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Abstract
In this paper, we propose a new approach for the simulation-based support of tryout operations in deep drawing which
can be schematically classified as automatic knowledge acquisition. The central idea is to identify information maximising
sensor positions for draw-in as well as local blank holder force sensors by solving the column subset selection problem with
respect to the sensor sensitivities. Inverse surrogate models are then trained using the selected sensor signals as predictors
and the material and process parameters as targets. The final models are able to observe the drawing process by estimating
current material and process parameters, which can then be compared to the target values to identify process corrections.
The methodology is examined on an Audi A8L side panel frame using a set of 635 simulations, where 20 out of 21 material
and process parameters can be estimated with an R2 value greater than 0.9. The result shows that the observational models
are not only capable of estimating all but one process parameters with high accuracy, but also allow the determination of
material parameters at the same time. Since no assumptions are made about the type of process, sensors, material or process
parameters, the methodology proposed can also be applied to other manufacturing processes and use cases.

Keywords Deep drawing · Regression analysis · Inverse identification · Digital twin · Surrogate modelling

1 Introduction

Deep drawing is one of the most used production processes
in sheet metal forming and is used in a wide range of
industries [1]. L.-E. Elend estimates that manual fine-tuning
after tool manufacturing, called tryout, consumes up to 30%
of the overall tool cost [2], which is confirmed by S. Schulte
[3]. Birkert et al. estimate tryout cost to 32%, but required
time to 44% compared to cost and time, respectively, for the
overall tool [4]. Therefore, extensive work has been made to
improve tool tryout using new methodologies.

The main modification during the tryout phase lies
in the spotting of the tools to reach an approximately
homogeneous pressure distribution between the tools and
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the part. Essig et al. [5] used optical measurement and image
processing methods to evaluate the thickness distribution
of the blue color during spotting and were able to detect
surface areas in contact by a quantitatively measurable and
standardized method. Braedel [6] proposes a method to
determine the individual forces in the hydraulic cylinders
acting on the drawing cushion using structural FE analysis
and therefore adjusting the pressure distribution between
blank holder and die to reduce the number of iterative loops
during tryout.

Wang et al. [7] identify the draw-in as the most important
parameter during deep drawing which controls all forming
characteristics like stresses and strains, drawing failures and
surface defects. Hence, the authors propose the use of a
simulation-based draw-in map which is used as reference
during fine-tuning of the tools. In contrast, A. Prexl [8]
found matching draw-ins necessary, but not sufficient and
thus proposes a strain field–based procedure to predict
manual tryout operations purely based on simulations by
identifying reasonable fine-tuning operations based on their
sensitivities on quality criteria. Harsch et al. [9] used a
comparable procedure to virtually plan tryout operations
on a trunk lid. The authors used the same procedure in
[10–15] to find robust process windows, which can be

/ Published online: 4 August 2021

The International Journal of Advanced Manufacturing Technology (2021) 117:997–1013

http://crossmark.crossref.org/dialog/?doi=10.1007/s00170-021-07642-x&domain=pdf
mailto: ryser@ivp.mavt.ethz.ch


viewed as a similar task. Finally, AutoForm Engineering
GmbH developed the TryoutAssistant [16] which uses
AutoForm-Sigma simulations to calculate the sensitivities
of the process parameters on the draw-in and proposes
parameter corrections to reach the desired draw-in [17].

The use of the flange draw-in during drawing to infer part
quality leads to the question where exactly the draw-in has
to be measured. Fischer et al. [18–20] performed stochastic
finite element simulations and applied correlation analysis
between the draw-in and defined quality criteria in order
to identify sensitive draw-in positions with respect to the
quality of the final part. In this approach, the correlation
between draw-ins at different locations is not taken into
account which tends to lead to an excessive number of draw-
in sensors. Neuhauser et al. [21, 22] propose the use of
column subset selection to identify suitable sensor positions
by selecting the most independent measurement locations
regarding their sensitivities on quality criteria.

In summary, available tools and methods still lack a
fully automated workflow to determine suitable process
modifications during tryout of deep drawing tools. In this
work, we propose a new concept for the support of tryout
operations based on automatic knowledge acquisition [23].
The core of our methodology consists of a stochastic
finite element simulation of the deep drawing process,
which is used for regression analysis to learn the inverse
relationship between process output and input in the form
of a digital twin [24]. The regression models obtained can
then be applied on a real world part to reconstruct current
process parameters and infer parameter modifications by
comparison with the nominal values from the robust
optimum. Regarding the flow of information, this approach
therefore looks very similar to the manual decision making
made by humans. As a difference, the decision-making will
be put in a purely mathematical framework. The two core
questions that arise for the use of our approach and which
will be answered for a case-study are the following:

1. Where do sensors need to be placed to maximise
measured information content about the process?

2. Which process parameters can be observed by using the
determined sensor positions?

In contrast to the approaches used in [25–27] to inversely
determine material parameters by using numerical optimiza-
tion of a FEM simulation in combination with experiments,
our work aims to find a surrogate model that directly maps
from the process output to its input. The most similar work
to the best knowledge of the authors could be found by
Senn and Link [28, 29]. Senn and Link trained neural net-
works to map from process output quantities like draw-ins
to stresses in the blank during deep drawing. Despite the fact
that their work deals with the observation of hidden states
instead of input parameters, only one parameter, namely the

blank holder force, was varied during the simulation to gen-
erate data for model training and validation, which is not
sufficient for our purpose.

The content of this paper is structured as follows.
First, the mathematical methods and concepts which are
important for the understanding of the work are explained.
If the reader is already familiar with these concepts, it can
be skipped. In the following chapter, the computational
pipeline is presented. The proposed approach is then
examined on an AUDI A8 L side panel frame to demonstrate
its application on a real world part.

2Models andmethods

This chapter summarizes the most important mathematical
concepts which are necessary to fully understand and
reproduce the results of this work.

2.1 Principal component analysis (PCA)

Principal component analysis is a widely spread technique
in machine learning and mainly used for data exploration
of large data sets and formulation of predictive models.
PCA was formulated first in 1901 by Pearson [30] and
independently developed and formulated by Hotelling [31]
in 1933. Given a set of data points in a higher dimensional
space, the main idea of PCA is to subsequently approximate
the data points by a linear function, where every function
is chosen to be perpendicular to the previous ones. This
process is repeated n times, where n is equal or less than
the dimension of the original data set d. These functions
form an orthogonal basis, whose directions are called
principal components. By representing the original data in
the coordinate system defined by the principal components,
the dimension of the original data can be reduced while
maintaining as much variance as possible [32, 33].

Let X be a matrix with n rows and d columns. Thus,
X is of dimension n × d. In addition, let us assume that
the columns of X are standardized with zero mean and
unit standard deviation. The principal components of X are
then calculated in two steps. First, the sampling covariance
matrix C of X is calculated by

C = 1

n − 1
XT X (1)

where C is symmetric and contains the variances of the
columns in its diagonal as well as the correlations of the
columns in its off-diagonal terms. Second, eigendecompo-
sition is performed on C to get d pairs of eigenvectors and
eigenvalues

C = V T CdV (2)
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where Cd is a diagonal matrix with the eigenvalues of
C on its diagonal and V is an orthogonal matrix with
the eigenvectors of C in its columns. The columns of the
eigenvector matrix V and the eigenvalues inCd are sorted in
decreasing order of the eigenvalues while still maintaining
their correct pairings. The interpretation of Cd and V are
as follows: While V contains the directions of the principal
components of X in its columns, the eigenvalues in Cd

represent the distribution of the source data’s (X) energy
among the direction of the principal components [34]
(p. 61).

Using the linear transformation given by Eq. 3, the
original data matrix X is mapped to a new space
of uncorrelated coordinates defined by the principal
component directions. Therefore, the columns of T are the
principal components of X.

T = XV (3)

While computing the linear transformation defined by Eq. 3,
not all principal component directions in V have to be
kept. By using only the p principal component directions
in V corresponding to the p largest eigenvalues and thus
maintaining a part of the variance, the reduced matrix T p is
calculated by

T p = XV p (4)

which results in a n×p matrix instead of n×d for T . If p is
chosen so that p < d , then the linear transformation defined
by Eq. 4 results in a dimension reduction while maintaining
as much variance of the original data in X as possible. The
proportion of total variance which is preserved in T p by
using the p principal component directions belonging to the
largest eigenvalues λi can be calculated by:

varpreserved =

p∑

i=1
λi

d∑

i=1
λi

. (5)

Finally, by using Eq. 5 and iteratively adding dimensions to
p until a predefined proportion of the preserved variance is
reached, the number of needed dimensions in the reduced
space is determined.

The application of PCA on an example data set is shown
in Fig. 1. First, data points are generated using x = y.
Second, noise is added to the data. By applying PCA,
the principal directions in the data are found which are
the original direction of maximum variance (blue) and
the direction perpendicular to it containing noise (red).
Projecting the data points on the first principal component
(blue) and neglecting the second principal component (red),
which in fact is a dimensionality reduction from 2D to 1D,
preserves 99.7% of the variance of the data in this case.

Fig. 1 Illustration of PCA: the directions of the first (blue) and second
(red) principal components are revealed by using principal component
analysis

2.2 Singular value decomposition (SVD)

Before discussing the singular value decomposition, the
notion of singular values has to be introduced. Let X be
a matrix of dimension m × n. Taking the product of X

with itself, XT X results in a matrix of dimension n × n.
Since XT X is a square matrix, it has n eigenvalues λi . Let’s
assume that the eigenvalues are sorted in descending order,
so that λ1 ≥ λ2 ≥ ... ≥ λn−1 ≥ λn ≥ 0. The singular values
σi of X are then defined as

σi = √
λi i = 1, 2, ..., n (6)

where λi are the eigenvalues of XT X. The singular value
decomposition is defined as the factorisation of the m × n

matrix X

X = UΣV T (7)

where U and V are orthogonal matrices with dimension
m × m and n × n respectively and Σ is a m × n matrix
whose diagonal contains the singular values of X [35],
[36, p. 70]. The singular value decomposition is defined
for every matrix, independent of its shape. One of the most
important aspects of singular values lies in the fact that they
can be used to determine if a matrix is rank deficient. For a
matrix of rank r , it holds that

σ1 ≥ ... ≥ σr > σr+1 = ... = σn = 0 (8)

which shows that the rank of a matrix is equal to the number
of nonzero singular values. In addition, singular values do
not only allow to determine and quantify the rank of a

999Int J Adv Manuf Technol (2021) 117:997–1013



matrix, they also provide a tool to determine how far a
matrix is from being rank deficient. Theorem 2.5.3 from
[36] states that the 2-norm distance of a matrix A to the set
of all rank-deficient matrices equals the smallest singular
value of the same matrix A (see also [36, p. 70]). Broadbent
et al. describe this property as one of the most important
properties of singular values [37], and it will be used for the
solving of the column subset selection problem as can be
seen in the following.

2.3 The column subset selection problem

The column subset selection problem consists of finding
the most representative k columns of a matrix [38].
Subset selection algorithms are used for many different
applications, among others, ranging from data compression
by reducing the number of columns in large matrices to the
solution for rank-deficient least squares problems.

Let X be a matrix of dimension m × n with m ≥ n. The
problem of column subset selection in X can be translated
into finding a permutation matrix Π that sorts the columns
of X as

XΠ = [X1 X2] (9)

where X1 contains the k representative and X2 the n −
k remaining columns. Using matrices X1 and X2, the
objective of finding the best representation of X with a
minimum number of column vectors can be expressed by
the following two conditions [37]:

1. The column vectors in X1 have to be as linear
independent as possible.

2. The residuum of the best possible linear combination
of X1 has to be as close to X2 as possible, that is,
r = mins ‖X1s − X2‖2 has to be minimised.

Many subset selection algorithms use a QR decomposition
to decompose the data matrix X into an orthogonal matrix
Q and an upper triangular matrix R since R has the same
singular values as X, but numerical computations are easier
to perform on R due to its diagonal form [37]. Taking into
account that the ith column in XΠ corresponds to the ith
column in R, we can simplify the problem by applying
subset selection on R instead of X:

XΠ = Q

[
R

0

]

with R =
[

Rk Bk

0 Ck

]

. (10)

In the expression above, a partitioning of R is introduced
with the notation in accordance to [37]. Thus,Rk is an upper
triangular matrix of dimension k × k, Bk is of dimension
k × (n− k) and Ck is of dimension (n− k)× (n− k), where

k equals the number of representative columns to select.
Inserting Eq. 9 into Eq. 10 leads to

X1 = Q

⎡

⎣
Rk

0
0

⎤

⎦ , X2 = Q

⎡

⎣
Bk

Ck

0

⎤

⎦ . (11)

Using this notation, the two mentioned objectives for
finding independent columns in X can be translated into
the following two rather mathematical objectives using the
concept of singular values introduced in Section 2.2:

1. The smallest singular value of X1 and thus of Rk needs
to be maximised.

2. The largest singular value of X2 and thus of Ck needs
to be minimised.

Since the deterministic subset selection algorithm by Gu and
Eisenstat [39] is used in this work, the algorithm is outlined
in the following.

2.3.1 Deterministic subset selection algorithm
by Gu and Eisenstat

In 1996, Gu and Eisenstat proposed a deterministic
algorithm [39, Algorithm 4] for the column subset selection
problem which is shown in Algorithm 1. This algorithm
forms the best deterministic approximation of the two
conditions mentioned above [37]. In Algorithm 1, matrices
are named according to Section 2.3. Additionally, ei denotes
a column vector containing only zeros with the ith entry
being equal to 1.

Since R is an upper triangular matrix and its singular
values are identical to the ones of X, it holds that

| detX| = | detR| = | detRk| · | detCk| (12)

while the right side can be rewritten as

| detRk| · | detCk| =
k∏

i=1

σi(Rk) ·
n−k∏

i=1

σi(Ck). (13)

In principle, the algorithm proposed by Gu and Eisenstat
looks for two columns i and j in XΠ that, after permuting
them, increase the determinant of Rk . It has to be noted that
in order to check if the determinant of Rk is increased by
a permutation, the permutation itself does not need to be
explicitly computed. Using [39, Lemma 3.1]
∣
∣
∣
∣
∣

det R̃k

detRk

∣
∣
∣
∣
∣
=

√
(
R−1

k Bk

)2

i,j
+ ‖Ckej‖22‖eT

i R−1
k ‖22 (14)

with det R̃k being the determinant of Rk after permuting
columns i and j , allows to determine if the permutation of
columns i and j leads to an increase of the determinant, thus
increasing computational efficiency. Since detX is invariant
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to permutations in its columns, an increase of | detRk| must
lead to a decrease of | detCk|. Thus, the algorithm leads to

a deterministic solution that satisfies condition 1 and 2 as
stated earlier as good as possible [37].

3 Overview over computational pipeline

Using the models and methods described in Section 2,
among others, a computational pipeline is built. It consists
mainly of four parts which are shown in Fig. 2.
Before applying the whole pipeline, a stochastic finite
element simulation of the corresponding forming process is
performed. In the first part of the pipeline, the sensor signals
are modelled as a function of the simulation parameters.
Based on the literature research mentioned in Section 1,
draw-ins combined with local blank holder forces are used
as sensor signals, since the latter are beneficial to increase
the predictability of single parameters especially if the
impact of the variation of different parameters on the draw-
in is melded in the signal [22]. The function of drawing
aids is briefly explained in the following paragraph. In
the second step, the global sensitivities of the input on
the output of these models are determined using fourier
amplitude sensitivity testing (FAST). Third, by applying
column subset selection on the global sensitivity matrix,
independent sensor positions which maximise information
content regarding their sensitivity vectors are determined.
In the fourth step, the final surrogate models which model
the material, process and tool parameters as a function
of the independent sensor signals are calculated. These
steps shall be outlined in this chapter in more detail. All
programming was done in Python 3.7 using the scikit-learn
library (version 0.21.1) [40].

Since draw-in measurements are well known but force
measurements in drawing aids are not, the latter shall be
briefly explained here. An example of drawing aids used
in a cup drawing process is illustrated in Fig. 3. Drawing
aids consist of a block that absorbs a part of the blank
holder force parallel to the blank, allowing a change of the
pressure distribution acting on the blank. The force acting
on a drawing aid (denoted by F in Fig. 3) is influenced by
many different parameters, including its height, stiffness,
blank thickness, uplift force of drawbeads nearby and many

more. Measuring the force acting on different drawing
aids in the closed tool allows to characterize the pressure
distribution during the process. In the following, the force
measurement in the drawing aids will also be referred to
as local blank holder force measurement, due to its local
effect. In AutoForm, drawing aids are called spacer and their
force can be read out from the output file. It has to be noted
that the drawing aid height itself is a process parameter,
since it can be quickly adjusted from part to part. In this
work, the drawing aid height remains constant during the
process despite its elastic deformation due to the acting
force.

3.1 Generation of training data

To generate training data for the modelling steps, a
stochastic finite element simulation is performed using the
AutoForm R8 solver. The pure computational approach to
model fitting enables the generation of a large number of
data points in a short amount of time. Furthermore, the
simulative approach enables the variation of parameters
which are difficult and costly to vary in reality without any
additional cost.

From the set of simulations, three types of data are
extracted in the form of matrices, as illustrated in Fig. 4.
The design of experiments of the stochastic finite element
simulation is stored in the matrix XDoE . The draw-in
perpendicular to the part boundary and the local blank
holder force signals are stored in the matrix Xdrawin and
Xf orce, respectively. All data matrices are of shape n × f ,
where n corresponds to the number of simulations and f to
the number of features. The number of columns f of XDoE

therefore equals the number of independent parameters,
whereas f of Xdrawin and Xf orce equals the number of
sensors times the number of timesteps at which the sensor
signals are evaluated. The data of these matrices is then
splitted into a training (90% of simulations) and a testset
(10% of simulations). The training set is used for the
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Fig. 2 Computational pipeline
to estimate material, tool and
process parameters based on
sensor signals (blue arrows near
part denote draw-in sensors as
illustration)

following steps whereas the testset is only used for the final
model validation, as can be seen in Fig. 2.

3.2 Modelling of sensor signals

In the first part of the pipeline, all sensor signals are
modelled as targets with the simulation parameters as pre-
dictor variables. Therefore, the three data matrices XDoE ,
Xdrawin and Xf orce are standardized and normalized using
the standard deviation and the mean value columnwise.
This preprocessing step of the simulation data is crucial
since model complexity is regulated by using regularization.
After preprocessing, polynomial feature transformation is

applied up to second order which on one hand allows to
take into account nonlinear relationships between input and
output. On the otherhand, the quadratic model also includes
cross-terms which allow the model to express dependencies
between different input variables. Afterwards regression for
each sensor signal is performed. Instead of using just one
model, a pool of different models is used whereas the best
performing model as well as its model specific hyperparam-
eters are selected by cross-validation (CV) for each sensor
independently. It has to be noted that the degree of fea-
ture transformation itself acts as a hyperparameter, thus the
quadratic model is only used if it improves the expressive
power of the model compared to the linear one.
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Fig. 3 Visualization of drawing
aids on a cup drawing process
with open tools (top) and during
the process (bottom); the force
acting on the drawing aids are
denoted by F1 and F2

The principle of cross-validation is illustrated in Fig. 5.
In a first step, the whole training set is divided into k

subsets of approximately equal size. Each model is then
fitted k times using k − 1 subsets (blue boxes in Fig. 5) for
training and the remaining subset (green boxes in Fig. 5)
for validation. As metric to quantify the goodness of fit on
each validation set the R2-score is used. The final model
performance is then calculated by averaging the R2-scores
on each validation set according to Eq. 15. The model as
well as the hyperparameters leading to the best R2-score are
then selected. As number of folds, k = 8 is used.

Scoretot = 1

k

k∑

i=1

Scorei (15)

Senn and Link [28, 29] as well as Breitsprecher et al.
[41] used neural networks for surrogate modelling in deep
drawing whereas Morand et al. [42] and Huang et al.
[43] used kriging models for this task. Our research [44]
related to modelling of draw-in as well as drawing aid
force signals showed highest modelling accuracy by using
linear regression approaches which is in accordance with
the results in [23, see Table 4], especially compared to
neural networks for regression. The different regression
types used in this work are therefore Ridge regression,
Lasso regression, Elastic-Net regression and Support Vector
regression. The regression approaches are very well
documented in [45] as well as [46] in a compact manner.

3.3 Sensitivity analysis

In the second part of the pipeline, the global sensitivities of
the parameters on all sensors are determined by the Fourier
Amplitude Sensitivity Test (FAST) which is documented in
[47, p. 159 ff.]. The sensitivities are then written in a matrix
Sdrawin for the draw-ins and Sf orce for the force signals,
where each row corresponds to a parameter and each
column to a sensor. It has to be noted that the sensitivities
of the parameters on the sensor signal for each time step
are written into the same column, so that each column
in Sdrawin and Sf orce corresponds to exactly one sensor,
which is a necessary condition for the following column
subset selection step. Each entry St ·i,j therefore describes
the sensitivity of parameter i on sensor j for timestep t . To
take into account modelling uncertainty from the modelling
step previously, the calculated sensitivities are scaled by a
multiplication with the R2-score of each sensor model. To
prevent sensitivities being scaled up by negative R2-scores,
the sensitivities for a sensor are set to zero if the R2-score
of its model is below zero.

3.4 Column subset selection

Before applying the subset selection algorithm on the
sensitivity matrices Sdrawin and Sf orce, the number of
representative columns to select has to be determined.
Therefore, PCA is applied on the matrices containing the
draw-ins Xdrawin as well as the forces Xf orce to get the

Fig. 4 Three data matrices are
extracted from the simulations
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Fig. 5 Principle of model
selection with cross-validation

number of principal directions for both sensor types. The
preserved variance according to Eq. 5 has to be chosen
in a way that it leads to a reasonable trade-off between
preserved information content and higher costs due to the
increasing number of needed sensors. As a rule of thumb,
good results were obtained by using varpreserved = 0.99.
Given the number of needed draw-ins and force sensors,
Algorithm 1 is applied on Sdrawin and Sf orce separately
which leads to the most independent columns and therefore
the sensor positions that maximise information content
regarding their sensitivities. The tolerance parameter f in
Algorithm 1 is set to 1, meaning that every increase of
| detRk| will lead to a permutation of the corresponding
columns without any threshold. The columns in Xdrawin

and Xf orce corresponding to the selected sensors are then
written into separate matrices which are called Xdrawin,sel

and Xf orce,sel .
The interpretation of the working principle of the subset

selection algorithm is visualized in Fig. 6. Since the
columns in Sdrawin and Sf orce contain the sensitivities
of each independent parameter on each sensor signal,
they can also be viewed as vectors in a space whose
dimension equals the number of parameters. The subset
selection algorithm then tries to find a given number of
vectors k, that maximises the volume spanned by these
vectors, which tends to select sensitivity vectors that are

Fig. 6 Visualization of sensitivity vectors of Sensors 1, 2 and 3
expressed in the parameter space

as linearly independent as possible (vectors of Sensor 1
and Sensor 2 in Fig. 6). Since the scaled sensitivities from
the previous step are automatically driven to zero due to
the multiplication with the R2-score if the corresponding
sensor is poorly modelled, the subset selection algorithm
automatically performs a trade-off between sensors with
high sensitivity and high modelling accuracy.

3.5 Modelling of process parameters

In the fourth part of the pipeline, the final models for the
parameter estimation are determined. After standardising
and normalising Xdrawin,sel and Xf orce,sel analogously
to the first part of the pipeline, regression analysis is
performed using the matrices Xdrawin,sel and Xf orce,sel

as predictors and the parameters in XDoE as targets.
Again, cross-validation is used to select the best performing
model as well as its model specific hyperparameters. The
gridsearch is performed for every parameter independently.
As evaluation metric, the R2-score is used. The number
of folds is k = 8. The regression methods are again
Ridge regression, Lasso regression, Elastic-Net regression
and Support Vector regression.

However, there is one main difference compared to
the cross-validation procedure used earlier. Here, cross-
validation is done additionally over different combinations
of predictor variables to perform feature selection. The
reason behind this shall be examined in the following in
more detail. A simplified example is considered in which
the overall friction coefficient of a deep drawing process
μ is modelled linearly dependent on the draw-in at only
one position, evaluated at m = 10 defined blank holder
positions d1, d2, ..., d10 with d10 being the draw-in at the
fully drawn part. Let’s assume that to fit the model, only
n = 15 experimental results are available. This model with
m = 10 features would contain exactly m + 1 = 11
parameters, namely β0, β1, ..., β10, including the intercept
β0 and would look like

μ(d) = β0 + β1d1 + β2d2 + ... + β10d10. (16)
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Depending on the geometric complexity of the part and of
the tools, it is very unlikely that all 10 features are required
to predict the friction with high accuracy due to the direct
relationship between friction and draw-in. At this point, it is
assumed that all other parameters are identical. In fact, if a
radial symmetric deep drawn part is considered, the friction
coefficient could be estimated very well using only the final
draw-in. Therefore, the remaining 9 features are mostly
redundant and do not provide much additional information.
These additional features still lead to a more complex model
since more parameters are required which therefore leads
to less certainty about the final model, assuming that the
amount of training data remains the same.

In summary, it is beneficial to include the features, in
this case the timesteps of the draw-in sensor, which add
additional information and to neglect the features which
do not contribute to the parameter estimation. As two
positive side effects, the model complexity is reduced
which increases its interpretability and the reduced number
of parameters requires less data points for model fitting,
resulting in lower total cost for data generation and
modelling.

In this work, the subset of features is determined dur-
ing cross-validation. Since the computation of every pos-
sible combination of sensor times during cross-validation
increases exponentially with increasing number of sensors
and timesteps, two assumptions are made to reduce the
number of combinations:

1. The subset of timesteps of all sensors are identical.
2. Only directly subsequent timesteps are allowed.

Let’s consider the example of a tool in which s = 10 sensors
and t = 10 timesteps for each sensor are used. Hence, the
total number of features is m = s · t = 100. Since every
timestep of each sensor can be used as feature or not, the
total number of combinations in this case is

2m ≈ 1.27 · 1030. (17)

It has to be noted that every model-hyperparameter-
combination has to be fitted 2m times during model selec-
tion. Furthermore, since cross-validation with k = 8 folds
requires 8 times model fitting and model validation, the
needed computation time increases even more. Testing all
combinations is therefore not feasible from a computa-
tional point of view. Assumption 1 reduces the number of
combinations to

2t = 1024 (18)

where all sensors use the same timesteps. By additionally
including assumption 2 which requires that only subsets of

Fig. 7 Left side panel frame from the AUDI A8 L

sequential timesteps are allowed, the number of possible
combinations decreases even more to

t+(t−1)+(t−2)+...+(t−(t−1)) = t2−
t−1∑

i=1

i = 55. (19)

4 Case-study with results

In this section, the methodology presented above is
examined on the left side panel frame of an AUDI A8 L
shown in Fig. 7. The application and its interim results are
documented in the same order as in Section 3.

4.1 Data generation with FEM

To investigate the behaviour of the draw-in and the local
blank holder forces as a function of the material, tool and
process parameters, a stochastic finite element simulation
is performed. The setup of the simulation with its tools is
shown in Fig. 8. The total drawing depth of the part equals
240 mm.

4.1.1 Material description

The side panel frame is drawn from an aluminum AA6016
sheet with 1.15-mm thickness, whose material properties
are based on previous work by Neuhauser et al. [21, 22].
Nevertheless, the basic material parameters are outlined in
the following. For the description of the flow behaviour,
a combined approach using the flow curve approximation
according to Swift [48] and Hockett-Sherby [49] is used
according to Eq. 20.

σcomb = α σHS + (1 − α) σSwif t (20)

with

σSwif t = C
(
ϕpl + ϕ0

)m (21)

and

σHS = σsat − (σsat − σi) exp (−aϕ
p
pl) (22)

where ϕpl denotes the equivalent plastic strain. The flow
curve parameters are defined in Table 1. For the description
of the yield locus, the formulation according to Barlat and
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Fig. 8 Tool setup for the AUDI
A8 L in AutoForm

Lian [50] is used. The final yield locus is calculated based
on the anisotropy values R0, R45, R90 and the M-value.
The used parameters of the yield locus are summarized in
Table 1.

4.1.2 Variation of independent parameters

As independent variables, relevant parameters for tool
tryout as well as material parameters are selected. The
main process parameters of this tool are the blank holder
force and the height of all seven drawing aids, resulting in
eight independent parameters which can easily be modified.
Additionally, drawbeads are adjusted during tryout to
modify the local restraining of the blank. Therefore, the
drawbeads are segmented at the main areas of the part,
as can be seen in Fig. 9. db10 and db11 in Fig. 9 are
not varied since if two drawbeads are present at a given
location, only one of them is needed in order to modify
the local restraining force on the blank. Thus, additional
nine independent parameters, namely the height of the
drawbeads db1 up to db9 are considered to be independent
parameters. To take into account noise acting on the
process, the global friction coefficient, variation of the blank
thickness and material parameters are taken into account
too. As material parameters, the yield stress and tensile
strength are varied correlated (one independent parameter),
and the R-values R0, R45 and R90 are also varied correlated
(one independent parameter). Thus, the noise variables
result in additional four independent parameters. Although
the estimation of material parameters and blank thickness is
not of main interest during tool tryout, their consideration is
still necessary since the exact values of these noise variables
are unknown. Thus, it is not only of interest to see if the
relevant parameters for tryout are predictable, but if they

are predictable under uncertainty about material parameters,
blank thickness and friction coefficient too.

Summing up the eight main process parameters, nine
drawbead heights and four noise variables leads to 21
independent parameters in total. These parameters are
varied during the stochastic finite element simulation and
will later be predicted using surrogate models. All 21
parameters as well as their variation range during the
simulation are summarized in Table 2.

The design of experiments is created using latin
hypercube sampling [51]. Using twice as much data points
as model coefficients for a quadratic model with a 21-
dimensional input and adding validation (14.3%) and testset
(10%), the number of needed data points equals 635.
Therefore, the number of simulations was set to 635. All
sensor signals were extracted in 9 increments, namely at
239, 100, 50, 30, 20, 10, 5, 2 and 1 mm above the bottom
dead center of the blank holder movement.

4.2 Modelling of sensor signals dependent
on process parameters

In Fig. 10, all possible sensor positions for the draw-in
(cones) and the force (cubes) sensors are shown. The gaps
between the sensor positions are mainly caused by the
tool geometry which contains ribs and other geometrical
features that restrict the possible positioning of the sensors
in reality. In total, 772 possible draw-in sensors and 7
possible drawing aids with force sensors are placed.

The parameter grid used during cross-validation for
sensor modelling is listed in Table 3. During cross-
validation over all sensors, a mean R2-score of 0.971 and a
median of 0.983 with standard deviation 0.035 is achieved.
Out of the 779 sensors, 776 (including all force sensors)

Table 1 Parameter values used for the description of the flow curve and the yield locus

C σi σsat ϕ0 m α p R0 R45 R90 M-value

[MPa] [MPa] [MPa] [-] [-] [-] [-] [-] [-] [-] [-]

481.2 120 310 0.01 0.312 9.15 0.94 0.72 0.43 0.62 8
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Fig. 9 Segmentation of the
drawbeads around the part

are modelled with a R2-score of 0.8 or higher. A histogram
visualizing the distribution of the R2-scores is given with
Fig. 11. The regions where the coefficient of determination
reaches values below 0.9 belong mainly to areas where
complex forming conditions are present, namely the area
around the rear wheel, the window in the back as well as the
area around the mirror.

4.3 Determination of sensor positions

Applying PCA on Xdrawin and Xf orce separately which
contain the sensor values of each simulation in its rows
yields 19 draw-in and 7 force sensors. The proportion of
preserved variance is set to 0.99. After calculating the
number of needed sensors, their position is determined
using Algorithm 1 with k = 19 for Sdrawin and k = 7 for
Sf orce. The progress of the subset selection algorithm can
be controlled by visualizing the evolution of the absolute
value of the determinant of Rk and Ck from Eq. 12.
Since the algorithm progressively moves the most linearly
independent columns of the sensitivity matrices to the left
and the linearly dependent columns to the right, | detRk|
monotonically increases whereas | detCk| monotonically
decreases with increasing number of iterations. It has to be
noted that the opposite is not possible for a properly working

algorithm since if the column considered would decrease
the linear independence of the columns on the left, then the
condition
∣
∣
∣
∣
∣

det R̃k

detRk

∣
∣
∣
∣
∣
> f = 1 (23)

would not be fulfilled. Therefore, the columns would not
be swapped and the determinants would remain constant
during this iteration. The absolute values of the determinant
of Rk are visualized for the draw-ins in Fig. 12. Since the
tool setup contains 7 force sensors which are all selected,
the subset selection algorithms performs no permutations.
Since every possible permutation of columns is tested, the
selected columns represent the most linearly independent
ones possible.

The finally calculated positions corresponding to the
selected columns based on the subset selection algorithm
are visualized in Fig. 13.

4.4 Modelling of parameters dependent
on sensor signals

After determination of the sensor positions, the modelling of
the material, process and tool parameters is performed. For
model selection during cross-validation, the parameter grid

Table 2 Independent parameters used in the stochastic finite element simulation. The setup results in 21 independent parameters in total

Parameter Minimum Maximum Correlated with

Blank holder force 1863.9 kN 3265.5 kN -

Drawing-aid heights (7 independent) 1.15 mm 1.45 mm -

Variation in drawbead heights (9 independent) −1.25 mm +1.25 mm -

Blank thickness 1.14 mm 1.16 mm -

Friction coefficient 0.07 0.11 -

Yield stress σ0 107.2 MPa 137.2 MPa -

Tensile strength Rm 207.9 MPa 237.9 MPa σ0

Anisotropy R0 0.6 0.7 -

Anisotropy R45 0.4 0.55 R0

Anisotropy R90 0.6 0.75 R0
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Fig. 10 All possible sensor
positions: draw-in sensors
(cones) and blank holder force
sensors (cubes)

given in Table 4 is used. The grid could also be extended
with more nonlinear models and even neural networks, but
to show the basic principle of the workflow, only relatively
simple regression approaches are used. For the validation of
the final estimators, the testset depicted in Fig. 2 is used.
The R2-scores achieved on the testset are shown in Fig. 14.

5 Interpretation and discussion of results

A more detailed inspection of the models selected by
the gridsearch during sensor modelling in the first step
in Fig. 2 reveals that, without any exception for all 779
sensors, quadratic models perform best for all draw-in
sensors and linear models perform best for all force sensors.
The former result makes intuitively sense due to two
reasons: First, in contrast to the linear model, the quadratic
model also contains terms to express cross-correlations
between different input parameters. Cross-correlations exist
for example between the blank holder force and the friction
coefficient, since the sensitivity of the draw-in with respect
to the blank holder force increases with higher friction

Table 3 Grid for sensor modelling during cross-validation

Approach Hyperparameters

Ridge λ [0.0001, 0.001, 0.01, 0.1, 1]

feat. degree [1, 2]

Lasso λ [0.0001, 0.001, 0.01, 0.1, 1]

feat. degree [1, 2]

Elastic-net λ [0.0001, 0.001, 0.01, 0.1, 1]

feat. degree [1, 2]

L1-ratio [0.25, 0.5, 0.75]

SVR C [1e-4, 1e-3, 1e-2, 1e-1, 1, 2]

ε [1e-4, 1e-3, 1e-2, 1e-1, 1]

kernel type [linear]

feat. degree [1, 2]

coefficient and vice versa. Second, the dependency between
input parameters and draw-in is not necessarily linear,
since for example the effect of large drawbead heights
saturates at a certain level where material flow is almost
prevented. The selection of only linear models for the
force sensors is caused by the fact that the force acting
on the drawing aids depend linearly on their deformation
length which is given by the drawing aid height, since
the drawing aids are deformed in the linear elastic range.
Using a linear model, this linear relationship can almost
perfectly be approximated. Therefore, by selecting only
linear models, the workflow chooses the correct model
type. The average coefficient of determination of 0.971
underlines the remarkably high accuracy of modelling
achieved using polynomial regression.

Due to tremendous redundancy in the draw-in sensors,
PCA determines the number of principal directions of all
772 draw-in sensors equal to 19 while preserving 99% of
the variance which leads to a significant dimensionality
reduction. On the other hand, since the force signals contain
mainly information about the drawing aid heights but also
about the blank holder force and blank thickness which
turns out to be decorrelated for each force sensor, all 7
force sensors are selected. As can be seen in the sensor

Fig. 11 Distribution of R2-scores for all 779 sensors
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Fig. 12 | det (Rk)| over iterations during subset selection for the
draw-in signal; larger value means more sensitive sensor signal in
summary

positioning shown in Fig. 13, the sensor positions are
chosen to be distributed over the whole part. Drawbead
db2 is the only drawbead which is not observed by a
draw-in sensor nearby, but according to Fig. 14 the height
of db2 is still estimated with high accuracy. The reason
behind this lies in the fact that increasing restraining force
of db2 not only reduces the draw-in nearby, but also
increases the draw-in for example on the inlets. These
global effects of the restraining force are easily captured
by the sensitivity analysis, resulting in a minimum number
of sensors. Furthermore, the algorithm puts heavy weight
regarding sensor positioning on the rear wheel, which is
also the area with the largest absolute draw-in. This area
reacts sensitive especially on changes of the blank holder
force or friction coefficient. In general, Fig. 13 shows that
the algorithm tends to place sensors near the attributes to be
observed. Although the big picture remains the same, it has
to be noted that the exact sensor positioning also depends on
the split of training and testset due to high correlation in the
sensor signals in combination with the stochasticity of the
data. The selected sensor layout therefore is not necessarily
unique.

Table 4 Grid for parameter modelling during cross-validation

Approach Hyperparameters

Ridge λ [0.0001, 0.001, 0.01, 0.1, 1]

Lasso λ [0.0001, 0.001, 0.01, 0.1, 1]

Elastic-net λ [0.0001, 0.001, 0.01, 0.1, 1]

L1-ratio [0.25, 0.5, 0.75]

SVR C [1e-4, 1e-3, 1e-2, 1e-1, 1, 2]

ε [1e-4, 1e-3, 1e-2, 1e-1, 1]

kernel type [linear, polynomial]

kernel degree [1, 2]

The result depicted in Fig. 14 shows that 20 out of 21
parameters reach a coefficient of determination of 0.9 or
higher which is denoted by the red line. The average R2-
score achieved equals 0.934. The parameters predicted with
the highest accuracy are the seven drawing aid heights. This
behaviour can be explained by the physical behaviour of
the drawing aid, which is deformed in a linear elastic way
during the process. Due to the linear relationship between
the drawing aid deformation given by its drawing aid height
and the acting force, the initial drawing aid height can be
easily predicted by the model by the acting force on each
drawing aid as well as its stiffness, whereas the latter equals
the slope of the linear curve and is thus fitted during the
regression analysis. The overall result shows that not only
is the model capable of predicting process parameters, it
even allows to estimate flow curve parameters as well as R-
values dependent on draw-ins and local blank holder forces
which allows the estimation of fluctuations in material
parameters. For a parameter being predictable by using the
proposed methodology, the following two conditions need
to be fulfilled:

– The influence of a process parameter has to be
unambiguously identifiable in the sensor data. If the
variation of a parameter has no influence on the

Fig. 13 Selected sensor
positions by the subset selection
algorithm (two draw-in sensors
are placed at the edge of the
front mirror)
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Fig. 14 R2-scores achieved at estimating process and material parameters on the testset; red line denotes R2 of 0.9 which is used as baseline

measured sensor values or if the influence of two
independent parameters is melded together, the inverse
problem can not be solved. This issue becomes clear
by looking as an example at a linear mapping with 4-
dimensional input and output, which can be described
by a multiplication of the input with a transformation
matrix containing the model weights. The solving of
the inverse problem would correspond to inverting the
transformation matrix, which turns out to be singular
and thus non-invertible if one row contains only zeros
or is linearly dependent on another row. The solution of
the inverse problem is in this case either not defined or
not unique. This issue implies that a perfectly accurate
surrogate model of the forward problem (step 1 in
Fig. 2) not necessarily leads to an accurate inverse
model (step 4 in Fig. 2).

– The absolute sensitivity of each parameter on the sensor
signals has to be of comparable order compared to the
other parameters. If the sensitivities of the parameters
on the sensor signal are of very different orders of
magnitude, the modelling error on the sensor signal
of sensitive parameters can exceed the total influence
of a less sensitive parameter on the sensor signals.
Therefore, the prediction of the latter is not possible
from a statistical point of view.

The prediction of the blank thickness is the only parameter
that does not pass the benchmark with an R2-score of
0.093. Considering the definition of the coefficient of
determination

R2 = 1 −
∑n

i=1(yi − ŷi )
2

∑n
i=1(yi − ȳ)2

(24)

where ŷi denotes the model prediction for data point i, yi

the underlying truth for data point i, ȳ the mean of all yi for
all data points i and n denotes the number of data points, the

result means that the mean squared error in the prediction
of the blank thickness is as large as approximately 90.7%
of the variance of the blank thickness and therefore the
prediction does not contain much relevant information about
the underlying truth at all.

The reason for this result is analyzed using the two
requirements defined above for the inverse parameter
identifiability. According to the first criteria, either the blank
thickness has no influence on the draw-in and the force
sensors (option one) or the influence is melded together
in the sensor signal with another parameter (option two).
Option two is discarded since in this case there would be
another parameter which would also show a low prediction
accuracy. Thus, option one is considered in more detail.
Therefore, the whole methodology is applied on a separate
stochastic finite element simulation using the same part
in which the blank thickness is the only independent
parameter. The result shows that the blank thickness is
indeed identifiable using two draw-in sensors with an R2-
score of 0.942. The first criteria is thus fulfilled.

Analysis of the second criteria leads to different orders
of the sensitivities of the blank thickness compared to the
other parameters on the sensors. The variation of the blank
thickness according to Table 2 leads to a variation range
of the draw-in of approximately 0.1–0.3%, whereas the
variation of the drawbeads leads to a variation range of
the draw-in of approximately 5–15%, depending on the
location where the draw-in is measured. The sensitivity of
the drawbeads in the given range on the draw-in is therefore
50 times as large as the sensitivity of the blank thickness and
of different order of magnitude. Thus, the second criteria is
not fulfilled. It is concluded that in general blank thickness
is predictable too using draw-ins and local blank holder
forces, but its lower sensitivity on the sensors prohibits an
accurate prediction in the given range while using more
sensitive parameters at the same time.
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6 Conclusion

In this work, a new approach for solving the inverse problem
and thus for the observation of input parameters in deep
drawing based on its output, is presented. The approach is
based on simulation data, which is first used to determine
information maximising sensor positions regarding their
sensitivities on the input parameters of the process. The
simulation data is then used to train predictive models which
express the process and material parameters as a function of
the sensor data. For model training, only virtually generated
data is used. The models are then evaluated on a separate
testset.

The result shows that 20 process parameters out of 21 are
predicted with sufficient accuracy characterized by a R2-
score of 0.9 or higher. The prediction of the blank thickness
fails due to the fact that its variation in the given range has
almost no influence on the draw-in as well as local blank
holder force sensors. The following conclusions are made:

– For the case-study presented, 19 draw-in and 7 blank
holder force sensors were sufficient for the task.
The application of sensitivity analysis in combination
with principal component analysis and subset selection
enabled a tremendous reduction in dimensionality of
the data from 779 to 26 sensors while preserving 99%
of the variance in the data. The methodology proposed
allows the identification of suitable sensor positions for
draw-in as well as blank holder force measurements.

– The proposed regression models are capable of
predicting the mentioned process as well as material
parameters as long as the two criteria of unique
identifiability and comparable scale of sensitivities
mentioned above are fulfilled.

– The prediction accuracy reached for 20 out of 21
parameters is shown to be sufficient to apply the model
in tryout operations with negligible computational
(<1 s for prediction) cost in comparison to an
inverse parameter identification based on stochastic
optimization of a finite element model. It is worth
mentioning that the stochastic finite element simulation
used in this work has to be carried out anyway during
tool engineering for analysing process robustness.

– Precise identification of material and process parame-
ters is limited by a lack of sensitivity of the parameters
on the sensor signals. Low sensitivities can limit the
inverse prediction even if a precise surrogate model of
the deep drawing process is found, as was observed for
the blank thickness in this work. In our case, the for-
ward model of the process reached an average R2-score
of 0.971 with a minimum score of 0.781 for the worst
sensor model, whereas the inverse model reached an
average R2-score of 0.934 with a minimum score of
0.093 for the worst parameter.

The stochastic finite element simulation used in this
work consists of 635 simulations. The simulation time in
AutoForm was ≈ 3h per simulation and core with an
Intel(R) Xeon(R) E5-1650 CPU and using all 6 cores in
parallel, resulting in a total calculation time of around 14
days and 1.67 TB of data. The calculation time for all
models proposed in this work was ≈ 7h using again all 6
cores in parallel.
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