important to check for the assembled
region, however, is that the available connections and the
assembled connection pairs are the same.

6.1.2 MCGS algorithm

The MCGS algorithm — the schematic representation of
which can be found in Fig. 9 — performs its iterations
and generates the Forwad Graph. Each node is composed
of the state and its value, computed and updated by the
algorithm’s backpropagation step. The edges correspond to
the parameterised actions. MCGS is executed only once,

Int J Adv Manuf Technol (2021) 117:3873-3893

3883

> the successful roll-out >
is added to the graph end olMGGS

selection

— —

expansion

-

simulation }—){ backpropagation }—|
<

repeated until goal node found <€

first placement

e oe e oo
00O OO0 00 OO 00 OO oo OO
R, %p %p ® -
ole 00 OO .

selection function
is applied recursively
until a leaf is encountered

All possible leaf nodes
are created

Fig.9 The schematic of Monte Carlo Graph Search

with each iteration beginning at the root node (initial state).
The algorithm terminates when the terminal goal state/node
is found.

As MCGS operates in a deterministic world, the
canonical Upper Confidence Bound (UCB) selection
algorithm can lead to a nearly exhaustive search strategy.
Therefore, MCGS’ selection step relies on the e-greedy
policy. The selection phase terminates when a leaf node, i.e.
a node with no outgoing edges, is encountered.

Once a leaf node is reached, the subsequent expansion
phase occurs. Expansion generates nodes based on the
action to be performed. If it is a pick or first placement,
Expansion generates as many nodes as the components in
the bucket. If the action is orient, the expansion strategy
generates nodes which picked orientation is such that any
of its connection group normals are inverted with any
available and compatible (i.e. same connection type) group
in the assembled region. In other words, orient-centred
expansion generates nodes which always lead to a feasible
(yet collision ignorant) join action. Finally, the expansion
for join generates as many nodes as the compatible pg-a,
groups for each p;4-a;q pair.

Once the nodes are expanded, a random one is
selected uniformly, and from there the Simulation step
starts. Simulation generates s roll-outs by (1) adhering
to the ordered and iterated pick-orient-join sequence, (2)
generating nodes uniformly sampled from the feasible
ones (i.e. Simulation utilises the same rationale used by
Expansion). The s roll-outs O = {01, 02,... o5} would
then be executed to retrieve their respective reward signals
ri VO,' e 0.

A batch of simulations

(rewards) of the batch
is backpropagated
in the graph

are generated

As soon as a roll-out o; € O receives a “correct
assembly” signal, o; is added to the graph and MCGS termi-
nates. Otherwise, the final step of MCGS, backpropagation,
occurs. First, the gain G of O is calculated as the related
rewards’ arithmetic average

N

GZ%ZH

i=1

backpropagation is then performed via every-visit Monte
Carlo update rule [58]

Vi < Vi +a(G — V)

by discounting G, for each backward step, by a parameter y
G <« yG

6.2 Graph completion

The Forward Graph, output of MCGS, is further augmented
in three simple steps. The first one regards the creation
of an additional orientation node, which symbolises any
other orientation, to the same level as those generated after
the orient action (see Fig. 10a). The second augmentation
creates change orientation edges (see Fig. 10b). The edges
connect orientation nodes of the same level with each other,
to create a nearly complete sub-graph. Any other orientation
is the only node which does not have any incoming change
orientation edges. The third augmentation adds undo pick
edges from all nodes in between pick actions (see Fig. 10c).
Undo pick reverts the first placement edge as well.

@ Springer

3884 Int J Adv Manuf Technol (2021) 117:3873-3893
Fig. 10 The three steps of Forward Assembly
Graph Completion. (a) “Any Graph Graph
other orientation” node creation.
(b) “Change orientation” edge))
creation. (c) “Undo pick” edge g g
creation
orient graph completion skt
(a)
Forward Assembly
Graph Graph
pick pick
orient orient
graph completion
change
orient
(b)
Forward Assembly
Graph Graph

join
or

first placement

7 Assembly stage detector and its
preparation

The Adaptive Operator Guidance process aims to
autonomously detect the current assembly stage in order to
provide the most relevant instruction to the human operator.
The process relies on a module — Assembly Stage Detector
— to observe the assembly theatre and to retrieve the nec-

@ Springer

join
or

first placement

pick

 com—

graph completion

essary information required to map the physical assembly
stage with the nodes of Assembly Graph.

Assembly Stage Detector is configured in three sub-
modules (see Fig. 11). The first, Position Detector, identifies
the components and locates them with respect to the state’s
bucket/picked/assembled. The other two, Feature Extractor
and Orientation Feature Dataset, retrieve the orientation
of the picked component by extracting its visual features

Int J Adv Manuf Technol (2021) 117:3873-3893 3885
Fig. 11 The detailed schematics Assembly Stage Detector Assembly Stage
of ViTroVo’s Assembly Stage Preparation Detector
Detector Preparation process
parationp e N
P s N
osition Position]
Domain Component Position N Position
Deteth_)r e Randomisation Dataset Detgqtor Detector e Detector
Preparation Training
\; J
T 1 prmmm e m e e e -
:)
] 1
4 Virtual | _ o _____ ! ol Feature
CAD¥ ModeIsJ Environment - Extractor
~——
° T l e A
rientation 1 Orientation
Orientation Orientation Feature Orientati
Detethr — Generation Image Dataset Extractor Feature Dataset g Feature
Preparation Dataset
N\ J
- J

and mapping them with a previously generated orientation-
visual feature dataset.

7.1 Position detector preparation

The Position Detector is realised using a RetinaNet object
detection network [34] with a ResNet-50 backbone [19],
as implemented by [14]. The network, pre-trained on the
COCO dataset [35], was further trained using a Component
Dataset of synthetic images with the Adam optimisation
algorithm [29].

Component Dataset comprises of S synthetic images
generated in ViTroVo’s Virtual Environment via domain
randomisation [62, 63]. The Virtual Environment generates
random 3D scenes composed of three elements: a back-
ground plane (simulating the assembly table), assembly
components, and distractor objects. Scenes are generated
by uniformly sampling between [0bjyin, 0bjmax] Objects
(components or distractors) which are then positioned in
the scene by randomising their position, orientation, scale,
colour and texture. The distractors items can either be a
cube, a cylinder, a sphere or a capsule. The texture is uni-
formly sampled from a set of textures. A single image of
size h x w was captured from every scene, with accompa-
nying meta-data including the type and 2D bounding box
of every component. Figure 12 showcases five examples of
such generated images.

7.2 Orientation detector preparation

Orientation detection is performed by means of an image
retrieval methodology.

First, an Orientation Image Dataset of images depicting
isolated components with different orientations is generated
using the Virtual Environment. A total of 64 images per
component are generated — all combinations of 0, 90,
180 and 270° of rotation around its three axes. However,
components can be symmetrical over certain axes, leading
to the same image. Therefore, highly similar images
(detected via structural similarity) are detected and grouped
together. Figure 13 depicts the generated asymmetrical
images for our case study’s LED board component.

Subsequently, the images are fed to a pre-trained VGG-
16 neural network (excluding the last layer) which acts as a
Feature Extractor [55]. The result is an Orientation Feature
Dataset.

Finally, during actual assembly, the orientation of a
picked component is determined by the following steps:
(1) a cropped image of the picked component is obtained
using the bounding box derived by the Position Detector,
(2) the cropped image is fed to the VGG-16 network
(Feature Extractor) to retrieve the related feature vector,
(3) the Euclidean distance of the picked component’s
feature vector with those stored in the Orientation Feature
Dataset is calculated, (4) the orientation related to the

Fig. 12 Examples of domain randomised images used to perform the supervised learning of Assembly Stage Detector’s Component Detector

sub-module

@ Springer

3886

Int J Adv Manuf Technol (2021) 117:3873-3893

i] [
Sjé

Fig. 13 An example of the 12-out-of-64 symmetry-free orientation images related to one of the LED board component of our case study

dataset’s vector with closest distance is returned as detected
orientation.

8 Adaptive Operator Guidance

The in vivo Adaptive Operator Guidance (AOG) is the final
aggregator process of ViTroVo. In here, the framework
and the human operator interact with each other so that
the physically manufactured components are combined to
form the end-user’s idealised product. Figure 14 depicts
the schematics of AOG. Two information flows exist: one
going from the Assembly Graph to the Operator (ViTroVo-
to-Operator), and one going in the reversed direction
(Operator-to-ViTroVo). The latter is in charge of making
sure AOG knows not only at which assembly stage the
operator is in, but also how the operator has thus far
experienced the task at hand. The former presents the most
relevant assembly instruction to be executed.

Algorithm 2 Graph localisation.

1 function graph localisation(G, n, P, §)

2 nodelist = breadth first search(G, n)

3 candidate nodes = ()

4 for each node € nodelist do

s if state similarity(node.state, §) is true then

6 candidate nodes < concatenate(candidatenodes,
node)

7 end if

8 loop

9 if |candidate nodes| = 0 then return n

10 if3m € candidatenodes : m € P then return first m

11 return candidate nodes[0]

@ Springer

8.1 Operator-to-ViTroVo

The Graph Localisation process, in charge of keeping the
Assembly Graph’s current node and the physical assembly
stage aligned, takes in input both the processing outcome of
Assembly Stage Detector (ASD) and, if existing, Operator
Input.

A snapshot of the physical assembly theatre is fed to
ASD. The Position Detector network returns the identified
components and their bounding box. Based on pre-defined
specifications of the in vivo bucked, picked and assembled
regions, the corresponding in vitro component positioning
is retrieved. In case of a picked component, ASD retrieves
the orientation of the object.

The ASD-driven Graph Localisation process is outlined
in Algorithm 2. It takes in input the Assembly Graph G,
the current node 7, the current path from » to goal node P,
and Assembly Stage Detector’s output §. The algorithm is
designed based on a somewhat fair assumption: the operator
is in good faith, i.e. she tries to execute the instructions
to the best of her capabilities. The algorithm first sorts the
nodes via breadth-first search (line 2) starting from #. It then
builds a list of candidate nodes which state matches § (lines
3-8). The matching is achieved via the state similarity
Algorithm 1 introduced in Section 6.1.1 (line 5). The list
of candidate nodes is then analysed (lines 9-11). If the list
is empty then no candidate node is found, hence the last
known current node is prudently returned »n (line 9). If the
list contains nodes that are also in P then the first of these,
i.e. the node closest to n (result of breadth-first search), is
returned (line 10). Otherwise, the algorithm returns the first
candidate node (line 11).

The ASD-based Localisation process is not infallible.
For this reason, the Operator-to-ViTroVo flow allows the

Int J Adv Manuf Technol (2021) 117:3873-3893

3887

\ r N
[CAD+ Models Physical
Components
l J . l J
ViTroVo-to-Operator /~ N 4 N\
Path Instruction Virtual
Planning Generation Environment
)
Assembly
Stage <€ Assembly
Assembly Detector Theatre Assembled
Graph Graph — and Product
Operator-to-ViTroVo Localisation Operator
Operator Input
Graph Performance
Augmentation [Data
NG J L] NG J

Fig. 14 The details of ViTroVo’s in vivo Adaptive Operator Guidance process

operator to proactively retrieve the next/previous path-
planned instruction via Graphical User Interface (Operator
Input). The Graph Localisation process based on Operator
Input is straightforward.

Ultimately, the Operator-to-ViTroVo flow gathers addi-
tional Performance Data and stores it along the edge con-
necting the current node with the localised one. Currently,
Adaptive Operator Support records the duration of the exe-
cuted instruction and the operator’s average emotional state
(happiness, sadness, anger and neutrality). Emotion detec-
tion is achieved by means of the pre-trained, mini-Xception
network [3, 47].

8.2 ViTroVo-to-Operator

The flow is organised as a simple sequence of processes.
First, Path Planning determines the sequence of nodes and
edges from the (localised) current node to goal node. As the
edges are enriched (weighed) with performance data, the
process relies on the Bellman-Ford algorithm [4] to gener-
ate, e.g., shortest paths, minimum duration paths, sadness-
minimum paths, and so on. Subsequently, Instruction Gen-
eration extracts the relevant information of the triplet current
node, next node and connecting edge and sends it to the
Virtual Environment. The latter, finally, utilises the related
CAD+ models and additional information (e.g. connection
medium for the join action) to visualise the animated
instruction. A snapshot of a rendered join instruction can be
seen in Fig. 15.

9 Initial evaluation

The five-component fictional Product Specifications intro-
duced in Section 4 was fed to the two in vitro processes
Assembly Search and Assembly Stage Detector Prepara-
tion. The hyperparameters of their respective sub-processes
can be found in Table 2.

Assembly Search ran on a non-dedicated Intel®
Core™ {7-9850H CPU (2.60GHz, 6 Cores, 12 Logical Pro-
cessors) with 32GB. It terminated in approximately five
hours and generated a Forward Graph composed of 2062
nodes and 2106 edges. The subsequent Graph Completion
process led to an Assembly Graph of 2306 nodes and 12426
edges. Table 3 reports graph sizes throughout Graph Com-
pletion, whilst Fig. 17 gives a macroscopic view of the two
Assembly Search graphs.

We then conducted a preliminary, qualitative evaluation
aimed to estimate the effectiveness of Adaptive Operator
Guidance. The process ran on the same computing machine
used by Assembly Search. We set an assembly theatre com-
posed of (1) a desk, with the three bucket/picked/assembled
regions, (2) one monitor displaying the animated instruc-
tions, (3) one monitor displaying additional information
(e.g. detected emotion values) and the two previous/next
instruction buttons (Operator Input), (3) a Logitech C920
PRO HD webcam (1080p), mounted at the middle of the
desk and 50cm elevated from it, which stream is sent to
Assembly Stage Detector, (4) a LED strip, along the frame

Fig. 15 An example of generated join instruction. The information
related to the connection medium is used by the Virtual Environment
to also render the number of needed screws and their position. The
animation highlights the components to be connected (in orange),
moves the PCB to its target position, and also shows how screws
should be fastened (clockwise rotation)

@ Springer

3888

Int J Adv Manuf Technol (2021) 117:3873-3893

Table 2 Hyperparameter settings used for the five-component case study

Name Description Value Location

no reward Reward signal 0 Reward Function

collision reward -1 Reward Function

wrong assembly reward 0.1 Reward Function

correct assembly reward 10 Reward Function

w SSIM window size for correct assembly reward signal 351 Reward Function

T Threshold for correct assembly reward signal 0.8 Reward Function

€ e-greedy exploration policy 0.1 MCGS algorithm

s Number of roll-outs 10 MCGS algorithm

o Every-visit Monte Carlo update rule 0.1 MCGS algorithm

y Gain discount rate 0.99 MCGS algorithm

b Batch size 4 Position Detector Training
e Learning epochs 100 Position Detector Training
r Learning rate le—5 Position Detector Training
S Number of synthetic images 15.371 Component Dataset
[0bjmin, Objmax] Number of components/distractors per synthetic image [10, 50] Component Dataset

t Number of textures 50 Component Dataset
hxw Synthetic image size 720 x 720 Component Dataset

holding the 1080p camera, to better illuminate the assem-
bly stage, and (5) a Logitech C170 (1024x768) webcam,
positioned in front of the operator, to record her affective
state (see Fig. 16). The stage was installed at the Brain-
port Industry Campus in Eindhoven, The Netherlands [21].
We recruited three participants in September 2020. Unfor-
tunately, the restrictions due to the COVID-19 pandemic
are still hampering our ambition to conduct a thorough
empirical evaluation.

The participants did not know how the final product
would have had to look like and never saw the components
before. As soon as the experimenter positioned all
components in the bucket region, they began to follow the
given instructions. They all successfully assembled the final
product. They found the animations easy to understand.
None of them paid attention to the instruction’s additional
text. They all agree that the set orientation instruction is

needless, as that information is also shown during the
subsequent join instruction. Assembly Stage Detector had
difficulties in retrieving the orientation of the picked stand
and, for one participant, the picked antenna as well. In
these circumstances, the two operators pressed the “next
instruction” button. Possibly, the main reason is due to
the rather low-quality of the gathered images (see Fig. 4).
The captured components were very blurred, to the point
that the stand threading — the only feature capable to
suggest an orientation — is hardly visible even for a
human eye. On the other hand, component detection and its
region mapping was highly successful. Graph Localisation
correctly redirected a participant who erroneously picked
the wrong component (the undo pick instruction was
shown).

Aside for the previous/next instruction buttons, the
participants showed no interest in the monitor displaying

Table 3 Forward-to-assembly graph number of nodes and edges progress generated by Graph Completion

Graph Completion Step Number of
Nodes Edges
Forward Graph 2062 2106
“Any other orientation” node creation 2306 2350
“Change orientation” edge creation 2306 10922
“Undo pick” edge creation 2306 12426
Assembly graph 2306 12426

@ Springer

Int J Adv Manuf Technol (2021) 117:3873-3893

3889

Fig. 16 A snapshot of the
ViTroVo assembly theatre

additional information. Ironically, two participants thought
the monitor was solely needed by the experimented for
debugging purposes, given its rather poor graphical appeal
(Fig. 17).

10 Discussion, limitations and future work

ViTroVo’s architecture (see Fig. 1) was designed to tackle
the three research questions introduced in Section 1.

RQ1 was successfully tackled by the framework’s
in vitro Assembly Search module (see Section 6). More
specifically, Monte Carlo Graph Search generates a Forward

Graph from loose components to final product by avoiding
the preliminary disassembly step.

RQ2 was tackled by a plethora of modules. Undoubt-
edly, the in vivo Adaptive Operator Guidance module (see
Section 8) is the core component in charge of realising
the interaction with the operator. Its design into a looped
information flow (ViTroVo-to-Operator and Operator-to-
ViTroVo) allow for a continuous monitoring of the oper-
ator’s instruction executions, assembly status localisation
within the graph, and hence retrieval of the next, most
appropriate instruction. Adaptive Operator Guidance can-
not exist without Assembly Graph, output of Assembly
Search. Additionally, the module rather successfully relied

(a) Forward Graph

(b) Assembly Graph

Fig. 17 The two graphs generated by Assembly Search for our five-component case study. The root node is depicted by a red square, the goal

node by a red star

@ Springer

3890

Int J Adv Manuf Technol (2021) 117:3873-3893

on Assembly Stage Detector, a vision-based component
capable of understanding the current assembly status and
hence obtain an automated Graph Localisation task. Most
remarkably, Assembly Stage Detector was trained in vitro
via domain randomisation (see Section 7), that is, by means
of synthetically generated images of the product compo-
nents.

RQ3 was tackled by equipping Adaptive Operator
Guidance with (1) a vision-based emotion recognition
module, part of Performance Data gathering (Operator-
to-ViTroVo flow), (2) Graph Augmentation, which stores
the detected emotion values as weights on the Assembly
Graph’s traversed edges (Operator-to-ViTroVo flow), and
finally (3) Path Planning (ViTroVo-to-Operator flow)
which, by relying on the Bellman-Ford algorithm, computes
the shortest path in a weighted graph. In this way, ViTroVo
can generate paths which, for instance, anger is minimised
or happiness is maximised (the happiness values would be
stored with their sign inverted).

Ultimately these modules, together with Product Cus-
tomisation and Component Manufacturing, are effortlessly
linked together by a versatile component representation
— CAD+ models — and management — a Virtual Envi-
ronment — used throughout the whole highly customised
manufacturing journey, albeit with slightly different pur-
poses and configurations (see Section 5). We advocate the
standardisation of CAD+ models for Highly Customised
Manufacturing to seamlessly transition from in vitro to
in vivo phases. The standardisation must enable the auto-
mated augmentation which, in our study, was necessarily
done by hand, such as the creation of collider shapes.

We are convinced ViTroVo paves the way for Highly
Customised Manufacturing. Nevertheless, it can certainly
be improved. What follows is a scrutiny of its performance,
component per component, with the aim to identify
potential advancements.

Assembly Search’s greatest challenge lies in effectively
explore the combinatorial space of assembly configurations
by solely relying on Product Specification’s partial informa-
tion, in our case study corresponding to the outer look of the
final product.

The decision to model Assembly Search as a Markov
Decision Process was a straightforward interpretation of
its required output, the Assembly Graph: nodes would
correspond to the process’ states, edges to its actions, and
the certain outcome of a specific action performed in a
specific state would correspond to a deterministic transition.
It was therefore natural to rely on reinforcement learning to
algorithmically solve the related Markov Decision Problem
(MDP). Reinforcement learning allows Assembly Search
not only to seek for the optimal action plan to assemble
the product, it also allows to explore the search space, to
discover wrong assembly sequences, hence to generate a

@ Springer

slightly redundant assembly graph, which would arguably
be much more prone to localise the physical assembly
stage in case of erroneously executed instructions. Within
the model-based reinforcement learning approaches, the
choice to use Monte Carlo Graph Search was mainly
motivated by the need to solve a specific MDP related
to a specific product, rather than training an Al agent
capable of assembling any product. Moreover, the reward
function in use allows for early stops along assembly paths
in case of collision and wrong assembly reward signals
(see Section 6.1.1 and Fig. 7). We argue that the Markov
Decision Process so-defined is quintessential to Assembly
Search, whilst MCGS could potentially be replaced by other
search algorithms, for instance Evolutionary Computation
or Random Forest Search, as the designed reward function
can easily be used as a fitness/cost function. Future work on
such comparisons are expected.

The case study we used to validate our approach was
mainly based on the idea that Highly Customised Manu-
facturing would leverage global repositories of interchange-
able components. The other fundamental characteristic, that
is the need to assemble unique products composed of
customer-designed parts, was indirectly considered in this
work. We are quite confident our framework is rather robust
against customer-designed parts, providing of course these
are specified via CAD+ models, as Assembly Search was
designed to solely leverage the product components and
the partial knowledge over the final product. Moreover, the
in vitro phase follows the Product Customisation process. It
is in this very process that ViTroVo would bring constraints
to the customer regarding her custom-designed parts,
among which is the specification of connection types and
medium.

We believe the main causes behind the apparent long
duration of Assembly Search execution (five hours) are not
to be attributed to MCGS itself. First and foremost, the
process was run on a non-dedicated and, arguably, non-
high-end hardware. Furthermore, most of the execution time
spent during MCGS corresponded to the “assemble and
disassembly” step performed by the Virtual Environment
during reward signal calculation. It is more than likely
that headless simulations would decrease the computational
time. Our choice for the Unity Software Suite was mainly
based on the ease to create template-based animated
instructions. Future investigations on other simulators, e.g.
Gazebo [15] or Unreal Engine [11] are due. Another
straightforward improvement would come from the parallel
execution of multiple MCGS algorithms which would
nonetheless operate on the same assembly graph. Aside
all that, the execution of MCGS led to a rather large
assembly graph, which of course required computational
time. This was essentially due the lack of knowledge
related to intermediate assembly steps. The reward function

Int J Adv Manuf Technol (2021) 117:3873-3893

3891

returns meaningful signals only in case of collision or when
all components are somehow assembled together. Partial
assembly information should be retrieved by the preliminary
Product Specification process. The MCGS algorithm was
designed to monolithically assemble a product by starting
from its root node in each iterations. This search strategy
would inevitably face scaling issues in presence of a
higher number of components/connection points. A way to
overcome such issue is combining MCGS with divide-et-
impera approaches such as Group Genetic Algorithm [13],
which would lead to (genetic-driven) Assembly Graphs of
(MCGS-generated) sub-assembly graphs.

In addition to improve the computational performance
and scalability of Assembly Search, future work would
centre its attention at converting the Assembly Graph
into an AND/OR graph — most likely a straightfor-
ward task when MCGS is combined with divide-et-impera
search approaches —, to make the output of Assem-
bly Search compatible with, e.g., Assembly Line Balanc-
ing and teamed human-robot assembly. Assembly Search
should also allow the integration of domain knowledge
(e.g. assembly heavier components first, safety/functional
assessment once electrical components are combined). The
necessary requirement of MCGS is a model-based, deter-
ministic Markov Decision Process. This does not impede
to grant higher degrees of agency to the Virtual Environ-
ment. For instance, and in accordance with the related
work on motion planning, the Virtual Environment could
autonomously retrieve non-straight join paths, allowing
thus the search for more complicated products to be
assembled.

The main limitation of our framework are Assembly
Stage Detector’s Orientation Detector and Graph Localisa-
tion. Although we note that these were impacted by poor
image quality — see Fig. 4c and e — it appears evident
that orientation detection should be improved. On the other
hand, the Domain Randomisation approach resulted in a
Position Detector model which produced highly accurate
and robust detections, despite it being trained on solely syn-
thetic data without any real-world examples. The Assembly
Stage Detector-Graph Localisation pair would most likely
benefit from (1) an additional detector capable to recognise
which action is being performed and (2) a form of mem-
ory that remembers the visited nodes, so that the good faith
assumption can be better leveraged. Finally, Graph Locali-
sation should cease to be greedy. The memory could in fact
allow for a probabilistic localisation process. This process
could even increase the cooperation with the operator, for
instance, by letting her ultimately select the current assem-
bly stage, should more than one candidate (highly likely)
node be found.

In our current architecture, Performance Data is used
to augment the Assembly Graph. Future work must delve

into the task of operator modelling. This could allow, for
instance, to determine the level of expertise of the operator
and to predict which future actions might negatively affect
her state.

The Instruction Generation process is not free from
improvements too. As we understood in our pilot study,
there is little-or-no need to present orient instructions.
Hence, and in accordance with what said regarding
operator modelling, further work on Instruction Generation
should delve, e.g., into experience-tailored [2], multi-modal
instructions [32], or even gamification [36].

To conclude, we introduced the ViTroVo architecture
which shows to be highly promising in becoming one of
the foundations for Highly Customised Manufacturing. ViT-
roVo brings a plethora of new possibilities in the smart
manufacturing domain, such as global repositories of com-
patible/interchangeable components, but also repositories of
assembly sub-graphs and therefore reusable partial instruc-
tions. Possibly, the framework could become an online
service, capable to retrieve assembly instructions of any
customised product and directly for the customer, whilst
individual companies physically manufacture and indepen-
dently deliver the required components. Additionally, ViT-
roVo could be used as an educational tool: the framework
would leverage the operator model to generate fictional
products that would force operators improve their skill
repertoire by, e.g., performing assembly instructions which
are historically known to be problematic.

11 Conclusions

Highly Customised Manufacturing (HCM) is a topic
of growing importance within the smart manufacturing
domain. If on one side HCM has the potential to establish
new manufacturing patterns and closer relations between
customers and companies, on the other side it poses
challenges to the manufacturing task, such as the increase
in flexibility of the assembly theatre, the compilation of
assembly instructions for possibly unique products, and
stress-related risks for human operators.

We introduced ViTroVo, a framework capable of (1)
autonomously generating a graph of assembly steps without
full knowledge on the final product and (2) adaptively
presenting assembly instructions to a human operator. Based
on a five-component product case study, our framework
not only succeeded in retrieving the assembly steps, it also
guided, in an initial empirical evaluation, three recruited
humans throughout the assembly task. Although we are
well aware of the improvements our framework needs and
what future developments it can undergo, we believe the
architecture of ViTroVo could constitute the foundations of
highly customised manufacturing.

@ Springer

3892

Int J Adv Manuf Technol (2021) 117:3873-3893

Acknowledgements The work could have not been possible without
the cooperation and support of the authors’ colleagues Peter Laloli,
Toannis Tollios, Mauro Comi and Marit Baalbergen. The authors thank
their colleagues Gu van Rhijn and Tim Bosch (and Peter, twice) for
having taken part into the empirical evaluation despite the COVID-19
threats, and Productive 4.0’s consortium partner Signify.

Funding The work was partly funded by the Electronic Components
and Systems for European Leadership’s (ECSEL’s) Productive 4.0
project [22] and the “Toeslag voor Topconsortia voor Kennis en
Innovatie (TKI)” of the Ministry of Economic Affairs of The
Netherlands [48].

Declarations

Conflict of interest The authors declare that they have no conflict of
interest.

References

10.

11.

12.

13.

14.

15.

. Alcdcer V, Cruz-Machado V (2019) Scanning the industry 4.0: A

literature review on technologies for manufacturing systems. Eng
Sci Technol Int J 22(3):899-919

. Antifakos S, Michahelles F, Schiele B (2002) Proactive instruc-

tions for furniture assembly. In: International conference on
ubiquitous computing. Springer, pp 351-360

. Arriaga O, Valdenegro-Toro M, Ploger P (2017) Real-time con-

volutional neural networks for emotion and gender classification.
arXiv:1710.07557

. Bang-Jensen J, Gutin GZ (2008) Digraphs: theory, algorithms and

applications. Springer Science & Business Media

. Borges (2021) Borges Website. https://www.borges.xyz/. Last

accessed 9 August 2021

. Breque M, De Nul L, Petridis A (2021) Industry 5.0: towards a

sustainable, human-centric and resilient european industry. LU:
European Commission, Directorate-General for Research and
Innovation, Luxembourg

. Browne J, Dubois D, Rathmill K, Sethi SP, Stecke KE et al

(1984) Classification of flexible manufacturing systems. FMS
Mag 2(2):114-117

. De Mello LSH, Sanderson AC (1990) And or graph representation

of assembly plans

. Doyle-Kent M, Kopacek P (2019) Industry 5.0: Is the manufac-

turing industry on the cusp of a new revolution? In: Proceedings
of the international symposium for production research 2019.
Springer, pp. 432-441

ElMaraghy HA (2005) Flexible and reconfigurable manufacturing
systems paradigms. Int J Flex Manuf Syst 17(4):261-276

Epic Games I (2021) Unreal engine. https://www.unrealengine.
com/en-US/. Last accessed 9 August 2021

Evjemo LD, Gjerstad T, Grgtli EI, Sziebig G (2020) Trends in
smart manufacturing: Role of humans and industrial robots in
smart factories. Current Robot Reports 1(2):35-41

Falkenauer E (1998) Genetic algorithms and grouping problems.
Wiley, Hoboken

Fizyr (2021) Retinanet network repository. https://github.com/
fizyr/keras-retinanet. Last accessed 9 August 2021

Open Robotics (2021) Gazebo simulator. http://gazebosim.org/.
Last accessed 9 August 2021

. Funk M, Dingler T, Cooper J, Schmidt A (2015) Stop

helping me-i’'m bored! why assembly assistance needs to be
adaptive. In: Adjunct proceedings of the 2015 ACM international
joint conference on pervasive and ubiquitous computing and

@ Springer

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

33.

34.

35.

proceedings of the 2015 ACM international symposium on
wearable computers, pp 1269-1273

Gjeldum N, Salah B, Aljinovic A, Khan S (2020) Utilization
of industry 4.0 related equipment in assembly line balancing
procedure. Processes 8(7):864

Guo X, Zhou M, Abusorrah A, Alsokhiry F, Sedraoui K (2020)
Disassembly sequence planning: a survey IEEE/CAA Journal of
Automatica Sinica

He K, Zhang X, Ren S, Sun J (2016) Deep residual learning
for image recognition. In: 2016 IEEE conference on computer
vision and pattern recognition (CVPR), vol 2016-Decem. IEEE,
pp 770-778. https://doi.org/10.1109/CVPR.2016.90

Hofejsi P, Novikov K, Simon M (2020) A smart factory in a smart
city: Virtual and augmented reality in a smart assembly line. IEEE
Access 8:94330-94340

Industries B (2020) Brainport industries campus. https://www.
brainportindustriescampus.com/en/. Last accessed 31 December
2020

Infineon Technologies AG (Coordination Office, 2020) Productive
4.0 eu project. https://productive4(.eu/. Last accessed 9 August
2021

Inter IKEA Systems BV (2021) IKEA online planner. https://
www.ikea.com/nl/en/planners/. Last accessed 9 August 2021
Johnson-Roberson M, Barto C, Mehta R, Sridhar SN, Rosaen K,
Vasudevan R (2017) Driving in the matrix: Can virtual worlds
replace human-generated annotations for real world tasks. In:
2017 IEEE international conference on robotics and automation
(ICRA), pp 746753

Kaipa K, Morato C, Zhao B, Gupta SK (2012) Instruc-
tion generation for assembly operations performed by humans.
In: International design engineering technical conferences and
computers and information in engineering conference. Amer-
ican Society of Mechanical Engineers, vol 45011, pp 1121-
1130

Kang HS, Lee JY, Choi S, Kim H, Park JH, Son JY, Kim BH,
Do Noh S (2016) Smart manufacturing: Past research, present
findings, and future directions. Int J Precis Eng Manuf Technol
3(1):111-128

Kerin M, Pham DT (2019) A review of emerging industry 4.0
technologies in remanufacturing. J Clean Prod 237:117805

bin Khairai KM, Sutarto AP, bin Abdul MN (2020) The
influence of stress on industrial operator’s physiology and work
performance. Jurnal Optimasi Sistem Industri-Vol 19(2):82-90
Kingma DP, Ba J (2014) Adam: A method for stochastic
optimization. arXiv:1412.6980

Kusiak A (2018) Smart manufacturing. Int J Prod Res 56(1-
2):508-517. https://doi.org/10.1080/00207543.2017.1351644
Lambert AJ (2003) Disassembly sequencing: a survey. Int J Prod
Res 41(16):3721-3759

Lampen E, Teuber J, Gaisbauer F, Bir T, Pfeiffe T, Wachsmuth S
(2019) Combining simulation and augmented reality methods for
enhanced worker assistance in manual assembly. Procedia CIRP
81:588

Le DT, Cortés J., Siméon T. (2009) A path planning approach
to (dis) assembly sequencing. In: 2009 IEEE international
conference on automation science and engineering. IEEE,
pp 286291

Lin TY, Goyal P, Girshick R, He K, Dollar P. (2017) Focal loss for
dense object detection. In: Proceedings of the IEEE international
conference on computer vision, pp 2980-2988

Lin TY, Maire M, Belongie S, Hays J, Perona P, Ramanan
D, Dollar P., Zitnick CL (2014) Microsoft COCO: Common
Objects in Context. In: Fleet D, Pajdla T, Schiele B, Tuytelaars
T (eds) Computer Vision — ECCV 2014. Springer International
Publishing, pp 740-755

http://arxiv.org/abs/1710.07557
https://www.borges.xyz/
https://www.unrealengine.com/en-US/
https://www.unrealengine.com/en-US/
https://github.com/fizyr/keras-retinanet
https://github.com/fizyr/keras-retinanet
http://gazebosim.org/
https://doi.org/10.1109/CVPR.2016.90
https://www.brainportindustriescampus.com/en/
https://www.brainportindustriescampus.com/en/
https://productive40.eu/
https://www.ikea.com/nl/en/planners/
https://www.ikea.com/nl/en/planners/
http://arxiv.org/abs/1412.6980
https://doi.org/10.1080/00207543.2017.1351644

Int J Adv Manuf Technol (2021) 117:3873-3893

3893

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

51

52.

53.

Liu M, Huang Y, Zhang D (2018) Gamification’s impact on man-
ufacturing: Enhancing job motivation, satisfaction and operational
performance with smartphone-based gamified job design. Human
Factors and Ergonomics in Manufacturing & Service Industries
28(1):38-51. https://doi.org/10.1002/hfm.20723

Mahanti A, Bagchi A (1985) And/or graph heuristic search
methods. J] ACM (JACM) 32(1):28-51

Mattsson S, Fast-Berglund A (2016) How to support intuition in
complex assembly? Procedia CIRP 50:624-628

Mattsson S, Fast-Berglund A, Akerman M (2017) Assessing
operator wellbeing through physiological measurements in real-
time—towards industrial application. Technologies 5(4):61
Mattsson S, Fast-Berglund A, Li D (2016) Evaluation of guide-
lines for assembly instructions. IFAC-PapersOnLine 49(12):209—
214

Mattsson S, Li D, Fast-Berglund A, Gong L (2017) Measuring
operator emotion objectively at a complex final assembly station.
In: Advances in neuroergonomics and cognitive engineering.
Springer, pp 223-232

Morato C, Kaipa KN, Gupta SK (2013) Improving assembly
precedence constraint generation by utilizing motion planning and
part interaction clusters. Comput Aided Des 45(11):1349-1364
Mourtzis D, Doukas M (2014) The evolution of manufacturing
systems: From craftsmanship to the era of customisation. In:
Handbook of research on design and management of lean
production systems. IGI Global, pp 1-29

Miiller J (2020) Enabling technologies for industry 5.0, results of
a workshop with europe’s technology leaders. Directorate-General
for Research and Innovation

Murali PK, Darvish K, Mastrogiovanni F (2020) Deployment and
evaluation of a flexible human—robot collaboration model based
on and/or graphs in a manufacturing environment. Intell Serv
Robot 13(4):439-457

Nahavandi S (2019) Industry 5.0—a human-centric solution.
Sustainability 11(16):4371

Bhadana N (2021) Emotion detection network repository. https://
github.com/nileshbhadana/emotion_detection. Last accessed 9
August 2021

Rijksdienst voor Ondernemend Nederland (2020) Pps-toeslag
onderzoek en innovatie. https://www.rvo.nl/subsidie-en-
financieringswijzer/pps-toeslag-onderzoek-eninnovatie. Last
accessed 9 August 2021 (website in Dutch)

Prakash A, Boochoon S, Brophy M, Acuna D, Cameracci E,
State G, Shapira O, Birchfield S (2019) Structured domain
randomization: bridging the reality gap by context-aware synthetic
data. In: 2019 International conference on robotics and automation
(ICRA). IEEE, pp 7249-7255. https://doi.org/10.1109/ICRA.20
19.8794443

Rashid MFF, Hutabarat W, Tiwari A (2012) A review on assembly
sequence planning and assembly line balancing optimisation using
soft computing approaches. Int J Adv Manuf Technol 59(1-
4):335-349

Riegel J, Mayer W, van Havre Y (2021) Freecad (version 0.19).
http://www.freecadweb.org. Last accessed 9 August 2021
Sanderson AC, de Mello LSH, Zhang H (1990) Assembly
sequence planning. AI Mag 11(1):62-62

Signify Holding (2021) Philips my creation. https://www.
mycreation.lighting.philips.com/en/. Last accessed 9 August 2021

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

Silver D, Huang A, Maddison CJ, Guez A, Sifre L, Van Den
Driessche G, Schrittwieser J, Antonoglou I, Panneershelvam V,
Lanctot M et al (2016) Mastering the game of go with deep neural
networks and tree search. Nature 529(7587):484-489

Simonyan K, Zisserman A (2014) Very deep convolutional
networks for large-scale image recognition. arXiv:1409.1556
Sivasankaran P, Shahabudeen P (2014) Literature review of
assembly line balancing problems. Int J Adv Manuf Technol
73(9-12):1665-1694

Su Y, Mao H, Tang X (2020) Algorithms for solving assembly
sequence planning problems. Neural Comput Applic 1-10

Sutton RS, Barto AG (2018) Reinforcement learning: An
introduction. MIT press

Tao F, Qi Q (2017) New it driven service-oriented smart
manufacturing: framework and characteristics. IEEE Trans Syst
Man Cybern Syst 49(1):81-91

Tao F, Qi Q, Liu A, Kusiak A (2018) Data-driven smart
manufacturing. J Manuf Syst 48:157-169

Unity Technologies (2021) Unity software suite. https://unity.
com/. Last accessed 9 August 2021

Tobin J, Fong R, Ray A, Schneider J, Zaremba W, Abbeel P (2017)
Domain randomization for transferring deep neural networks from
simulation to the real world. Iros 0-7

Tremblay J, Prakash A, Acuna D, Brophy M, Jampani V, Anil
C, To T, Cameracci E, Boochoon S, Birchfield S (2018) Training
deep networks with synthetic data: Bridging the reality gap by
domain randomization. arXiv:1804.06516

Tseng HE, Tang CE (2006) A sequential consideration for
assembly sequence planning and assembly line balancing using
the connector concept. Int J Prod Res 44(1):97-116

Wang B, Wang G, Sharf A, Li Y, Zhong F, Qin X, CohenOr
D, Chen B (2018) Active assembly guidance with online video
parsing. In: 2018 IEEE conference on virtual reality and 3D user
interfaces (VR). IEEE, pp 459466

Wang J, Liu J, Zhong Y (2005) A novel ant colony algorithm
for assembly sequence planning. Int J Adv Manuf Technol 25(11-
12):1137-1143

Wang Y, Liu J (2010) Chaotic particle swarm optimization
for assembly sequence planning. Robot Comput Integr Manuf
26(2):212-222

Wang Z, Bovik AC, Sheikh HR, Simoncelli EP (2004) Image
quality assessment: from error visibility to structural similarity.
IEEE Trans Image Process 13(4):600-612

Watson G, Butterfield J, Curran R, Craig C (2010) Do dynamic
work instructions provide an advantage over static instructions in
a small scale assembly task? Learn Instr 20(1):84-93

Xiong J, Hu Y, Wu B, Duan X (2015) Minimum-cost rapid-
growing random trees for segmented assembly path planning. Int
J Adv Manuf Technol 77(5-8):1043-1055

Zhang C, Chen D, Tao F, Liu A (2019) Data driven smart
customization. Procedia CIRP 81:564-569

Zheng P, Sang Z, Zhong RY, Liu Y, Liu C, Mubarok K, Yu S,
Xu X et al (2018) Smart manufacturing systems for industry 4.0:
Conceptual framework, scenarios, and future perspectives. Front
Mech Eng 13(2):137-150

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

@ Springer

https://doi.org/10.1002/hfm.20723
https://github.com/nileshbhadana/emotion_detection
https://github.com/nileshbhadana/emotion_detection
https://www.rvo.nl/subsidie-en-financieringswijzer/pps-toeslag-onderzoek-eninnovatie
https://www.rvo.nl/subsidie-en-financieringswijzer/pps-toeslag-onderzoek-eninnovatie
https://doi.org/10.1109/ICRA.2019.8794443
https://doi.org/10.1109/ICRA.2019.8794443
http://www.freecadweb.org
https://www.mycreation.lighting.philips.com/en/
https://www.mycreation.lighting.philips.com/en/
http://arxiv.org/abs/1409.1556
https://unity.com/
https://unity.com/
http://arxiv.org/abs/1804.06516

	ViTroVo: in vitro assembly search for in vivo adaptive operator guidance
	Abstract
	Introduction
	Related work
	The ViTroVo framework
	A case study: product specifications
	CAD+ models and Virtual Environment
	Assembly Search
	Monte Carlo Graph Search
	Markov Decision Problem
	MCGS algorithm

	Graph completion

	Assembly stage detector and its preparation
	Position detector preparation
	Orientation detector preparation

	Adaptive Operator Guidance
	Operator-to-ViTroVo
	ViTroVo-to-Operator

	Initial evaluation
	Discussion, limitations and future work
	Conclusions
	Declarations
	References

