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Abstract
Model-based predictive control (MPC) describes a set of advanced control methods, which make use of a process model to
predict the future behavior of the controlled system. By solving a—potentially constrained—optimization problem, MPC
determines the control law implicitly. This shifts the effort for the design of a controller towards modeling of the to-be-
controlled process. Since such models are available in many fields of engineering, the initial hurdle for applying control is
deceased with MPC. Its implicit formulation maintains the physical understanding of the system parameters facilitating the
tuning of the controller. Model-based predictive control (MPC) can even control systems, which cannot be controlled by
conventional feedback controllers. With most of the theory laid out, it is time for a concise summary of it and an application-
driven survey. This review article should serve as such. While in the beginnings of MPC, several widely noticed review
paper have been published, a comprehensive overview on the latest developments, and on applications, is missing today. This
article reviews the current state of the art including theory, historic evolution, and practical considerations to create intuitive
understanding. We lay special attention on applications in order to demonstrate what is already possible today. Furthermore,
we provide detailed discussion on implantation details in general and strategies to cope with the computational burden—
still a major factor in the design of MPC. Besides key methods in the development of MPC, this review points to the future
trends emphasizing why they are the next logical steps in MPC.
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1 Introduction

For the automation of technical systems, feedback controllers
(also called closed-loop controllers) compare a reference
r with a measured variable y determining a suitable value
for the manipulated variable u on the basis of the resulting
deviation e = r−y (Fig. 1). Based on the working principle,
they can be divided into the categories: classical controllers,
predictive controllers, and repetitive controllers. Classical
controllers, such as PID controllers, bang-bang controllers,
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or state controllers, only consider past and current system
behavior (i.e. they are “reactive” to a deviation). Predictive
controllers use a system model to predict the future behavior
anticipating deviations from the reference [101]. Repetitive
controllers, on the other hand, consider the system behavior
of the previous cycle and calculate an optimal trajectory for
the next cycle [46].

The PID controller is the best known controller with an
outstanding importance and spread in industrial applications
[4]. Although there exist several setup rules, it is often
difficult to find a parametrization—especially for nonlinear
or time-variant systems [131].

“The effectiveness of any feedback design is fundamen-
tally” limited by system dynamics and model accuracy.
Hence, even in theory, perfect tracking of time-varying ref-
erence trajectories is not possible with feedback control
alone—regardless of design methodology [58].

Special cases, such as technical limitations of actuators,
require individual solutions that are often heuristically
based, hard to understand, and maintain. Higher control
methods, such as sliding mode controllers or back-stepping
controllers, are similarly abstract and complex in their
interpretation [146].
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Fig. 1 Block diagram of a
classical feedback control loop
(e.g. PID control)

In fact, the founders of MPC theory ([34] and [104])
stressed that classic control suits 90% of all control problems
perfectly. Only for the remaining fraction advanced control
needs to be applied. Instead, we want to argue that MPC
is a decent approach in almost all problems—even in
those, which have not been controlled so far due to
a lack of control theoretic understanding or of missing
trust in feasibility. MPC is based on a repeated real-time
optimization of a mathematical system model [101]. Based
on this system model, the MPC predicts the future system
behavior considering it in the optimization that determines
the optimal trajectory of the manipulated variable u,
Fig. 2. Thus, MPC comes with an intuitive parameterization
through adjusting a process model at the cost of a higher
computational effort than classical controllers.

The anticipating behavior and the fact that it can
consider hard constraints makes the method so valuable
for controlling real systems. Aligned with the rise of
computational power and as models of complex processes
become more and more available for all kinds of different
systems, MPC now enables for the control of systems that
were previous unthinkable.

MPC relies on models, which are available in almost
every discipline. This allows to make use of this long-
grown knowledge and saves the tedious formulation of an
explicit control law—a task that is usually reserved for
control experts. Instead, MPC determines the control law
automatically through a model-based optimization. This
implicit formulation, the flexibility, and the explicit use of
models are the main advantages of MPC and the reasons for
us to campaign for MPC in the engineering community. This
paper shall give a summary from the application point of
view, but it shall not claim the MPC to be the optimal choice
over all control algorithms in every particular problem.

Fig. 2 Simplified block diagram of a MPC-based control loop

When MPC was new, several widely noticed review
paper have been published on both, theory [13, 44, 77, 85]
and applications [99]. In contrast, this review is driven by
the idea that MPC does not remain forever a topic for control
engineers. Today, the development of MPC theory is pulled
forward by application, in which manufacturing technology
just emerged to make an important contribution—often
having challenging requirements on reliability, constraints,
and time. The work should inspire non-control experts to
jump on the bandwagon and to develop new use cases
pushing the barriers of technological limitations further.

The article starts with the fundamental theory and a
rough sketch of the historic evolution to learn from the
visions and detours of the beginnings. The focus lies
on practical considerations of feasibility, stability, and
robustness together with representative applications. On
our way, we discuss the different flavors of MPC, of
which related keywords are DMC, model(-based) predictive
control, receding horizon control, etc. [12, 70, 101].

2 Theory

MPC is a set of advanced control methods, which explicitly
use a model to predict the future behavior of the system.
Taking this prediction into account, the MPC determines an
optimal output u by solving a constrained optimization
problem. It is one of the few control methods that directly con-
siders constraints. Often, the cost function is formulated in
such a way that the system output y tracks a given reference r
for a horizon N2, Fig. 3. Only the first value of the optimized
output trajectory is applied to the system. This prediction
and optimization is repeated in each time instance. This is
why MPC is also referred to as “receding horizon” con-
trol. In essence, the idea is that a short-term (predictive)
optimization achieves optimality over a long time. This is
assumed to be true since the error of a proximal forecast
is considered to be small compared to a distant prediction.
The combination of prediction and optimization is the main
difference from conventional control approaches, which use
precomputed control laws [77].

The prediction horizon N2 must be long enough to
represent the effect of a change in the manipulated variable
u on the control variable y. Delays can be considered by the
lower prediction horizon N1 or by incorporating them into
the system model. Often, the latter is more intuitive and the
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Fig. 3 Function principle of a
model-based predictive with
horizons N1, N2, Nu (in
accordance to [105])

lower prediction horizon is set to N1 = 1 to account for the
computation time (hence the computation is conducted in
one time step, the solution u is implemented not before the
next time step).

Assuming an arbitrary system

x(k + 1) = f (x(k),u(k)), (1)

y(k) = h(x(k)). (2)

MPC minimizes a user-defined cost function J , Eq. 3, e.g.
the tracking error between the reference vector r and the
model output y, Eq. 4:

min
u

J (x(k), u(·)) (3)

min
u

N2∑

i=N1

‖r(k + i|k) − y(k + i|k)‖ (4)

s.t. ulb ≤ u(k + j |k) ≤ uub

ylb ≤ y(k + i|k) ≤ yub

∀ i ∈ {N1, · · · , N2} and j ∈ {(0, · · · , Nu}.

This formulation uses an arbitrary norm ‖·‖.
We will refer to the predicted state k + i at time

point k as x(k + i|k). Bold written variables A indicate
higher dimensions, i.e. a vector (lowercase characters) or a
matrix (uppercase characters). A sequence of states will be
indicated by x(·):

x(k + i) ∀i ∈ (0, · · · , N2) ⇒ x(·),
u(k + i) ∀i ∈ (0, · · · , Nu) ⇒ u(·),
y(k + i) ∀i ∈ (N1, · · · , N2) ⇒ y(·).

In this way, the constraint formulation will be abbreviated
by

xlb ≤ x(·) ≤ xub ⇒ x ∈ Xf ,

indicating that the sequence x(·) being in the feasible set
Xf .

3 History

In the late 1970s, [105] and [24] independently laid the
foundation of MPC theory. With the upcoming digital
controllers, they were able to efficiently control com-
plex problems demonstrating a massive economic poten-
tial. [105] introduced model predictive heuristic control
(MPHC) in 1978, which already included all characteristics
of a MPC:

– an explicit process model, described by impulse
response functions (IRFs),

– a receding horizon,
– input and output constraints, and
– an iterative determination of the controls (value of the

manipulated variable u).

However, [105]) did not claim to obtain optimal controls.
Instead, the future controls where determined iteratively
until they met the constraints. The additional term
“heuristic” stressed the missing explicit control law. The
technique was developed for the process industry with
their multiple input multiple output (MIMO) systems,
distinctive delays, and long processing times [105]. They
even considered to identify the process model on-line—
although only for changes in the set points.

Roughly at the same time, [24] from Shell Oil Company
developed dynamic matrix control (DMC). They used
a piecewise linear model to predict the future behavior
of a catalytic cracking unit. Thus, the controller gained
awareness of the plant’s time delay and its dynamic system
behavior. Cutler and Ramaker used a receding prediction
horizon and updated the model coefficients based on
the error between the previously predicted output and
the currently measured output. They showed that DMC
outperformed classic cascaded PID control claiming that
DMC has been applied to control problems at Shell Oil
since 1974. The main difference to MPHC was that DMC
calculates optimal control variables. However, the matrix
formulation of the control problem restricts DMC to linear
process models.
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Both works laid the basis for a wide and fast spread
of MPC in the petrochemical process industry. Even with
linear models, the sampling times were several hours
[97]. At the beginning, the focus was on simplifying the
controller design and establishing a comprehensive theory
so that the method could be used in industry [24, 34, 105].
The potential of MPC was not solely based on prediction
but also on the fact that it can use non-linear models—both
not supported by classic control. In fact, the process model
formulation was a hot topic in the beginning of MPC theory:
impulse response formulation (IRF) [105], piecewise linear
step response functions [24], ARMA models [22, 23], or
state space formulations [56]. This flexibility in the choice
of model formulation was one of the key reasons for the fast
success of MPC.

The first approaches simply neglected model uncertain-
ties and process instabilities—because most chemical engi-
neering processes were open-loop stable [35]. From the late
1980s on, the research focus shifted to robustness and stabil-
ity of MPC, which was especially pursued by the research
group around MANFRED MORARI [13, 18, 19, 53, 144]. A
detailed discussion about stability and robustness of MPC
provides Section 4.

With a finite horizon, i.e. a fixed moving window,
the (linear) estimation problem could be formulated as
a quadratic programming problem [100], which was
computationally favorable. With computation pressing [14])
introduced “explicit MPC” which shifts the computation to
massive a priori optimization (Section 8.1).

With the millennium and computers becoming more and
more powerful, research shifted towards application. The
trend was coming from large problems and long calculation
times towards problems with less control variables and
much faster requirements to computational time.

4 Feasibility, stability, and robustness

One has to distinguish several aspects of MPC:

– feasibility of the open-loop optimization problem,
– stability of the closed-loop controller, and
– robustness regarding uncertainties.

The first concerns the formulation of the optimization
problem, the second the controller as a whole with regard to
disturbances, and the last mainly the accuracy of the process
model.

In a stable system, the controller manages to get the
output to a constant value at the end of the horizon N2,
in spite of disturbances to the control loop. Robustness,
in contrast, aims at uncertainties. It is mostly related
to model inaccuracies regarding the output prediction.
The model is the key element of MPC, but it is never

perfect [101]. However, for stability analysis, a perfect
model is assumed. Only in a subsequent step robustness is
examined. Furthermore, signal noise is an important topic
for robustness [13]. Garcia and Morari [34] pointed out
early that optimal control improves the control behavior but
complicates robustness examination. Robustness does not
follow from stability or vice versa [13] but a closed-loop
stable system always reduces the effect of disturbances.

This work draws crisp lines in the following between
those separated problems of MPC design.

4.1 Feasibility

Hard input constraints (on u) represent physical limitations
of, e.g. actuators, which in fact must not be violated. In
contrast, hard output constraints (on y) are often rather
desired than required. They may render the optimization
problem infeasible. Relaxing these output constraints by
introducing slack variables ξ to the optimization problem
creates an extra degree of freedom [84]. The extend of
violation is penalized in the objective function:

min
u,ξ

‖r(k + i|k) − y(k + i|k)‖Ww + ‖ξ(k + i|k)‖Wξ
︸ ︷︷ ︸

softening

, (5)

s.t. ulb � u(k + j |k) � uub,

ylb − ξ(k + i|k) � y(k + i|k) � yub + ξ(k + i|k),
where ξ � 0,

∀ i ∈ {N1, · · · , N2} and j ∈ {0, · · · , Nu}.

Both terms posse an individual weighting matrix W . If
the norm is quadratic, it can be resolved to a matrix
multiplication: ‖x‖2

W = xᵀ W x.
The weight Wξ is a trade-off between the amount and

duration of a violation [101]. The slack variables ξ do not
resemble a function but represent individual series for every
time step k. Note that they are vectors of length N2 − N1 as
they cover the prediction horizon.

All commercial (linear) MPC software packages soften
hard output constraints through slack variables to guarantee
feasibility [85].

Nevertheless, the input constraints are still hard and turn
the optimization problem to be non-linear [101]. A non-
feasible desired trajectory w provokes instabilities [112]. To
tackle the problem of unfeasible desired trajectories, [39]
suggested to filter the trajectory w generating a feasible
reference trajectory r. Thereby, the problem of stabilizing
a closed-loop system with input constraints was separated
from the problem of fulfilling these constraints [13, 39].
This approach was called “reference governor”. It avoided
constraint violations on the input by adjusting the desired
trajectory beforehand with regard to the response behavior
of the plant. This adjustment could be a simple smoothing
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of abrupt changes [13] or a dynamic optimization of its own
[112]. Even a second MPC could be used to build the new
reference trajectory r [112]. The separation was charming
as it was applicable to non-linear problems in discrete and
continuous time.

4.2 Stability

In its most basic formulation, stability is the property of a
system that a bounded input results in a bounded output: the
BIBO stability. In case that the transient behavior converges
against an equilibrium, the closed-loop system is called to
be asymptotically stable. Furthermore, if the equilibrium is
reached from every possible initial state, then the system
is labeled “globally asymptotically stable”. This can be
guaranteed for all linear time invariant (LTI) discrete time
systems with hard input and soft output constraints if the
optimization problem is solved over infinite horizons [144].
Infinite prediction and control horizon N2 = Nu = ∞
results in a linear quadratic GAUSSIAN (LQG) optimal
control problem, for which a comprehensive stability theory
exists: global asymptotic stability is guaranteed if and only
if all eigenvalues of the closed-loop system are located
inside the unit disk.

However, finite prediction horizon obviously is an
extreme restriction. Computational restrictions limit the
MPC in general to a finite horizon. To still guarantee
asymptotic stability, the optimal cost function of the MPC
must be monotonically decreasing over time.

To illustrate this, let us assume a system behaving as
illustrated in Fig. 4. It could constitute a continuous active
cooling of glass at the end of the production line. In
this case, the measurement y would be the temperature
difference between glass and environment. The same way,
the optimal control applied at time t0 would correspond to
u0, whereas the according value of the objective function
would be J 0.

The depicted output y as well as the change in u0 tend
towards the system’s equilibrium (as desired for the stable
closed-loop behavior).

The cost J is not explicitly a function of time, so the
desired monotonically decreasing behavior over time needs
to be artificially imposed on it. One way to do this is to
formulate an optimization problem that the control function
is bounded by a LYAPUNOV function.

A LYAPUNOV function is a continuously differentiable
scalar function V (x) : Rn → R with V (0) = 0. It is always
positive and does not increase over time:

V (x) > 0, ∀ x 	= 0, (6)

V̇ (x) ≤ 0, ∀ x 	= 0. (7)

The LYAPUNOV theorem essentially defines a prototypical
function resulting in a bounded system state over time.
Thus, the state of the art for stability schemes for (non-
linear) MPC is to define the cost function in such a way that
the optimal cost behaves as a LYAPUNOV function—or to
prove this to be the case respectively. For this purpose, the
optimization problem is extended by additional cost terms
or constraints.

An adequate LYAPUNOV function to the optimal cost J 0

of Fig. 4 is illustrated in Fig. 5, where the decreasing optimal
cost is depicted over two system states.

One approach to make the optimal cost J 0 behave
like a LYAPUNOV function is to introduce a terminal
cost J (k + N2). This nullifies the advantage of an infi-
nite horizon, since the cost stays the same until infinity
J (k + N2) ≈ J (∞) [75, 77]. Whereby, more constraints
to guarantee stability of the controller may again cause fea-
sibility problems of the optimization—especially for short
prediction horizons. Therefore, it is common practice to
constraint a terminal region instead of, e.g. a zero terminal
constraint ‖x(k + N2)‖ = 0.

Fig. 4 Example of an stable
closed-loop system with its
objective function
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Fig. 5 Example of an
LYAPUNOV function

The most common stability approach, which avoids a
LYAPUNOV analysis, is to introduce so-called “contraction
constraints” ensuring that (usually the euclidean norm of)
the state vector is decreasing over time [13]:

‖x(k + 1|k)‖ < ‖x(k)‖. (8)

Some applications even use both, a LYAPUNOV-based
cost function and contraction constraints, e.g. [116].

Mayne et al. [75, 77] concluded that stability of MPC-
controlled (linear) systems was at a “mature” stage in 2000,
whereas for robustness, only conceptual approaches existed.

With the understanding of stability analysis for linear
MPC, [44] pointed out that a stability analysis for non-linear
MPC became more urgent.

While the approaches to design a stable system that
was elaborated above (LYAPUNOV-based cost function or
contraction constraints) apply equally for linear and non-
linear systems, still, many implementations of MPC meet
non-linearity by successive linearization avoiding a non-
linear stability analysis [101], Section 7.

For a more complete discussion and mathematical
foundation regarding stability, the authors refer to [3, 72, 77,
98] and [31, 81, 87].

4.3 Robustness

In contrast to what have been claimed, [35] stressed that
MPC is not inherently more or less robust than classic
feedback control (e.g. PID controller).

Robustness follows stability of the closed-loop system
only if no input constraints are present [106]. “When we
say that a control system is robust we mean that stability

is maintained and that the performance specifications are
met for a specified range of model variations (uncertainty
range)” [85].

Essentially, robustness deals with model uncertainty,
which can be formulated in several ways [13]:

– by uncertainty intervals,
– by structured feedback, or
– by using a set of models.

For the latter, one describes the plant by multiple models
and optimize, e.g. the worst-case of them (L∞-norm) [19].

A similar approach was pursued by [53] distinguishing
different types of uncertainty: uncertainty in the gain, the
time constant, and time delay. They considered them all
simultaneously. The approach was taken up again later
as matrix formulation [25]. This assumes structured noise
in the feedback loop so that it can be considered in the
model. Assuming a linear time invariant (LTI) system and
(linear time invariant (LTI)) uncertainty to be present in the
feedback loop, robustness can be guaranteed if the norm of
the uncertainty matrix is lower than a defined threshold [13].

Uncertainty intervals can often be assigned to model
coefficients of an empirical transfer function. In this
idea, the model structure remains the same and only the
coefficients change. However, [13] concluded that allowing
model coefficients to vary within intervals is not sufficient
to achieve robustness. A comprehensible example is that
oscillating step responses would be allowed.

For all these approaches you need to quantify uncertainty
in the model of the system. The robustness calculations
come at the cost of performance (regarding optimality and
computation) [13].
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An entirely different approach is to define a cost function
that favors robustness by design: e.g. minimizing the
maximum error in the prediction horizon would result
in less extreme control actions, which in turn lead to a
smoother process guidance [18]. This suggests to use the
L∞-norm to formulate the optimization problem instead of
a—standard—least squares (L2) formulation.

‖ x‖2 =
√

x2
1 + · · · + x2

n (9)

‖ x‖∞ = max {x1, . . . , xn} (10)

In this case, the L∞ norm is the maximum of all errors
between the predicted model outcome and the desired
reference. [18] motivated its use with the smoothing
influence on the control outputs u. Using the L∞-norm
hinders the controller to make full use of the plant potential
due to very conservative control actions [13]. However,
if the process model is linear, the optimization problem
becomes quadratic if the cost function is expressed as a L2-
or a L∞-norm [13]—supposed that there are no constraints
present. Quadratic problems are favorable because they can
be solved efficiently.

Both approaches, a more elaborate model or a special
objective function, undermine the key advantage of MPC:
optimality. One idea to overcome this is to enforce
robustness by introducing a contraction constraint (similar
to stability), i.e. requiring the worst-case prediction to
contract [85, 144]. This let MPC still implement the optimal
trajectory as long as the additional constrained is fulfilled.

4.4 Summary on feasibility, stability, and robustness

Garcı́a et al. [35] noted that for every unconstrained, linear
MPC there exist an equivalent classic feedback controller
with all benefits of its well-proven stability theory.
However, not using constraints loses much of the charm
of MPC. Therefore, it is more an academic twitch than a
practical option. The same is true for infinite horizon MPC.

There exists an extensive stability theory for linear
MPCs. For systems in state space form, the stability analysis
is based on eigenvalues and on the unit disk as it is familiar
from the stability analysis of conventional (linear) control
[144]. However, optimization problems with hard input
constraints are often non-linear [101].

Establishing stability—especially robust stability—is
extremely difficult for non-linear problems. This is mainly
due to the lack of an explicit functional description of
the control algorithm, which is required for most stability
analysis [84]. Today, stability of non-linear, constrained,
finite-horizon MPC is achieved by formulating the cost
function as a LYAPUNOV function and introducing a
terminal set constraint [75, 77]. Using a terminal set
links the stability problem with the constraint satisfaction

problem [17]—ironically, additional constraints stabilize a
constrained, non-linear MPC.

Robustness is a trade-off to performance. Several
approaches increase robustness at the cost of computation
and optimality (e.g. L∞-norm). Nevertheless, it can only be
achieved if the amount of uncertainty can be quantified.

A practical compromise to maintain optimality—the key
feature of MPC—is to add the requirement the the worst-
case prediction must contract [85, 144].

5 Recent developments in MPC theory

Once again, motivated by the chemical process industry,
[58] integrated a MPC into an iterative learning control (ILC)
building a controller dedicated for batch processing. A clas-
sic iterative learning control (ILC) works during the process
as open-loop control but adjusts this profile of commands
between cycles or “iterations”. In this way, it approaches
the ideal profile incrementally from cycle-to-cycle and may
react to trends over multiple cycles. The essence is that the
“information gathered during previous runs can be used to
improve the performance of a present run” [57]. In con-
trast to this, MPC is a closed-loop controller but considers
repetitive tasks as independent of each other.

Combining both methods builds a system that reacts to
disturbances within a cycle or process (“as they occur”) and
minimizes the tracking error over multiple cycles. However,
integrating MPC to iterative learning control (ILC) limits
the use to fixed-time operations, i.e. the number of time
samples must stay the same over cycles [58]. Splitting both
techniques, let the iterative learning control (ILC) work
as an upper-level reference governor for the MPC as was
conducted, e.g. by [86], and may overcome such limitations.
In this combination, MPC introduces constraints to iterative
learning control (ILC) [57].

Li et al. [59] presented a third flavor of such a
combination effectively being an optimal iterative learning
control (ILC): They took the optimization part of MPC,
i.e. optimizing the manipulated variable over a horizon,
transplanting it into an iterative learning control (ILC).
The resulting system determined an optimal profile of the
manipulated variable(s) for each cycle. In a subsequent
work, [60] suggested to smooth the commands over cycles.
This essentially states that the optimal solution is not
entirely trusted. Such systems only touch MPC in general,
because they lack of a receding horizon and effectively filter
their optimal control recursively.

Among the works of [66] and [128] lies the combination
of iterative learning MPC and the uprising field of data-
based learning in control theory. The former extracts new
trajectories of a linear-quadratic regulator (LQR) based on
overall objectives and data of previous trajectories with the
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help of the k-nearest-neighborhood algorithm. The latter
extends the idea of an iterative, data-driven adjustment of
trajectories to the application of MPC.

Although also applied to a repetitive task, [78] focused
on learning a model of the system dynamics rather than a
trajectory. The authors took advantage of data and weighted
linear BAYESIAN regression to model uncertainties of vehicle
dynamics on a repeating path. The same way [50] applied
GAUSSIAN process modeling to elaborate confidence
intervals on possible trajectories to guarantee safety.

Data-driven modeling, such as machine learning, can
be used for the system model that the MPC uses in its
optimization, or to approximate the solution space of an
explicit MPC, as e.g. in [45, 71, 88], Section 8.1.

The possibilities of learning are enhanced especially for
multi-agent systems, where every single agent contributes
to the data-acquisition and policy exploration. [68] utilized
such a swarm intelligence to learn the trajectory for a
distributed MPC. The learning problem for this purpose
was defined as a quadratic optimization problem under the
condition of collision avoidance as constraint.

6 Applications

The idea of optimal control in the presence of constraints
and the intuitive design of the control law as an optimization
problem has made MPC interesting for many different tasks.
Applications have spread wide recently throughout all fields
of engineering. The following highlights main movements.

6.1 Process industry

For a long time, the process industry used MPC almost
exclusively. This is not surprising as the petrochemical
industry promoted the development decisively [24, 97, 99,
105]. Motivated by its complex, multi-variable processes
with time delay, MPC spread quickly since optimal control
lead to significant economic benefit due to the large
throughput. Darby et al. [26] acknowledged that MPC
is “the standard approach for implementing constrained,
multi-variable control in the process industries today”.

In the founding paper of MPC, [105] described three
applications: a distillation column of a catalytic cracker in
oil refinery, a steam generator, and a polyvinyl chloride
(PVC) plant. The catalytic cracker had two manipulated
variables (mass flow rates) and three control variables
(temperatures), of which only one was constrained. The
plant was modeled through twelve impulse response
functions and the sample time was Ts = 3 min –
manageable only because it used a heuristic control law.

With the control of the polyvinyl chloride (PVC) plant,
they wanted to demonstrate the versatility of MPC by

controlling five subprocesses. The results showed a severe
reduction in variance of the controlled variables yielding
to higher quality and energy savings. The impressive
demonstration paved the way for the popularity of MPC.
Richalet later also described how a distillation column and
a vacuum unit was controlled in a refinery of MOBIL OIL

[104]. The objective function was already formulated as a
quadratic LYAPUNOV function, which—as was shown—is
favorable for stability. He did not address robustness but
mentioned a back-up control system in case of failure. The
results showed that the controller reduced the variance in the
quality criteria resulting in a payout time of less than a year.

Oil companies were the promoters of model-based
advanced controllers. Cutler and Ramaker [24] used a
piecewise-linear model to control the furnace of a catalytic
cracking unit at SHELL OIL. With a prediction horizon of
N2 = 30 and a control horizon of Nu = 10, they exploited
the predictive potential.

Prett and Gillette 97 used even longer horizons (N2 =
35, Nu = 15) with a sampling time of “a few hours”.
They successively linearized a non-linear process model
determining the optimal operation point of the reactor and
the regenerator of a catalytic cracker.

With distillation being one of the workhorses of the
chemical process industry for the separation of molecules, it
is still today a popular application examples for MPC, as in
[21, 80], which both were a simulation study on linear MPC.
Only that [80] successively linearized a non-linear model of
a methanol/water mixture to apply linear MPC.

Piche et al. [95] introduced a neural network (NN) in
MPC to control the set point change in an polyethylene (PE)
reactor. A neural network (NN) is a non-linear empirical
model based on historic data. This type of machine
learning model is experiencing extraordinary attention
nowadays. Linear dynamic models were constructed from
conventional (open-loop) plant tests to control the plant at
its set points. Piche et al. achieved 30% faster transitions
and an overall reduction in variation of the controlled
variables. The idea is still under active research. Li et
al. [63] also explored successive linearization of a neural
network (NN) in MPC but to control the temperature
of a stirred reactor—a common application in process
industry, e.g. for bioreactors. Shin et al. [117] used a neural
network (NN) (fully connected, 14-15-2) with MPC for a
propane devaporizer (e.g. specialized distillation column).
Although claiming that neural network (NN)–based non-
linear MPC achieved better performance than linear MPC,
they benchmarked the new controller on conventional PI
control demonstrating a 60% quicker settling time (35
min with neural network (NN)-MPC to 92 min with PI
control). They further stressed easier modeling of data-
driven models as an additional benefit of using NNs in
conjunction with MPC. Nunez et al. [89] used a more
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complicated neural network (NN) structure, a recurrent
neural network (RNN) (in fact, an attention-based encoder
decoder recurrent neural network (RNN) with 23,000 free
parameters) to model an industrial past thickening process.
The sampling time was Ts = 5min giving the controller
enough time to conduct a global optimization with particle
swarm optimization (PSO) – a rather unusual choice – for
a prediction and control horizon of N2 = 10 and Nu =
5 respectively. Presenting one rare example of an actual
industrial deployment, they demonstrated the effectiveness
of the control on an industrial plant for a working day. The
recurrent neural network (RNN)–based MPC was capable of
maintaining the target concentration of the paste thickener
in spite of a severe disturbance when a pump failed. A
recurrent neural network (RNN) structure was also used to
control chained stirred reactors [136]. There are applications
with further network types with distinct features, such as
echo state networks to model time delay of buffer tanks, e.g.
for a refrigerator compressor test rig with (non-linear) MPC
[9].

In general, besides oil and gas, and the chemical industry,
pharmaceutical and biology industry use MPC to manage
the non-linearity coupled with large time-delays of their
processes, e.g. in a fermentation process [42]. Ławryńczuk
[6] compared linear MPC to non-linear MPC again for a
stirred reactor and for a distillation column. He concluded
that, in particular for the distillation process, the non-
linear controller was more economic. On this background,
he suggested to combine both approaches reducing the
computational burden of pure non-linear MPC: applying
non-linear optimization only for the first time instant k = 1
and using a linearized model for the other steps 1 < k < N2.
To the knowledge of the authors, such an approach has not
been examined further.

Prasad et al. [96] took a different route, preferring to
use multiple linear models rather than a single non-linear
one. They controlled the filled-height of a conical shaped
tank. Since the diameter varies continuously with the height,
they suggested to identify three separate linear models at
different heights, to design one controller for each and
combine the outputs as an ensemble to obtain a general
output for the manipulation variable (the inlet flow rate).

In 2003, [99] already counted over 4 600 industrial
applications reviewing the available commercial software
packages for MPC. They differed in the model structure,
its identification, and in how constraints were implemented
(as hard constraints or as an additional penalization term
in the cost function). Nevertheless, all models were linear,
time-invariant, and derived by empirical test data. Online
adaption of the model was not supported by any software,
although there had been (academic) works on this issue
already from the beginning, e.g. [105].

Although stability theory is at a mature level, ASPEN-
TECH as a major vendor of commercial MPC software
assumed an infinite horizon control to ensure stability,
which was implemented in practice by a prediction horizon
much larger than the reaction time of the system [33]. With
regard to academia, the software MATLAB/Simulink from
THE MATHWORKS is very popular, e.g. [80, 96, 108].

Today, process industry is still the major user of MPC
[76] evolving towards faster, mechanical processes such as
paper machines [145] or stone mills [108, 124].

Again, a report of an industrial application was presented
by the ANGLO AMERICAN PLATIUM company, where a
linear MPC (to be more precise: (DMC)) outperformed
a back-than famous fuzzy controller [124]. The power
consumption of a large stone mill was reduced by 66% using
the commercial system from ASPENTECH. Nevertheless,
no fully thrusting the novel control method, the established
fuzzy controller was run as back-up option for abnormal
states.

Olivier and Craig [92] and coworkers [55] detected faults
of actuators within the process to update the available
manipulated variables of the MPC maintaining the control
performance. They used a particle filter in order to estimate
whether a certain actuator could still be used or not (binary
decision). Self-awareness was especially important for
continuously-running large systems in rough environments.
They simulated a mill of a mining facility to grind ore. The
simulation demonstrated that the MPC can manage actuator
failure if it knew about it.

Table 1 summarizes the key parameters of the discusses
works in process industry. Only works are listed that
provided their implementation details on MPC. The order
has no significance besides order of publication.

MPC often served as a supervisory control of classic
PID controllers forming a cascaded control loop. Large
multiple input multiple output (MIMO) systems, empirical
models—mostly derived through step or impulse tests
[99]—and long calculation times Ts > 1h favored MPC
in process industry. Today, the sampling times have largely
decreased to the region of minutes and seconds [26],
Table 1. Complex couplings between process variables
require empirical, nonlinear models, which are at the
beginning often linearized.

6.2 Power electronics

Not until the mid 2000s, an opposite trend has taken shape
in power electronics. These extremely fast single input
single output (SISO) systems used pure analytical models
to work at sampling frequencies below the ms-range [15,
52, 65, 129]. The characteristics are diametrically different
to process industry. Richalet [104] foresaw this counter
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Table 1 Overview of the tuning parameters of MPC in process
industries

Reference Ts N2 Nu sim/exp MPC

[105] 3 min ? ? exp L

[24] ? 30 10 exp L

[97] few h 35 15 exp L

[95] 3 min (10) ? sim N

[6] 1 min 10 3 sim L+N

[124] 1 min 60 (60) exp L

[42] 1 s 6 2 sim L

[108] ? 50 20 sim L

[92] 1 min 20 3 sim N

[55] 1 min 18 3 sim N

[9] 200 ms 50 5 ? N

[21] 1 s 76 16 sim L

[80] 1 s 10 2 sim L

[63] 1 min 10 2 sim N

[89] 5 min 10 5 exp N

[117] 1 min 15 3 sim N

[96] 10 s 150 2 exp L

sim simulation, exp experiment, L linear, N non-linear,

() deduced numbers, ? unknown parameter

movement early reporting from an application to control a
servo drive with a sampling time of Ts < 1ms. To achieve
such short sample times, relatively simple models, short
horizons, and often an explicit solution of the optimization
problem were used. Explicit MPC solves the optimization
in advance for a variety of cases to obtain a polytope of
explicit (linear) control laws [14]. This increases the overall
computational effort but shifts it to offline optimization.

Linder and Kennel [65] applied MPC for “field oriented
control” of electrical AC drives using such an explicit
MPC. The results were sobering: there was hardly any
improvement to a conventional PID controller for large
signal steps. For small steps, the MPC reached the new
target value faster and better, but in summary, Linder and
Kennel attributed potential of MPC more due to features like
intuitive tuning and constraint satisfaction.

Nevertheless, Bolognani et al. [15] saw MPC as being
ideal for electric motor control since there existed analytical
linear models describing the motor behavior accurately.
They also used an explicit MPC formulation to achieve an
sample time of Ts = 83ms. Since the prediction horizon
N2 = 5 was far from covering the complete drive dynamics,
the assumption of an infinite prediction horizon did not
hold, making stability a major (unconsidered) concern. The
control was perfect if the load torque matched the design
torque of the MPC design. Otherwise, there occurred an
offset between the desired and the actual values (current,

voltage, etc.). Nevertheless, the controller worked stable and
enforced the current and voltage limits reliably.

Kouro et al. [52] examined MPC regarding control
of power converters. Power converters have only a
finite number of discrete states n. This handicaps an
optimization requiring heuristic approaches (mixed-integer
optimization). They took a brute force approach testing
every possible control action resulting in an exponential
increase of calculations: nN2 . With n = 7 converter states
the prediction horizon was limited to N2 = 2 in order
to achieve a sample time of Ts = 100ms. Compared to
a classic PID control, they concluded that the advantage
of MPC is its flexibility regarding control variables and
constraints—similar to [65] before.

Geyer et al. [38] used MPC for direct torque control of
electrical drives. The control problem consisted of keeping
the motor toque, the magnitude of the stator flux, and the
inverter’s neutral point potential within their (hysteresis)
bounds minimizing the switch frequency of the inverter.
To reduce the computational complexity and to solve the
MPC within Ts = 25ms, the control and prediction horizon
were limited to Nu = N2 = 2. As a compromise between
computational effort and system behavior, the value of the
prediction horizon was extrapolated linearly 100 steps to
roughly recognize future system behavior. The simulation
results showed that MPC respected the constraints only
slightly better but reduced the switching frequency on
average by 25% thus reducing the power dissipation.

As an experimental validation for this, Papafotiou et al.
[93] implemented MPC for direct torque control on a 1.5
MW motor drive. Again, the major concern was on the
computational speed, so that the control horizon was further
reduced to a single step Nu = 1. The two control tasks,
motor flux and motor speed, were split into separate control
tasks with different execution times (25 ms and 100 ms
respectively). The results could not hold the euphoria of
the simulation above. On average the control reduced the
inverter’s switching frequency by 16.5% maintaining the
same output quality as standard control. For motor drives
of this size, the achieved faster torque response was even
more valuable for certain applications. Especially high-
voltage applications, such as motor control, must consider
the time delay of the converter [10]. Converters often exhibit
a programmed time delay after switching in order to avoid
a shoot-through. Model-based predictive control (MPC) can
manage this naively, e.g. in the system model [10].

The number of applications in power electronics
increased so rapidly that Vazquez et al. [129] felt impelled to
give an extensive review of the academic implementations.
They concluded that the lack of proper models is still
the major obstacle towards an industrial application. And
MPC for power converters and rectifiers (electrical devices
that convert alternating current (AC) to direct current
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(DC)) is still subject of active research due to their
ubiquity. It is likely to increase even further due to the
transformation of society in the context of combating
climate change and the accompanying electrification of
whole industries. Efficiency is prime and researchers found
MPC to provide valuable contribution, e.g. for determining
optimal switching sequences of converters and rectifies
already for mid-level voltage ratings [40, 83]. Although
computation is still an issue, e.g. [2], both formulations are
still competing in the this field of very fast control problems
in power electronics: The standard implicit formulation
of MPC with solving the control problem online and the
explicit formulation where the optimization problem is
solved a priori for all cases. A detailed general discussion
on explicit MPC includes Section 8.1.

Again, Table 2 provides a condensed overview of the
works on the application of MPC in power electronics.
It emphasizes the diversity of the used parameters of
MPC in this field. Having started with the control of
individual electrical components, in particular converters,
the application in electrical engineering has widened
towards the control of systems of multiple components as
the next section will show.

6.3 Building climate and energy

Since 2010, MPC has attracted notice to the community of
building climate control. Analytical and empirical models
were combined in non-linear multiple input multiple output
(MIMO) systems with long prediction horizons. Typical
sample times were in the order of minutes to 1 h with
prediction times usually smaller than 48 h [113]. The
objective was always to reduce the energy consumption

Table 2 Overview of the tuning parameters of MPC in power
electronics

Reference Ts N2 Nu sim/exp MPC

[65] 10 ms 3 (3) sim L

[127] 20 ms 40 ? sim L

[26] 1 ms 1 1 exp N

[15] 83 ms 5 1 exp L

[93] 24 ms 1 1 exp L

[38] 25 ms 2/(100) 2 sim L

[52] 100 ms 2 ? sim L

[10] 62.5 ms ? ? exp L

[29] 1 ms 1 1 exp L

[125] 100 ms 3 1 sim L

[40] 200 ms ? ? exp L

[114] 200 ms 50 50 sim L

sim simulation, exp experiment, L linear, N non-linear,

() deduced numbers, ? unknown parameter

while maintaining a certain (thermal) comfort. The success
of MPC in this field was due to that it allows to incorporate
statistical uncertainties and even weather forecasts [5], e.g.
as in [90].

MPC for heating, ventilation and air conditioning
(HVAC) had been applied to a broad range of buildings,
starting from a single room to large spaces as airport
buildings or multi-room problems as office buildings [1].
The overwhelming majority of the works addressed non-
residential buildings, where only 4% included residential
buildings often as one energy sink among others in a micro-
grid [74]. In their latest review, they noted that heating,
ventilation and air conditioning (HVAC) plays an important
role in the field of building energy management systems
with more than 50% of all publications; and that MPC is the
most used strategy. The authors ascribed this to its native
consideration of weather and occupation forecasts, e.g.
demand forecasting. Google reported that MPC increased
the efficiency of the air handling in one of their data centers
so that they cut cooling costs by 9% [54].

Most works in the field of climate and energy man-
agement were simulations due to the large implementation
effort and the risk of discomfort. Gunay et al. [43] actu-
ally demonstrated their findings on an actual room of their
university offices; and Ma et al. [69] implemented a MPC
controller to the cooling system of their university building.
The main component was a cold water storage tank, whose
operation was controlled (when to fill, how fast to fill, how
cold should the water input be—coming from the chillers,
etc.). They reduced the energy costs by 19%, introducing
the interesting idea of optimizing financial costs instead of
pure energy consumption, [1] later picked-up again in this
filed. With “MPC”, nowadays a dedicated term for such
formulations exist.

Yu et al. [141] conducted a whole benchmark of
different temperature control approaches on a small mock-
up building in a thermal chamber. Model-based predictive
control (MPC) outperformed the other approaches—
including a commercial thermostat with a programmable
schedule—and reduced the energy consumption by 43%
compared to a constant temperature controller. However, the
results suggested that for small buildings the main benefit
came from an enhanced temperature measurement.

Industrial applications of MPC in building climate
control are still rare, which is due to the enormous modeling
effort (being up to 70% of the control effort) [5, 94].

Often, individual rooms were modeled as capacity
resistor elements [82, 90, 91, 107]. Coupled resistance-
capacitance models based on physical principles and pure
empirical approaches are the two main types of modeling
building energy systems for MPC [113].

One way to approach the modeling effort and the related
requirement of domain knowledge was to use black box
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modeling approaches, namely from the field of machine
learning. Already Qin and Badgwell [99] noted that NNs
were popular to model unknown non-linear behavior for
MPC. Afram et al. [1] used NNs to model the individual
subsystem of an energy management system, such as
ventilation, heat storage, or a heat pump. The increase
in model accuracy came at the cost of a non-linear
optimization in the MPC. The system was tested on historic
weather data—assuming an ideal weather forecast at every
point as it is common practice, e.g. also in [36, 90, 91].
Unfortunately, no details on the MPC parameters were given
in [1]. The objective was to optimize the cost of the energy
consumption and not the amount of consumption itself.
For this, the proposed neural network (NN)–based MPC
shifted the energy consumption to the off-peak hours of the
electricity price using the mass of the building as a storage.
This worked excellent for moderate weather conditions but
failed at extreme conditions as in midsummer when such
passive thermal storage are not sufficient.

The interlaced individual models in building climate con-
trol let to a complex optimization problem, where gradient-
based algorithms may fail and heuristic-based global opti-
mization were more desirable [82]. This increased the com-
putational effort further and, thus, enlarged the sample time,
which was seldom a problem due to the inertial nature of
thermal behavior. If the number of rooms became large, the
control problem was broken down into multiple decoupled
MPCs achieving a near optimal solution at a lower compu-
tational cost [82]. Shaltout et al. [5] plead for a distributed
network of MPC controllers cooperating with each other.

Gunay et al. [43] claimed that shorter sample time
favors temperature control (Ts,short = 10min compared to
Ts,long = 1h, both N2 = 6) since the model accuracy
usually deteriorates with the predicted time. Furthermore,
long horizons may be torpedoed by stochastic disturbances
such as the occupancy behavior. They claimed that a short
prediction horizon of TN2 = 6h would have even eliminated
the need for accurate weather forecasts and make the MPC
more reactive. Yu et al. [141] supported the finding that
shorter horizons enabled for a more accurate tracking of a
given temperature reference. In contrast, [91] argued that
TN2 = 24h should be used as a prediction horizon for
heating, ventilation and air conditioning (HVAC) systems.

Park and Nagy [94] identified MPC as recent trend in
heating, ventilation and air conditioning (HVAC) control
through mining the keywords of publications and predict
that it will spread towards the control of smart grids.
Another recent review on MPC for heating, ventilation and
air conditioning (HVAC) systems [113] stressed that it is
importance will increase in step with the transformation in
power generation towards renewable sources and its higher
variability. And in fact, the increasing pressure to integrate
flexible sources and sinks into power grids (introduced by

renewable energy plants and PEVs) called for advanced
control methods, e.g. [126].

In particular, the ability to include stochastic models
and, thus, modeling uncertainty explicitly was considered a
unique feature especially in the field of energy management
[11]. Oldewurtel et al. [91] formulated the MPC problem
as a probability problem considering the uncertainty of
weather forecast. Instead of using weather forecasts,
Morrison et al. [86] learned the day-to-day changes in solar
radiation due to seasonal trends. The algorithm learned the
behavior of humans in terms of hot water demand over
days and weeks, while the MPC implements this learned
reference on a lower-level (TN2 = 12h). In a simulation
study, they mimicked four weeks from midsummer to
midwinter for the considered thermal-storage-tank system.

Also in the field of renewable energies, Dickler et al.
[27] applied a time-variant MPC for load alleviation and
power leveling of wind turbines, where the model for
the mechanical demand on the turbine was linearized at
every control step for the current prediction and control
horizon. The wind speed as one major load on the
mechanical structure was handled by incorporating wind
speed predictions. Sun et al. [125] used MPC to smooth
the effect of fluctuations in wind speed for wind turbines
on resulting frequency of the power generation. The idea
was to consider both, the dynamics of the turbine and of
the wind itself, in a linearized MPC. Shaltout et al. [114]
picked up the same idea coupling the wind turbine with an
energy storage system. Targeting multiple objectives, some
with non-technical motivation, they formulated a so-called
economic MPC. Adding fluctuating energy consumers to
such a system, [126] simulated a (connected) micro grid
with an wind power supplier and 100 PEVs. The objective
was to minimize the overall operation costs: maximizing the
consumption of wind energy and minimizing the exchange
to the main grid, i.e. balancing the energy consumption over
consumption and production peaks. PEVs could be used as
sources or sinks as long as they were fully charged at the
end of a working day. The energy demand of the PEVs
was modeled as a truncated GAUSSIAN model; the supply
of a wind turbine in an auto-regressive integrated moving
average model (ARIMA). They proposed a two-layer MPC
where the top layer balanced the overall power demand
aggregating the PEVs to a single value, while the underlying
MPC handled the energy distribution to the individual
PEVs. The top layer optimized the cost of the energy and
the risk, which was determined through a MONTE CARLO

simulation and stochastic models. A simulation showed that
the costs was be reduced by more than 30% compared
to an immediate maximum charge strategy, in which the
batteries were charged to full capacity as soon as it was
connected to the grid. This may exacerbate the energy
imbalance of the micro grid at peak hours. Schmitt et al.
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[109] optimized energy management for hybrid electric
vehicles by establishing also a two-layer MPC. On the
higher level non-linear MPC, the driving strategy including
a rule-based gear selection was optimized, and the control
and actuation of the physical system were realized on the
faster lower level linear MPC.

In the advent of the electrification of the mobility, MPC
experiences a new blossom, e.g. in balancing the fuel
consumption of a hybrid-electric vehicle taking also the
individual driving behavior into account [61], or in health-
aware battery charging [147].

Again, the mega trend of energy transition and energy
efficiency will lead to an increasing demand of intelligent
strategies for energy balancing in (micro) grids and for
building energy management systems. This in turn will
call for more applications of advanced control strategies,
especially MPC [74, 113]. The field has developed from
the control of pure heating, ventilation and air conditioning
(HVAC) systems to entire consumer-producer systems
(or grids). The complexity of the models represent this
evolution, Table 3.

6.4 Manufacturing

Manufacturing is a comparably new field for MPC and can
be considered representative for a new development: MPC
does not substitute existing controllers anymore but exploits
new control tasks.

Table 3 Overview of the tuning parameters of MPC in building
climate and energy

Reference Ts N2 Nu sim/exp MPC

[90] 1 h 24 24 sim N

[69] 1 h 24 (24) exp N

[91] 1 h 24 24 sim N

[43] 10 min, 1 h 6 ? sim L

[36] 1 h 8 (8) sim N

[1] 100 ms 10 5 sim L

[141] 15 min (60) (60) exp L

[54] 30 s ? ? exp L

[126] 5 min ? ? sim L

[147] 1 s 10 ? exp L

[139] 1 s 20 5 exp N

[125] 100 ms 3 1 sim L

[27] 100 ms 40 8 sim L

[114] 200 ms 50 50 sim L

[109] 40 ms, 1 s 5 5 sim L+N

sim simulation, exp experiment, L linear, N non-linear,

() deduced numbers, ? unknown parameter

We want to emphasize the field of manufacturing in
general and cutting technology in particular, where several
papers already showed the potential benefit of advanced
control, e.g. on a conceptual basis [28].

Nevertheless first, fixed-gain controllers for the position
control loop of machining centers were substituted to
achieve higher precision [122, 123]. Compensating the
dynamics in high-precision milling with MPC is still
an active field of research, e.g. [73]. Nonetheless, the
application evolved towards introducing additional high-
level control with MPC. The control turned into process
control rather than implementing machine tool settings,
creating before unseen benefit. Mehta and Mears [79]
described a concept for controlling the deflection of slender
bars in turning. And Zhang et al. [142] examined MPC
to avoid chatter—an undesired resonance phenomenon—
in milling. The MPC used a linearized oscillation model
assuming that mass, damping, and stiffness were given. The
controller manipulated an external force actuator at the tool
holder. In simulation, the system enlarged the chatter-free
region by 60%.

The first constrained MPC for force control in milling
was implemented at the RWTH Aachen University,
Germany [111, 112, 119, 120]. They manipulated the feed
velocity in order to achieve a constant force in this highly
dynamic process. Later, a black box model (support vector
regression (SVR)) was added to consider non-linearities of
machining centers [7, 8].

Staying in the area of metal processing, Liu and Zhang
[67] introduced MPC-based control to welding. Predicting
the N2 = Nu = 5 next steps (Ts = 0.5s), they controlled the
penetration depth of the weld as a measure of quality. While
the first approach relied on a dedicated vision system and a
linearized model of the penetration depth, a newer approach
dropped the vision system: [148]. The feedback loop was
closed by identifying a model online, which described the
relation to the penetration depth. This was a similar set-up as
for the milling process above. The approaches demonstrated
the control of system variables that were hard to impossible
to control without MPC.

Wehr et al. [133] applied a linear MPC to control the gap
during precision cold rolling of thin and narrow strips. The
structure of the given process is anatomically overactuated
by the existence of two redundant actuators for gap control.
The overactuation and computational effort of the MPC are
tackled at the same time by the introduction of a single time-
varying optimization variable, which exploits the different
availability of the actuators during the process.

A different field of production technology addressed Wu
et al. [135], who optimized the air-jet to insert the weft in
weaving. This is the key to reduce the energy consumption
(in terms of compressed air) of weaving machines.
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And for injection molding of plastics, Reiter et al.
[103] (conceptual) and later Stemmler et al. [121] built a
MPC controlling the pressure within the mold. The idea
was to obtain constant weight of the product as a quality
criterion. It was standard to control the process with separate
controllers for the different phases (injection and packing
phases), while MPC was able to handle both phases and
optimizing the transition (which was originally a switch of
the controller) [121]. The contribution to a higher usability
of the MPC was the main driver in this work.

A bit more general, the field of “production” adds
automation and handling systems to the scope. These are
often graph or state-based modeled, e.g. by Petri Nets
as Cataldo et al. [20] did with a palette transportation
and processing system. Using an MPC, they enabled the
system to adapt to faults on the transportation line such as
a blocked section. Automation applications with discrete
states present mixed-integer optimization problems. They
require dedicated solver, which often are heuristic-based
and come with a larger computational burden than gradient-
based optimizers.

Table 4 provides a quick overview on the chosen
parameters. The sampling times are quite low with rather
large prediction horizons compared to the early works on
power electronics.

6.5 Further applications

Apart from these main movements, the range of applications
in engineering is immense. From balancing walking robots
[134], hanging crane loads [110], and cruise control for
heavy duty trucks [62, 140], to optimizing buffering and
quality in video streaming [138]. Even for path tracking of

Table 4 Overview of the tuning parameters of MPC in manufacturing

Reference Ts N2 Nu sim/exp MPC

[122, 123] 100 ms 50 4 exp L
[119] 20 ms 12 12 exp L
[120] 10 ms 13 13 exp L
[67] 500 ms 5 5 exp L
[103] 8 ms 25 1 sim L
[135] 1 ms 25∗ 2 sim L
[121] 8 ms 12 3 exp L
[20] ? 7 2 sim N
[8] 20 ms (13) (13) exp L
[133] 1 ms 8 6/1 exp L
[148] ? 8 8 exp L
[73] 976 ms 2 (1) exp L
[111] 20 ms 10 10 exp L

sim simulation, exp experiment, L linear, N non-linear,

() deduced numbers, ? unknown parameter

This work uses a lower prediction horizon: N1 = 5

underwater robots, MPC was applied [116]. In almost all
applications, MPC outperforms classic controllers.

In particular, robotics is an emerging field of applications
of MPC, e.g. [47, 88, 134]. While humanoid robots are a
special case [134], industrial robots are ubiquitous in the
shop floors today. The success of light-weight, economic,
and collaborating robots has contributed to a significant
increase of MPC related works in this field. Nubert
et al. [88] improved the tracking robustness in general with
a robust MPC. While [47] made use of the force feedback
of a lightweight robot to polish the free-form surface of a
metal workpiece. The MPC maintained a given pressure on
a varying area while moving over the surface.

With the upcoming of new concepts of how vehicles
are powered was accompanied with new applications of
control strategies and applications of MPC. Be it traction
control of in-wheel electric motors [? ], cruise control [61,
62], or path planning for autonomous driving [48]. The
focus of advanced cruise control is yet on larger commercial
vehicles, such as (hybrid) electric buses [61, 137], due to
its faster return on invest. It seems that the electrification
of the power train spread electrical-engineering know-how
to the development cycle of vehicles and with it, control
engineering expertise.

6.6 Notes

While many researchers show an extraordinary meticulous-
ness when describing the models they have used, some miss
to provide basic information on MPC tuning. We want to
emphasize that at least the sample time Ts and all horizons
(lower prediction horizon N1, upper prediction horizon N2,
and the control horizon Nu) should be listed, as Table 1 to
Table 4 demonstrate.

Ideally, also the cost function should be provided
including the weights of the slack variables ξ . With the
horizons given, applications can be compared and and
the computational effort can be estimated. The exact cost
function is required to reproduce the results ensuring good
scientific practice.

7 Controller design and tuning

The initial hurdle to use MPC is relatively small—provided
you have an adequate model describing the process in
question. The effort is shifted from controller design
towards modeling [35, 104, 105]. Nonetheless, the MPC
offers an enormous flexibility regarding its design and
tuning [37]. The most significant effect have:

– the model,
– the cost function,
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– the constraints (what is constrained and how it is:
bound, inequality, or non-linear constraints), and

– the choice of the solver itself.

The model is the essence of a MPC. As [101] put
it: “models are not perfect forecasters, and feedback can
overcome some effects of poor models, but starting with
a poor process model is akin to driving a car at night
without headlights; the feedback may be a bit late to be truly
effective”.

Both, theory and commercial application software favor
linear models or a linear MPC. To apply linear control even
to non-linear systems successive lineraization can be used,
e.g. [6, 8, 63, 80, 97, 147], or model switching, e.g. [95].
The idea is to take advantage of a linear optimization, i.e.
linear MPC, with a comparably low computational burden
and a non-linear prediction.

Few applications use non-linear MPC meeting the fact
that often the available models are non-linear. However, not
all check stability. Others focus explicitly on the stability
aspect in their applications, e.g. [116]. In particular with
the popularity of machine learning model, non-linear MPC
applications increase. A sometimes ignored drawback of
non-linear MPC is the larger computation of non-linear opti-
mization. However, there was a new computation scheme
introduced recently: RTI. Gros et al. [41] summarizes this
approach presenting linear MPC as a special case of it. The
main idea is as simple as it is charming, making use of the
previous solution. At time step k, the controller calculates a
solution for time steps k+1 to k+Nu. A good optimization
given, the solution for time step k + 2 presents a rationally
good starting point for the next optimization at time step
k + 1. Thus, one can limit the number of iterations of each
optimization assuming that the next optimizations continue
improving the solution of the trajectory of the manipula-
tion variable. “The RTI approach consists in performing the
NEWTON steps always using the latest information on the
system evolution” [41]. This idea of “warm starting” relies
on a sufficiently high sampling frequency to ensure only
small changes between iterations. Because the RTI scheme
implements one single full NEWTON step per time step,
it generally works better if the non-linearity between time
steps is mild and if the prediction horizon is longer.

Controlling large multiple input multiple output (MIMO)
systems with a single MPC may be difficult [32], that
is why cascaded or hierarchical MPC structures are some
times suggested, e.g. a two-layer MPC [112, 126] running
at different sample rates.

Slack variables soften constraints moving it to the cost
function where the amount of its violation is penalized. This
generates the additional tuning factor Wξ , which is a weight
matrix ensuring feasibility by softening constraints on the
model output (and with this, on the reaction of the system).

It is usually an identity matrix, whose entries are several
orders higher than the weight matrix of the control error Ww.

A trade-off between accurate tracking of the reference
and smooth control behavior can be performed by
considering the change of the manipulated variable in the
cost function:

min
u,ξ

N2∑

i=N1

‖r(k + i|k) − y(k + i|k)‖Ww +

Nu−1∑

j=1

‖Δu(k + j |k)‖Wu +

N2∑

i=N1

‖ξ(k + i|k)‖Wξ
. (11)

The same constraints apply as before in Eq. 5. The cost
function minimizes the deviation from the reference r over
the prediction horizon N2. It additionally considers the
change in the manipulated variable Δuk = uk − uk−1. The
last term includes the slack variables ξ , which quantify the
violation of output constraints. It must be tuned manually
until the controller reflects the desired behavior. To the
experience of the authors, a good starting point lies within
Wu = (0.01 I, 1 I), with the lower values let the MPC use
its potential unhindered at the exchange of more (usually
small) violations of the boundaries.

Typical solvers are based on linear programming (LP)
or quadratic programming (QP) [26]. If one uses the
commercial tools, i.e. from the popular program MATLAB
by THE MATHWORKS, the choice of an optimization
algorithm is not a question. But, for deeper dives into the
design, a good option for a solver is quadratic programming
online active set strategy (qpOASIS). It is an open-source
optimization algorithm for linear problems, which has
“several theoretical features that make it particularly suited
for model predictive control (MPC) applications” as the
project stated [30]. The choice of the solver influences the
demand of computational resources.

Besides those major design building blocks, the MPC
exhibits a whole slew of tuning parameters: the horizons
(N1, N2, Nu), the weights in the cost function, Eq. 11, and
the time step or sampling time Ts . It is unique for every case
but this review can provide tips and best practices for the
other tuning parameters.

The horizons are crucial of the system’s performance and
must be determined for every case. The prediction horizon
N2 must be long enough to capture the effect of a change of
the manipulated variable u. In this way the minimum length
of the manipulation horizon Nu can be estimated by

Nu = N2 −
⌊

Td

Ts

⌋

. (12)
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To reduce the complexity of algorithmic tuning, [118]
suggested to neglect the difference of the prediction and the
manipulation horizon: N2 = Nu. The effect on computation
is small if the time delay of the system is small in terms of
multiples of the sampling time.

The lower prediction horizon describes the time delay of
the system. It is best practice to consider this in the model
of the system and, therefore, setting N1 = 1. This considers
that the manipulated variable is not implemented instantly,
which would make the exact moment indeterministic as
it depends on the time the MPC requires for solving
the optimization problem. Instead, the obtained optimal
command u is implemented at the next time step. These
considerations reduce the problem of finding suitable
prediction horizons to the problem of determining the
necessary prediction horizon N2. Its choice can be estimated
using the system model by simulating all possible step
changes in the manipulated variable(s). If the combination
that has the longest effect on the control variable is known,
it is sufficient to simulate this.

8 Computation

It does not help to talk about MPC, i.e. repeatedly solving
an optimization problem online, without talking about its
computational effort. In the control of power electronics,
the prediction horizon was often limited to N2 = 1 due
to tight time requirements [38]. Nevertheless, there are
more sophisticated strategies to reduce computation than
wrecking prediction. Morari [84] argued that computational
effort was irrelevant based on the computing power
in 1994. This is remarkable from today’s perspective:
although computing power increased exponentially, Fig. 6,
at the same time control intervals have shrunken and thus
computation is still an issue.

MOORE’s law states that the number of transistors on a
microprocessor doubles roughly every two years [132]. That
usually implies that computational performance doubles too
– and prices dropped in sync, Fig. 6. This comfortable
development may not continue forever; in fact, special-
purpose chips are on the advance (think of low energy
CPUs that power smartphones) letting the microprocessor
landscape diverge. The tremendous success of machine
learning techniques and the increasing parallelization in
software were paved by the replacement of CPUs for GPU
chips. At the same time, the clock speed had been limited
because of the heat dissipation in the resistors. To still
keep up with MOORE’s law, multiple cores were integrated
on the same chip from the early 2000s on. With this in
mind, strategies to reduce the computational load become
very well important again. With increasing computational

Fig. 6 Overview of the evolution of the computation power (data taken
from [49, 132])

resources, more demanding systems were controlled that
were not even imaginable before.

8.1 Explicit MPC

In the year 2000, [14] still claimed that MPC was
only applicable to slow or small systems due to the
computational effort that solving an optimization problem
imposes. Parallel to the increasing computational power,
many dedicated approaches have been introduced bringing
MPC towards more efficiency. As an intermezzo hybrid
MPC or explicit MPC approaches popped up [13]. They
combine an offline solved optimization problem with online
control. The optimization problem—and thereby the control
law—is solved for a multitude of possible situations and
stored in a look-up table. This shifts the task of computation
to a non-time-critical offline calculation. Essentially, MPC
in this was becomes an online gain-scheduling algorithm.
The advantage is that closed-loop control can be performed
at higher rates which, in some cases, made closed-loop
control feasible in the first place and, in other cases,
improved the control behavior due to quicker feedback.

The major drawback is the increasing computational
effort solving the problem for all possible situations in
conjunction with the increasing memory demand. It lacks
of flexibility regarding unexpected disturbances and of the
opportunity to adjust the process model.

Explicit MPC increases the overall computation because
every possible state needs to be calculated a priori . This
might be the reason why it emerged from the control of
power converters with simple (mostly binary) problems,
short horizons, and almost no time for calculation [130]. For
complex systems, the advantage at execution is somewhat
diminished if searching the a priori solved result takes
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long [122]. The solution space scales exponentially with the
problem size making look-up-table-approaches inefficient –
this is sometimes dubbed “curse of dimensionality” [102].

One way to reduce the general computational effort is
to approximate the solution-space by a non-linear function.
Recent studies suggested to use NNs for this [64, 143].
This sped up the required online computation by a factor
of 65–100 in [143]. Approximating the solution space by
a function let the MPC work with near optimal solutions
but shifts the computational burden may allow to decrease
the online computation time. [143] built a second model
to quantify the approximation error at every point in the
solution space. The charm of an approximation through
machine learning is that the training can be flexibly stopped
if a defined accuracy is reached. Hertneck et al. [45] took
this thought focusing on accurate learning of the solution
space by the neural network (NN). They quantified the
probability of a wrong approximation. In this way, they
were able to adjust and extend the training until it reached
the desired quality. The procedure was demonstrated on a
simple numerical example reducing the computation time
by a factor of 200—at the cost of a training effort of 20
days. Only recently the idea was tested on an industrial
robot as real system [88]. The to-be-approximated MPC was
designed for robust control with regard to the output of the
MPC. In this way, measurement noise—or an inaccurate
approximation of the solution space through the neural
network (NN)—did not affect the stability of the to-be-
controlled system.

Maddalena et al. [71] generalized the idea proposing a
neural network (NN) with two linear layers and a parametric
quadratic program layer in between to learn the control
law of any linear MPC with A quadratic cost function.
They showed that the resulting explicit MPC was still
closed-loop stable in the sense of LYAPUNOV by using
out-of-the-box the certification technique proposed by [51].
The technique was applicable because the neural network
(NN) structure essentially presented a linear mapping
with polynomial inequalities. In fact, [102] concluded that
NNs—in particular with rectified linear units (ReLUs)—
present a continuous piece-wise linear mapping ideal
for approximating large solution spaces of explicit MPC
policies.

8.2 Move blocking

Move blocking strategy for MPC (in sense of input blocking
as its most common formulation) is a scheme, where the
degree of freedom for the optimization is reduced by
trimming the number of calculated control outputs. Thereby,
the control output is held constant at defined steps over
the control horizon. In this way, the computational burden
decreases because the control output does not have to

be calculated at every time step over the control horizon
anymore.

Overall, the result of move blocking strongly depends on
the choice of blocked time steps. One conceivable approach
is to block the later time steps to obtain a higher degree
of freedom at the beginning of the control horizon. Such
an approach is appealing for uncertain systems, where
the predicted system behavior is more trusted at early
time steps. Nevertheless, one has to be aware of the
aforementioned drawback. A more sophisticated, but also
more computationally expensive, approach is to optimize
the choice of blocked time steps as a mixed-integer problem
[115].

One major drawback of the strategy is that the continuity
of the optimization for a receding horizon can no longer
be ensured. This is due to the shift of fixed (or blocked)
time steps with the receding horizon between iterations.
Therefore, the degree of freedom at a certain point in
time in the future cannot be guaranteed at the following
iteration of the optimization. In the worst case, neither
the satisfaction of constraints for the optimization, nor the
controller stability can be met. One way to overcome this is
to adapt the fixed time steps, such that the degree of freedom
is defined at the same time [16].

9 Conclusion

Popularity of MPC “comes in great part from the fact that
a suitable model being given, the controller can be easily
implemented with a direct physical understanding of the
parameters to be tuned and easy constraints handling”
[104]. With the great advances in microprocessors and
the omnipresent availability of models, this is more true
than ever. One key characteristic of MPC is the implicit
determination of the control law by solving the constrained
optimization problem online. The incorporation of physical
constraints in the optimization problem shifts the effort
of designing a controller towards modeling the to-be-
controlled system [35, 104, 105].

The hurdle to overcome for a lasting impact of MPC
on industry is the complexity of modeling and algorithmic
tuning. In most cases, the potential benefit is not worth
the effort of building up expert knowledge in modeling,
optimization, and control theory.

Modeling is often the most time consuming activity
[44]. As the age of microprocessors removed computational
resources as the largest obstacle and paved the way for an
enduring success of MPC, the second era may be herald
by the use of data-driven modeling lowering the barriers
even more. Machine learning enables an easy description of
complex systems lowering the hurdle of applying MPC to
new processes.
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For applications first the extreme have been covered:
large and complex multiple input multiple output (MIMO)
systems with long sample times (petrochemical industry).
Then, almost as a counter movement, fast systems with
short sample times and often an explicit formulations were
developed (power converters). These days, the craziness
has settled leaving the field to reasonable sample times.
Although computational power has increased tremendously,
even today, an efficient calculation should always be the
dictum but requires expert knowledge in programming
hindering a plug&play usage. Forbes et al. [32] concluded
that a higher usability of existing techniques is required by
industry rather than new MPC algorithm. Nowadays, it is
almost as if the focus has shifted from theory to application
letting both advance in conjunction. The theory becomes
application-driven again—as it was in its beginnings.

We are convinced that the global mega trend of
decarbonization will further boost MPC applications in
electronics, due to the expansion of electrification as well
as the constantly pressing demand for high efficiency
of electric components. Model-based predictive control
(MPC) can contribute to efficiency in many fields, e.g.
in climate control systems (precisely heating, ventilation
and air conditioning (HVAC)) They deal with sluggish
systems and comparably precise forecasting models, e.g.
for room occupations or for the weather, what makes MPC
predestined for them.

The buds of the new trends and the thick trunks of the
established disciplines suggest, to our eyes, that one step
way from an exponential increase in the number of MPC
applications.

Model-based predictive control (MPC) enables control-
ling high-level objectives rather than machine tool set
points. This review shall encourage domain experts to apply
this intelligent control method to their fields seeding the
next level of manufacturing.

Author contribution All authors contributed to the study conception
and design. In the conception phase, the authors were supported by
Sebastian Stemmler, who was not considered as author. Visualization
was performed by Max Schwenzer and Muzaffer Ay. The first draft
of the manuscript was written by Max Schwenzer and supported
by Muzaffer Ay, who contributed details on stability, the latest
developments and computation. Thomas Bergs and Dirk Abel acquired
the funding for the project leading to this publication. All authors read
and approved the final manuscript.

Funding Open Access funding enabled and organized by Projekt
DEAL. This study was funded by the Deutsche Forschungsgemein-
schaft (DFG, German Research Foundation) under Germany’s Excel-
lence Strategy – EXC 2023 Internet of Production – 390621612.

Availability of data and materials There is no original data associated
with this review.

Declarations

Competing Interests One or multiple of the authors contributed to, in
total, 14 cited works in this review. This is 9% of all discussed papers.

No other conflicting interests occurred.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate
if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.
org/licenses/by/4.0/.

References

1. Afram A, Janabi-Sharifi F, Fung AS, Raahemifar K (2017)
Artificial neural network (ann) based model predictive control
(mpc) and optimization of hvac systems: a state of the art review
and case study of a residential hvac system. Energy and Buildings
141:96–113, https://doi.org/10.1016/j.enbuild.2017.02.012

2. Akter F, Alam KS, Akter MP (2018) Simplified model pre-
dictive control of four-leg inverters for stand-alone power
systems. In: 2018 10th International Conference on Electrical
and Computer Engineering (ICECE), IEEE, Dhaka, Bangladesh,
pp 261–264, https://doi.org/10.1109/ICECE.2018.8636741.
https://ieeexplore.ieee.org/document/8636741/
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A, Duque-Pérez O, Santos Garcı́a F (2021) A review of
strategies for building energy management system: Model
predictive control, demand side management, optimization, and
fault detect & diagnosis. Journal of Building Engineering
33:101692, https://doi.org/10.1016/j.jobe.2020.101692, https://
linkinghub.elsevier.com/retrieve/pii/S2352710220310627

1346 Int J Adv Manuf Technol (2021) 117:1327–1349

https://doi.org/10.1016/j.buildenv.2014.09.011
https://doi.org/10.1016/S0098-1354(98)00260-9
https://doi.org/10.1109/LCSYS.2018.2843682
https://doi.org/10.1109/LCSYS.2018.2843682
https://doi.org/10.1016/s1474-6670(17)57870-2
https://doi.org/10.1016/j.ifacol.2019.11.459
https://doi.org/10.1109/TVT.2016.2555853
https://doi.org/10.1109/TVT.2016.2555853
https://doi.org/10.1016/j.techfore.2006.06.001
http://arxiv.org/abs/1803.08287
https://doi.org/10.1016/j.automatica.2016.12.008
https://linkinghub.elsevier.com/retrieve/pii/S000510981630500 3
https://linkinghub.elsevier.com/retrieve/pii/S000510981630500 3
https://doi.org/10.1109/TIE.2008.2008349
https://doi.org/10.1080/00207178708933912
https://papers.nips.cc/paper/7638-data-center-cooling-using-m odel-predictive-control
https://papers.nips.cc/paper/7638-data-center-cooling-using-m odel-predictive-control
https://doi.org/10.1016/j.jprocont.2016.04.007
https://doi.org/10.1016/0005-1098(94)90159-7
https://doi.org/10.1109/TAC.2000.881002
https://doi.org/10.1109/TAC.2000.881002
https://doi.org/10.1002/aic.690451016
https://doi.org/10.1002/aic.690451016
https://doi.org/10.1021/acs.iecr.6b03275
https://doi.org/10.1109/TIE.2019.2910034
https://doi.org/10.1016/j.apenergy.2015.10.152
https://doi.org/10.1109/TCST.2010.2049203
https://doi.org/10.1109/TCST.2010.2049203
https://doi.org/10.23919/ChiCC.2019.8865797
https://doi.org/10.23919/ChiCC.2019.8865797
https://ieeexplore.ieee.org/document/8865797/
https://doi.org/10.1109/TSMC.2015.2465352
https://doi.org/10.1109/PESC.2005.1581874
https://doi.org/10.1109/PESC.2005.1581874
https://doi.org/10.1109/IROS.2009.5354018
https://doi.org/10.1109/TCST.2013.2266662
https://doi.org/10.1109/TCST.2013.2266662
https://doi.org/10.1109/LRA.2020.2964159
https://doi.org/10.1109/TCST.2011.2124461
https://doi.org/10.1016/j.ifacol.2020.12.546
https://linkinghub.elsevier.com/retrieve/pii/S240589632030844 2
https://linkinghub.elsevier.com/retrieve/pii/S240589632030844 2
https://doi.org/10.1016/S0005-1098(01)00083-8
https://doi.org/10.1016/S0005-1098(01)00083-8
https://doi.org/10.1007/s00170-020-05719-7
https://doi.org/10.1007/s00170-020-05719-7
http://link.springer.com/10.1007/s00170-020-05719-7
http://link.springer.com/10.1007/s00170-020-05719-7
https://doi.org/10.1016/j.jobe.2020.101692
https://linkinghub.elsevier.com/retrieve/pii/S235271022031062 7
https://linkinghub.elsevier.com/retrieve/pii/S235271022031062 7


75. Mayne D, Rawlings J (2001) Correction to “constrained
model predictive control: stability and optimality”. Automatica
37(3):483, https://doi.org/10.1016/S0005-1098(00)00173-4

76. Mayne DQ (2014) Model predictive control: Recent devel-
opments and future promise. Automatica 50(12):2967–2986,
https://doi.org/10.1016/j.automatica.2014.10.128

77. Mayne DQ, Rawlings JB, Rao CV, Scokaert P (2000) Con-
strained model predictive control: Stability and optimality. Auto-
matica 36(6):789–814, https://doi.org/10.1016/S0005-1098(99)
00214-9

78. McKinnon CD, Schoellig AP (2019) Learn fast, forget slow: Safe
predictive learning control for systems with unknown and chang-
ing dynamics performing repetitive tasks. IEEE Robotics and
Autom Lett 4(2):2180–2187, https://doi.org/10.1109/LRA.201
9.2901638

79. Mehta P, Mears L (2011) Model based prediction and
control of machining deflection error in turning slender bars.
In: Proceedings of the ASME International Manufacturing
Science and Engineering Conference–2011: presented at ASME
2011 International Manufacturing Science and Engineering
Conference, June 13-17, 2011, Corvallis, Oregon, USA, Amer
Soc Mechanical Engineers, Corvallis, Oregon, USA, vol 2,
pp 263–271, https://doi.org/10.1115/MSEC2011-50154

80. Mendis P, Wickramasinghe C, Narayana M, Bayer C (2019)
Adaptive model predictive control with successive linearization
for distillate composition control in batch distillation. In: 2019
Moratuwa Engineering Research Conference (MERCon), IEEE,
Moratuwa, Sri Lanka, pp 366–369, https://doi.org/10.1109/MER
Con.2019.8818777, https://ieeexplore.ieee.org/document/88187
77/

81. Michalska H, Mayne DQ (1993) Robust receding horizon control
of constrained nonlinear systems. IEEE Trans Autom Control
38(11):1623–1633, https://doi.org/10.1109/9.262032

82. Mirakhorli A, Dong B (2016) Occupancy behavior based model
predictive control for building indoor climate—a critical review.
Energy and Buildings 129:499–513, https://doi.org/10.1016/j.
enbuild.2016.07.036

83. Mora A, Cardenas-Dobson R, Aguilera RP, Angulo A, Donoso
F, Rodriguez J (2019) Computationally efficient cascaded
optimal switching sequence MPC for grid-connected three-
Level NPC converters. IEEE Transactions on Power Electron-
ics 34(12):12464–12475, https://doi.org/10.1109/TPEL.2019.
2906805. https://ieeexplore.ieee.org/document/8672506/

84. Morari M (1994) Model predictive control: multivariable control
technique of choice in the 1990s? In: Clarke DW (ed) Advances
in model-based predictive control, Oxford science publications,
Oxford University Press, Oxford and New York, pp 22–37. http://
resolver.caltech.edu/CaltechCDSTR:1993.024

85. Morari M, Lee JH (1999) Model predictive control: past,
present and future. Comp & Chem Eng 23(4–5):667–682,
https://doi.org/10.1016/S0098-1354(98)00301-9

86. Morrison J, Nagamune R, Grebenyuk V (2020) An itera-
tive learning approach to economic model predictive control
for an integrated solar thermal system. IFAC-PapersOnLine
53(2):12777–12782, https://doi.org/10.1016/j.ifacol.2020.12.19
30. https://linkinghub.elsevier.com/retrieve/pii/S2405896320325
532

87. de Nicolao G, Magni L, Scattolini R (1996) On the robustness of
receding-horizon control with terminal constraints. IEEE Trans
Autom Control 41(3):451–453, https://doi.org/10.1109/9.486649
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