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Abstract
Automated Fibre Placement is a common manufacturing technique for composite parts in the aero-space industry. Therefore,
a visual part inspection is required which often covers up to 50% of the actual production time. Moreover, the inspection
quality of this manual step fluctuates significantly. A camera-based automated inline inspection is capable of increasing
the inspection efficiency and accuracy. However, the interpretability of the acquired data strongly depends on the sensor
configuration and the inspected material. Thus, this paper introduces methods for modelling and assessing an imaging sensor
on the example of a composite material reflecting a spot laser to a camera sensor. In this context, the reflection properties
of the material are incorporated into a simulation and validated in comparison to real camera images from the experimental
setup. The EMVA 1288 sensor model in combination with the Cramér–Rao lower bound indicates a feasible estimability of
the beam propagation, but shows limitations in the predictability of the number of incident photons. The laser spot analysis
indicated that the laser spot can deviate from an exact oval shape but its peak value is suitable for robust spot identification
in an image. The outlined methodology is also adaptable to other imaging sensors, illumination sources and materials. Thus,
the findings can be useful for other fields and manufacturing processes.

Keywords Automated fibre placement · Inline inspection · Laser line scan sensor · Image quality metrics ·
Cramér–Rao lower bound · Sensor modelling

1 Introduction

Lightweight composites are applied more frequently in mod-
ern aerospace production processes. The fuselage and wing
manufacturing for the Boeing 787 as well as the Airbus
A350 XWB are examples of a growing need for such
lightweight components [1, 2]. These parts are often made
from Carbon Fibre-Reinforced Plastic (CFRP) due to its
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superior stiffness and strength properties in comparison to
metallic components. In order to reduce the costs of the
expensive manufacturing processes, efficient production
techniques are of great interest. An appropriate automated
fibre layup technology is one way to increase the production
efficiency. Therefore, a subsequent visual inspection is manda-
tory to fulfil the high safety standards of the aerospace
industry.

Nowadays this manual inspection needs between 32% [3]
and 50% [4] of the entire manufacturing time. Sometimes
it is even impossible to ensure the required inspection preci-
sion due to the manual process. This provides considerable
potential for optimisation in terms of quality and speed.

The first critical stage of an automated inline inspection
system is a sufficiently accurate image data acquisition.
A Laser Line Scan Sensor (LLSS) can be used for this
purpose. Therefore, our previous studies from Meister et al.
[5] already illustrated the major influence of the quality and
characteristics of the input data for subsequent data analysis
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tasks. However, the data quality is influenced from different
factors related to the sensor system and the viewed fibre
material.

For this reason, in this paper we initially present a
method for modelling and simulating the camera sensor
for the observation of a spot laser. This procedure is
based on a modified European Machine Vision Association
(EMVA) 1288 modelling [6] and is inspired from the
tutorial of Chao et al. [7]. This model serves to evaluate
the sensor behaviour for various scenarios. Furthermore,
the shape of a spot laser illumination reflected from a
fibre composite is investigated in detail. Thus, we are able
to derive optimisation strategies for the sensor parameters
and the sensor setup. Moreover, appropriate Image Quality
Assessment (IQA) methods are applied to evaluate the
quality of the output image. Additionally, the sensor model
and the determined material properties are linked within a
simulation.

The Automated Fibre Placement (AFP) process is a quite
novel technique for prepreg fibre material deposition which
is increasingly used in industrial manufacturing [8–10]. In
order to achieve a high transferability level of our findings,
this approach provides the overall application case for this
work. Hence a LLSS is often applied for the monitoring
of AFP processes both in research and development, this
sensor type is considered in this paper [5, 9, 11]. This
sensor utilises the principle of laser camera triangulation to
determine height information of laid up composite material
from a projected laser beam. The research questions of this
paper are:

I How should a mathematical model of a LLSS be
designed to provide information on the quality of the
resulting sensor image data for a specific application?

II Which techniques are suitable for evaluating the image
quality of a spot laser reflected from a fibre composite
material?

The methodology of this paper is to mathematically
model and simulate the sensor in accordance with the
EMVA 1288 standard. Based on this the Fisher Information
and the Cramér–Rao lower bound are determined to closely
investigate the sensor behaviour. Afterwards, the output
image quality is assessed using the Peak Signal-to-Noise
Ratio (PSNR) [12] and the speckle contrast [13] as well as
the amplitude and width at standard deviation intensity level
of a 2D Gaussian approximated imaged laser spot. Wang
et al. [14] inspired us to analyse these parameters from a
Gaussian laser spot fitting. Finally, the simulation results are
validated in comparison to the real measurement images.

The results of this paper are particularly valuable for
developers and operators of image-based inspection sys-
tems. Our results provide the basis for accelerated sensor

parametrisation and robust data recording for the inspection
of various fibre composites.

2 Related research

This section discusses the theoretical background for the
use case considered. Furthermore the related research for
modelling and validation purposes in this paper is outlined.
Therefore, the application case and the applied sensor
technology are presented.

Afterwards, methods for recording the laser spot and
modelling the sensor and beam propagation properties are
introduced.

2.1 Manufacturing process

In this section the fibre placement process is outlined. These
days different fibre placement technologies are available.
The AFP, Dry Fibre Placement (DFP), Automated Tape
Laying (ATL) and Direct Roving Placement (DRP) are
the most common from research and industrial production
[15–17]. These techniques place fibre composite material
in layers on a tool. The placed fibre material consists of
unidirectional (UD) filaments. Prepreg composites embed
these filaments within a polymer matrix. In contrast, for
dry fibre materials they are usually superficially covered
with a thermoplastic binder. Campbell [18] presents these
techniques in details. Such a fibre placement procedure and
the applied UD material are schematically illustrated in
Fig. 1.

In particular the AFP technology is utilised to manu-
facture complex composite parts. Furthermore, it is suit-
able for manufacturing different components with varying
geometries. This method is increasingly used in industrial
aerospace manufacturing, but is still a quite novel process.
However, Rudberg [19] indicates that the AFP technology
will be installed more frequently in future manufactur-
ing processes. Thus, we selected the AFP process for UD
prepreg material to achieve a high transferability level of
our findings [20]. In this process an effector places multi-
ple narrow stripes of material (tows) at a velocity v along a
given path (course). At the moment of placement a heating
system heats the fibre material to achieve better tack prop-
erties. Then, the compacting roller presses the material onto
the mould with the force F [15]. Accordingly, every part
consists of several layers of fibre material [18].

During this production stage different defects might
arise. These are usually directly related to the lay up process
itself [20]. For this reason, Harik et al. [21] have exam-
ined the connection between an AFP defect and the corre-
sponding process planning, layup strategies and machining.
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Fig. 1 AFP process with a
heating system and a
compaction roller to apply heat
and pressure to the laid up UD
fibre material. The prepreg
material is made from parallel
aligned filaments embedded in a
polymer matrix. Here v
represents the effector velocity
and F the compaction force

Additionally, Potter [22] has investigated effects which lead
to AFP process deviations. They all stated, that the possible
fibre layup defects always result in geometrical deviations
from an accurate lay up surface. Therefore, it is beneficial
to implement a system for automated inspection of these
defects into the process. Corresponding sensor systems for
data recording and inspection are presented in the following
section.

2.2 Data recording and inspection systems

Process integrated monitoring for the AFP production is
a frequently discussed subject in research and industry.
Thus, several sensor principles for capturing sufficient
inspection data have been studied. The Fraunhofer Institute
for Integrated Circuits (IIS) investigated methods based
on the polarisation effect [23, 24]. Moreover, the National
Aeronautics and Space Administration (NASA) and the
Institute of Production Engineering and Machine Tools
- University Hanover (IFW) examined thermographic
imaging inspection [25–27]. Both principles only enable the
recording of two dimensional images.

Thus, InFactory Solutions [9], Profactor [28], Electroim-
pact [8, 10] and Danobat Composites [29] have build sys-
tems on the basis of the laser camera triangulation principle.
Accordingly, they applied these LLSS devices for inline
monitoring of laid up CFRP material in the AFP processes.
One major advantage of the laser triangulation principle is
the inherent calculation of topographical surface data. This
might be the key to success of this measurement principle
for the AFP inspection [9]. Accordingly, Sun et al. [30] sum-
marised several inspection systems and their corresponding
properties.

Cemenska et al. [8] reported that the total production
time can be reduced by up to 20% through the use
of automated camera-based inspection systems. Moreover
they stated that, 90 to 99% of all manufacturing defects
that occur can be detected and categorised. Black [10]
summarised in her article that the application of such
image-based inspection systems can even save between
30 and 60% of the production time. She also stated that
course boundaries and tow endings are detected with about

92% precision. In the those references they gave certain
accuracy estimates. But in reality the comparison between
the manual and automated inspection accuracy as well as
the estimation of resulting improvements in accuracy are
difficult, since the total number of defects in a component
must be determined somehow.

The procedure for measuring fibre composite material
with a LLSS is shown in Fig. 2.

For this technique a laser line is projected onto a surface
and reflected back to a camera. The laser and the camera are
aligned at an angle to each other. In order to measure the
surface topology the entire laser-camera system is moved
perpendicular to the laser line, in parallel to the surface.
An image of each laser line height profile is captured
with a certain time interval and a defined exposure time.
Based on the laser line position within this image and the
concatenation of several images, a surface depth map is
estimated. Thus, Forest et al. [31] introduced the FIR filter
for laser line detection within a sensor image. The company
Automation Technology GmbH [32] implemented the FIR
filter technique for their 3D LLSS sensors for a better
laser peak detection from the acquired sensor image. This
algorithm analyses the intensity distribution of the image
with the aim to determine the laser line position in the
sensor image. For this reason the zero crossing of the first
derivative of the laser intensity image is estimated.

Moreover, Schmitt et al. [33, 34] examined LLSS tech-
niques for the scanning of fabrics and preforms. They
reached sub-pixel precision for the contour scanning. Thus,
they prove that a LLSS is suitable for the CFRP inspection.
Miesen et al. [35] investigated an inspection process using
a point laser displacement system. Amir and Thörnberg
[36] researched various image processing techniques with
the objective of reducing disturbances within LLSS image
data. For this purpose they examined the influences of
noise, dynamics in light intensity, and surface scattering on
the example of metallic surface inspection. They also deal
explicitly with the influence of laser speckle on the precision
of a measurement. Concludingly, they provide a detailed
overview of the characteristics of a LLSS. In addition, the
considered surface has a major influence on the quality of
a measurement. Thus, the following section discusses ways
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Fig. 2 Principle of the LLSS
data acquisition and calculation
of a height profile measurement
image of a Lambertian
scattering fibre material surface
using the Finite Impulse
Response (FIR) filter. β

represents the irradiation angle

to characterise the optical properties of a fibre composite
surface.

2.2.1 Sensor and laser spot model

Initially, a model is required which represents the camera
sensor with the associated influencing parameters. For
this purpose Jähne [37] and Rosenberger et al. [38]
introduced the generic black-box camera model which is
now incorporated into the EMVA 1288 standard [6]. In their
research, they established a series of methods to analyse and
visualise particular characteristics of imaging sensors. This
model is schematically illustrated in Fig. 3.

For this modelling the magnification of the lens (M) from
Eq. 1 is considered. This is approximately the ratio of the
focal length (f) to the working distance (w). This also equals

Fig. 3 The diagram illustrates the camera model considered, which is
inspired by the EMVA 1288 model [6]

the quotient of the size of an image object si to the real size
of the corresponding object so [39, 40].

M ≈ f

w
≈ si

so
(1)

On this basis Kube [41] investigated photon trans-
fer measurements based on Signal-to-Noise Ratio (SNR).
Thus, he presents them for Charge Coupled Device (CCD)
cameras, which were applied for various beam profile diag-
nostics at his institute. Furthermore, Jauregui-Sanchez et al.
[42] investigated the performance and noise characteristics
of individual photo detectors. Therefore, they applied a suit-
able sensor model which consists of various types of noise
and other physical characteristics. This model represents the
relationship between incident photons, the corresponding
electrical charge and the resulting image. They examined
the sensors SNR as a function of power and different
properties of the incoming radiation.

In order to model a reflected laser spot within a camera
image plane an appropriate laser propagation model is
needed. For this purpose Wang et al. [14] presented a
method for composite inspection using a spot laser and
thermographic imaging. With the aim to model the inter
material laser beam propagation, they applied a Finite
Element Method (FEM)-based approach on the basis of Fast
Fourier Transform (FFT) calculations. For the modelling
of the inter material propagation of the laser, a Gaussian
beam modelling with an expanded standard deviation of the
beam profile is applied. Stokes-Griffin and Compston [43]
give a more detailed explanation about the interaction of a
laser with CFRP material. They investigated in their paper

3968 Int J Adv Manuf Technol (2021) 116:3965–3990



the optical properties of a thermoplastic CFRP for heating
with a near infrared laser. For this purpose they examined
distinct absorption properties of the material. Furthermore,
they outlined the top hat shape of the installed laser.

Beyond that, Chao et al. [7] explained several approaches
for modelling camera sensor data. They discussed differ-
ent camera data models and their inherent characteristics.
Furthermore they presented ways for calculating the Fisher
Information Matrix (FIM) and the corresponding Cramér-
Rao lower bound (CRLB) exemplary for an imaging
microscope application under the observation of a single
molecules. They also consider ways of determining the
required parameters and measurement variables.

2.2.2 Evaluation of an imaged laser spot

In order to evaluate an image, several IQA metrics are
available in the literature. However, in case a reference
image is available for evaluation, Samajdar and Quraishi
[12] as well as Zhao et al. [44] gave an overview of different
IQA methods and their properties.

In addition, considering a laser beam reflected from a
fibre composite material, this leads to speckle patterns. In
order to evaluate the characteristics of laser beam reflections
from CFRP, Coyotl-Ocelotl et al. [13] described the speckle
contrast Cs in their work. This value is defined in Eq. 2 as
the ratio of the standard deviation σI of the image I and the
mean value of the considered laser image region I .

Cs = σI

I
(2)

In the following section, the methodologies for mod-
elling, measuring and validating the application case under
consideration is described.

3Methods

Within this section at first the measurement setups for the
acquisition of material and sensor characteristics is dis-
cussed. Then, the methodology for the actual image acqui-
sition and laser spot evaluation is explained. Afterwards,
the beam propagation modelling is introduced. Concluding,
an approach for characterising optical material properties is
presented. Moreover, the subsequent sections describe the
mathematical modelling of the LLSS and the corresponding
simulation.

In order to provide a clear overview, the symbols intro-
duced and utilised in this section are listed in Table 1 together
with their corresponding brief description.

3.1 Optical laser camera setup

In this section, first the general measurement assembly
is described. Subsequently a reasonable aperture f-number
is selected. Afterwards, the influence of interference and
diffraction effects is briefly evaluated.

3.1.1 Measurement setup

The setup illustrated in Fig. 4 was used to investigate the
expansion of the laser spot on the materials surface. More-
over, it is utilised to parametrise and validate the simulation.

This assembly consists of a Picotronic DC650-1-3(8x25)-
C500 spot laser [45] and an Automation Technology GmbH
(AT) C5-4090 camera [46, 47] with a AMS CMV12000 [48]
sensor chip. This setup is looking almost perpendicularly at
a Hexel HexPly 8552 [49] IM7 fibre [50] material sample
at a working distance of dw = 250 mm each. This material
has a Cured Ply Thickness (CPT) of about 131 μm and a
filament diameter of about 5.2 μm, which is also the approxi-
mate slit width between two filaments. The volume fraction
of this material is around 57.70%. According to our own
reflectance measurements with an Opsira gonio’2pi-bsdf
custom Gonioreflectometer [51], the material has a rela-
tive degree of reflection of about �m ≈ 2% in the spectral
range between 640 nm and 660 nm when observed per-
pendicularly. The acquired measurement images has a size
of 4096 px (w) x 3072 px (h). The sensor image plane
has the width of sw = 22.528 mm and the height of sh =
16.896 mm. Each pixel has a dimension of spx = spx,x =
spx,y = 5.5 · 10−6 m. Considering the manufacturers spec-
ifications for the size of a single pixel and the dimension of
the image plane, the calculated fill factor is 100%. Further-
more, the sensor specifications claim that micro-lenses are
installed to increase the fill factor [48]. Thus, we assume
that the non-light sensitive area between the individual pix-
els is negligible. The installed PL = 1 mW laser has a nearly
Gaussian beam profile with a wavelength of λla = 650 nm
and a coherence length of lc = 1361 μm. In compari-
son, the STR-660 line laser from Coherent Inc. which is
usually delivered with the AT C5-4090 LLSS, has a coher-
ence length of a few millimetres << 10 mm depending
on the diode installed, the applied laser power and the age-
ing of the diode. Thus, the coherence lengths of both lasers
are in a similar range of values. Moreover, the horizontal
full width at half maximum (FWHM) beam width of the
spot laser is FWHMla,x = 72.8 μm and in the vertical
direction FWHMla,y = 80.4 μm [45]. The AT C5-4090
camera uses a Schneider Kreuznach Xenoplan 2.8/50-0902
lens [52] with focal length f=50.2 mm. Furthermore it
has a built-in Midwest Optical Systems - BP660 dark red
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Table 1 List of symbols
including a brief description,
which are introduced in this
section

Symbol Description

α, β Detection angle, illumination angle

γ Sample/ fibre orientation

si Sensor dimensions in i-th direction

spx,i Pixel size i-th direction

PL Laser power

λla Laser wavelength

lc Coherence length

FWHMla,i Laser profile FWHM in i-th direction

�f Degree of transmission (filter)

�m Degree of reflection (composite)

df Width between two filaments

dw working distance

f focal length

so Actual size of observed object

si Size of object on image plane

FOVi Field of view in i-th direction

M Magnification optical setup

δi Viewing angle in i-th direction

Ela,σ Emitted laser irradiance at working distance over area at standard deviation position

Erm,la Laser irradiance reflected from material

Epx Incident irradiance on the pixel (i,j)

d̄s Average speckle grain dimension

DOF Depth of focus

fa Aperture f-number

u Maximum acceptable blur size

σg Reflected laser spot diameter on composites surface at standard deviation position

σla Laser intensity profile diameter at standard deviation position

pb,m Beam propagation parameter composite

p1 Beam propagation factor from experiments

p2 Beam propagation offset from experiments

texp Exposure time camera

Cs Speckle contrast

ns Number of speckle regions

bandpass filter [53]. For the considered laser wavelength
λla , this BR660 filter has a transmission of 91.93% which
means �f = 0.9193 for the considered wavelength. Figure 5
illustrates the magnification and illumination relationships
between the laser spot image on the sample and its represen-
tation in the camera image as well as the associated optical
parameters.

According to the correlations from Section 2.2.1, a
magnification factor of M ≈ f

dw
≈ 0.2 can be determined

for the considered assembly. Furthermore, considering the
sensor dimensions, the Field of View (FOV) in the height
direction is FOVh = sh

f
dw ≈ 84.14 mm and in the width

direction FOVw = sw
f

dw = 112.19 mm. This leads to a

viewing angle in height direction of δh = 2tan−1
(

FOVh

2dw

)
≈

19.1◦ and in width direction of δw ≈ 25.29◦. Due to
the Gaussian laser profile we assumed that the maximum
irradiation is at the laser spots centre point. This specifies
the origin of the corresponding coordinate systems on the
sample Erm,la(x = 0, y = 0) and in the image Epx(i =
0, j = 0). In this case no sub-pixel accuracy is considered.
If two neighbouring pixels have the same global maximum
value, the pixel located more to the left and more to the top
of the image is selected as the origin.

3.1.2 Selection of aperture size

Moreover, the lens aperture should be set as small as
possible to compensate for the negative depth of focus
(DOF) effects. However, it should be noted that, depending
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Fig. 4 Laser camera setup for tests. An Automation Technology
GmbH C5-4090 camera and a Picotronic DC650-1-3(8x25)-C500
laser are utilised. For tests, the camera and laser are aligned almost
perpendicular to the sample’s surface. α ≈ 0.5◦ is the angle between
plumb line and camera. β ≈ 0.5◦ is the angle between plumb line and
laser. γ represents the sample rotation

on the application, a sufficient amount of light must illu-
minate the sensor. In addition, a very small aperture can
cause increased diffraction and speckle effects in the cam-
era image. The average speckle grain dimension d̄s can
be approximated from Eq. 3 [54] which was applied by
Thompson et al. [55] and used from Tutsch et al. [56].

d̄s = 1.2(1 + M)λlafa (3)

Moreover, the DOF can be approximated from Eq. 4 [57]
as Tutsch et al. [56] explained.

DOF ≈ ufa

1 + M

M2
(4)

According to Eq. 3 a d̄s = 0.936fa μm is calculated from
the given values. Moreover, the speckle contrast Cs drops
according to Eq. 5 with the square root of the number of
speckle region ns [54].

Cs = 1√
ns

(5)

Due to this behaviour and following Thompson et al. [55]
and Tutsch et al. [56] speckle can be reduced substantially

when the average speckle size d̄s is smaller than the dimen-
sion of a pixel spx which means d̄s < spx . For the pixel size
of the installed sensor, this implies a desired aperture num-
ber of fa < 5.876. However, for the considered application
case, a comparatively large DOF from Eq. 4 is required.
Inspired from Tutsch et al. [56] the maximal blur tolerance
u should be one pixel. In order to provide suitable infor-
mation even for more geometrically complex components
and larger fibre placement defects, this should be at least
between DOF = [1.5,2] mm. Thus, the aperture f-number is
sensibly in the interval fa = [9.1,12.1]. For these reasons,
an aperture of fa = 11 was chosen for all experiments in
this paper. Due to Eq. 3 this leads to an average speckle
size of d̄s = 10.296 μm. Thus, this equals 1.872 times the
pixel dimension spx . In comparison to the case d̄s = spx

mentioned above, the speckle contrast in this scenario is
increased by about 37%.

3.1.3 Diffraction and interference effects

Additionally, due to the given coherence length and the
Fraunhofer diffraction condition it is very likely that
interference and diffraction effects occur for this setup. For
this purpose, we assume that close together fibres of the
material re-emit parts of the incident laser light. Thus, in
this way small phase shifts can occur which can cause
these interference effects. The coherence length of lc =
1361 μm is quite large compared to the slit width of the
fibre material of about 5.2 μm. Moreover, the Fraunhofer
diffraction condition is valid:

d2
f

dwλla

= (5.2 · 10−6)2m2

0.25 · 650 · 10−9m2
= 1.664 · 10−4 � 1 (6)

For this, df =5.2 μm is the width between two filaments
and dw=250 mm is the working distance. However, due to
the research from Wang et al. [14] as well as Stokes-Griffin
and Compston [43] previously outlined in Section 2.2.1 the
influences of interference and diffraction for this application
case should be marginal. Thus, for the investigations in this
paper we assume that the major influence on the variation
in spot diameter and the variance in spot intensity result
from the beam propagation within the material. For the
subsequent modelling, only the global intensity maximum
was considered. High order local maxima have lower
intensities. Therefore, we did not examined these optical
effects in detail. Nevertheless, they have to be taken into
account when evaluating the results.

3.2 Image acquisition and laser spot evaluation

This section outlines the procedure for capturing suitable
laser spot images. Furthermore, the applied evaluation
methodology for these images is explained.
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Fig. 5 Sketch of the optical setup and the different images of the considered laser spot. The working distance dw , focal length f, object size so,
image size si and the half viewing angle δ/2 are displayed. Furthermore, the Field of View (FOV) is illustrated

3.2.1 Image acquisition

These methods are used to parametrise and validate the
sensor model and the calculations in this paper. For this
purpose, the test setup previously described in Section 3.1
was used. In order to investigate the speckle characteristics
of the laser spot on the sample, the camera and laser were
aligned almost perpendicular to the sample. Thus, α =
β ≈ 0.5◦, since the limitations from the sensor geometry
prevent a smaller angle. Therefore, we assumed that the
beam profile of the laser which is projected on the material
is approximately as specified from the manufacturer for
an accurate perpendicular view at a distance of 250 mm.
For detailed analysis of the speckle properties of the
CFRP sample, 32 images were taken for 100 μs, 500 μs

and 900 μs exposure time each. These exposure times
were selected because the shortest integration time still
allows sufficient light to reach the sensor in order to
receive a measurable signal. On the other hand, the longest
integration time comes close to the saturation level of the
sensor, but without overexposure. To record these images,
the sample orientation γ was incrementally rotated by 45◦
around its normal axis. Altogether, images were acquired
for two entire cycles. For each rotation angle γ , the three
images for the different exposure times were captured for
exactly the same measuring points. Afterwards, the sample
was further rotated.

3.2.2 Evaluation of imaged reflected laser spot

In order to improve processability, an image of size 240
x 240 px was cropped around the intensity maximum of
the overall recorded image. In this case we assume that the
centre of the reflected laser spot is roughly the intensity
maximum of the measurement image. In order to measure
intensity fluctuations in the image of the reflected laser spot

on the sample, the previously specified speckle contrast was
calculated for each entire reflection measurement image.

Regarding Sheikh et al. [58] as well as Samajdar
and Quraishi [12], PSNR is particularly well suited to
characterise white noise. Considering laser speckle patterns
within an image as such a kind of white, granular image
noise, the PSNR technique provides a very straightforward
way to characterise a laser spot image with respect to
the laser speckle. Accordingly, the PSNR values were
calculated for each original image with the corresponding
simulated image as reference. Additionally, the PSNR
calculation indicates the degree of correspondence between
two images. Typical values for 8-bit images are around 30–
50 dB [59]. For 16-bit images, typical values are between
60–80 dB [60]. The sensor examined in this paper provides
16-bit images [47, 61], but due to the built-in sensor
chip [48], only a 10-bit range of values is registered. For
this reason, we expect a reasonable PSNR value for an
acceptable match of the simulated and real captured laser
spot images between the values for 8-bit and 16-bit images
previously given. Thus, these PSNR value should be in the
range of 50–60 dB for an adequate match of measurement
and simulation.

Furthermore, a Gaussian fitting was applied to the laser
spot intensity distribution of the measurement image. In
this way the directional beam widths at standard deviation
position of the reflected laser spot on the material sample
were determined. All previously mentioned results were
averaged over images of equal fibre orientations and
displayed for the respective samples rotation angles γ . The
corresponding measurement values were calculated for the
physical and the simulated measurement images of the
reflected laser spot. Thus, the aim was the validation of the
simulation and the discussion of corresponding limitations.
Below, an appropriate estimation for the laser spot beam
propagation is explained.
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3.3 Beam propagationmodelling

As indicated above, the emitted laser beam profile is
Gaussian distributed with a certain spot size and the
maximum irradiance at its centre. Furthermore, we know
that the inter material beam propagation of the laser
leads to an expansion of the reflected laser spot size. For
investigations in this paper we assume the relationship from
Eq. 7 for the overall beam diameter of the reflected laser
spot at standard deviation position is σg . This is composed
from a beam propagation parameter pb,m ∈ R

+ and the
diameter at standard deviation position of the laser spot
σla ∈ R

+.

σg = 1

M
pb,m + σla (7)

Due to the rather rough positioning of the laser spot and
the material sample as well as the high variation in spot
size due to the material properties, a direction independent
average value for σg was used in this paper.

In accordance with the literature from Section 2.2.1 like
Eq. 8 we assume that the beam propagation factor pb,m

increases with natural logarithm with the amount of incident
photons. This is composed from the product of the laser
irradiance at its standard deviation position Ela,σ and the
exposure time texp.

pb,m(texp, Ela,σ , p1, p2)

= p1 · ln(Ela,σ · texp) + p2
(8)

Due to the fixed laser voltage and laser focus, Ela,σ =
const . for the considered test case in this paper. Further-
more, the parameters p1 and p2 are material dependent
parameters which influence the beam propagation inside the
material.

These parameters need to be estimated experimentally.
For this reason the natural logarithm of the three considered
exposure times ln(texp) were linked to the previously
estimated 2D Gaussian beam width at standard deviation
intensity level. This fitting yields an approximated value for
p1 and p2 for each rotation angle γ . Then the mean and
standard deviation for p1 and p2 for each rotation angle
γ were calculated. For the investigations in this paper, the
overall average value for p1 and p2 over all rotation angles
γ was then calculated and applied. The mentioned fitting
was carried out in this paper with the polyfit function from
the Numpy 1.19.0 library. Subsequently the measurement of
further optical material properties is discussed.

4 Sensor datamodelling and evaluation

The objective of this section is to build a pragmatic, math-
ematical sensor model for observing a laser spot in order

to be able to carry out statistical analyses. In the follow-
ing Section 5, this model is transferred to a simulation and
some of the simplified assumptions, which are necessary
for this theoretical evaluation, are adjusted for an improved
simulation result.

At the beginning of this section the calculations for the
modelling of the considered camera sensor are presented
in detail. Subsequently, the FIM and CRLB calculations
are discussed. The symbols introduced in this section as
an extension to Table 1 are listed in Table 2 with their
associated brief description.

Regarding the literature from Section 2.2.1 the EMVA
1288 standard provides an appropriate way to model a
camera sensor. This method offers the possibility to easily
transfer the approaches from this paper to other camera-
sensor systems for the inspection in lightweight composite
manufacturing. Therefore, this is chosen for modelling in
this paper. However, the original EMVA 1288 standard
considers a homogeneous irradiation of the entire sensor.
Since a point laser with a Gaussian beam profile was applied
for the investigations in this study, the model was modified
appropriately. In this modified version the mean value of
several intensity maxima or alternatively the total energy
of the laser from multiple sensor images characterise the
sensor image plane.

This mathematical sensor model is then used to calculate
the FIM and on this basis the CRLB. For this purpose,
the photon distribution fθ of a given emitting object q
on the sensor image plane is modelled. On this basis the
random variable Hθ,k specifies the number of detected
electrons for each k-th pixel including noise. The sensor
manufacturer provides the corresponding noise properties
for our assembly [48]. The read out noise μq is not
considered here due to its very small value compared to
the laser peak signal. At the end the CRLB is exemplary
evaluated for the number of incident photons and the laser
spot dimension.

4.1 Modelling sensor properties using EMVA 1288
standard

This section models the AT C5-4090 camera sensor used
in this paper. For this purpose, initially a single pixel is
modelled and subsequently on this basis the entire image
plane is described.

4.1.1 Investigation of a single pixel

Initially, we model the photons incident on a single pixel.
This modelling is based on the intensity maximum of
the image. Therefore, we assume that this maximum is
located at the centre of the Gaussian distributed laser spots.
Equation 9 gives the laser spot irradiance Ela,Gaus(r, zm)
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Table 2 List of symbols
including a brief description,
which are additionally to
Table 1 introduced in this
section

Symbol Description

Ck Sensor region

Apx Pixel area: Apx = spx,x · spx,y

Aspot Area of projected laser spot on surface

�a Irradiance reduction from aperture: �a = 1/f 2
a

�s Influence factor — materials scattering

θ Parameter vector

ω Data

fθ Photon distribution on sensor image plane

Hθ,k Amount of detected electrons in the k-th pixel

Sθ,k Independent Poisson random variable — # photons converted into electrons

μθ,k Corresponding mean value to Sθ,k

Bθ,k Independent Poisson random variable — # detected electrons without irradiation

βθ,k Corresponding mean value to Bθ,k

Wθ,k Gaussian random variable — # electrons from readout noise

νθ,k Mean number electrons — sensor signal

w(zm) Radius of Gaussian laser beam at a distance zm from the spot maximum

r Distance to propagation axis

ηqe Quantum efficiency of sensor

μp(i, j) Mean number of photons at pixel (i,j)

μp,total Mean total amount of photons on the sensor

μe Mean number of electrons

μy(i, j) Mean output signal at pixel (i,j)

μy,max Maximum mean value — output signal

μy,total Integral over output image

μy.dark Amplified mean dark noise

μd Mean dark noise

μq Mean readout noise

σ 2
q Variance readout noise

Ela(x, y) Laser irradiance at (x,y)

Ela,Gaus Laser spot irradiance at certain Gaussian beam profile position

Ela,max Maximum laser spot irradiance

h Planck constant

c Speed of light

yk k-th output image

q(x,y) Point spread function at (x,y)

K Gain

� Correlation coefficient

z Photon counter

ρθ,k Probability Density Function for accumulated signal

I Fisher Information Matrix

over the Gaussian radiation profile with the standard
deviation σla from Eq. 10. Then in Eq. 11 the maximum
irradiance Ela,max is calculated at r = 0. In these equations,
PL represents the laser power and w(zm) is the beam radius
at a certain distance zm from the spot maximum at zm = 0.

Ela,Gaus(r, zm) = 2PL

πw(zm)2
exp(−2

r2

w(zm)2
) (9)

σla = FWHM

2
√

2ln(2)
(10)

Ela,max = Ela,Gaus(r = 0, w = wFWHM)

= 2PL

πw(zm)2
, with

wFWHM = 1

2

√
2

ln(2)
FWHM

(11)
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The FWHM in this case defines the width of the Gaussian
laser profile at the position where the intensity of the
maximum is reduced by half. Therefore, the average of
FWHMla,x and FWHMla,y from the laser manufacturers
specifications from Section 3.1 is considered for the
calculations in this paper. According to the EMVA 1288
model the number of incoming photons μp for each pixel
(i,j) is calculated:

μp(i, j) = ApxEpx(i, j)texpλla

hc
, with

Epx(i, j) = Ela(x, y)�m�s�a�f

(12)

Apx represents the detecting area of a single pixel, texp
specifies the exposure time, h is the Planck constant and c
is the speed of light. Epx(i, j) represents the irradiance for
each pixel (i,j) on the sensor.

Since in this application a filter and a lens are installed
in front of the sensor chip, appropriate reduction factors
for the incoming irradiance must be taken into account.
�a describes the reduction in irradiance resulting from the
aperture setting. This is �a = 1

f 2
a

, where fa represents

the aperture f-number. �f (λla) is the transmission factor
of the built-in filter for the given laser wavelength λla .
The parameters fa and �f are introduced in Section 3.1.
Additionally, the laser irradiance is significantly reduced
due to the degree of reflection �m of the fibre material
viewed in this application.

Furthermore, pb,m represents the beam propagation fac-
tor from Eq. 8 previously discussed in Section 3.3. Accord-
ingly, �s(texp, pb,m) from Eq. 13 normalises the number
of incoming photons based on the enlarged laser spot area.
For this the beam propagation factor pb,m and the expo-
sure time texp are considered. Therefore, it must be stated
that the area of the laser sport Aspot ∼ σ 2

la . Additionally,
μp ∼ texp applies. For clarification, �s is only a mathemat-
ical auxiliary factor to enable modelling in the given way.

�s(texp, p1, p2) = 1

texp
p2

b,m(texp, p1, p2) (13)

In order to calculate the total amount of photons on the
sensor μp,total from Eq. 14, the number of detected photons
μp(i, j) for each pixel needs to be integrated over its entire
sensor area Ck .
∫

Ck

μp = μp,total = PLtexpλla

hc
�m�s�a�f (14)

According to the EMVA 1288 model a quantum effi-
ciency parameter ηqe is introduced in Eq. 15 to convert the
number of incident photons into electrons generated on the
sensor. ηqe is provided from the data sheet of the sensor.

ηqe = μe

μp

(15)

According to the EMVA 1288 model from Fig. 3, the
overall output signal of each pixel is calculated in Eq. 16
including the corresponding noise and gain influences.

μy(i, j) = μy.dark + Kηqeμp(i, j)

= Kμd + Kηqe

λ

hc
ApxEpx(i, j)texp

(16)

Within this equation, K is the gain of the sensor.
Furthermore, μd is the mean number of electrons counted
without irradiation. This noise component μd(T ) depends
on the sensor temperature T. The sensor chip manufacturer
[48] provides corresponding values for μd(T ). The EMVA
1288 standard specifies a linear relationship between the
noise μd and the exposure time texp for a constant sensor
temperature T which leads to �μd(T = const .) ∼ texp.
Accordingly, μy.dark = Kμd gives the dark noise. This
is basically the mean image signal without irradiation. In
accordance with the EMVA 1288 standard, the mean value
of the readout noise μq is located in the middle of the
quantisation interval. The variance of the corresponding
readout noise can be approximated according to the EMVA
1288 model. This leads to σ 2

q = 1
12 DN2. The following

section explains the procedure for applying the observations
of a single pixel to the entire sensor.

4.1.2 Image plane modelling

This section describes the modelling of the entire sensor
image plane. Within the EMVA 1288 standard a homoge-
neous irradiation of the sensor is required. On this basis the
mean value of two images K=1 is determined in Eq. 17 to
characterise the sensor image plane. In this equation K+1
images with M rows and N columns each are considered.

μy = 1

KMN + 1

K∑
k=0

M∑
i=0

N∑
j=0

yk(i, j) (17)

However, since we are examining a laser spot with
varying size in this application, this average value would
change with the spot size or the dimensions of the sensor
image. Therefore, the image average value is not meaningful
here. For this reason, the modelling is slightly adjusted. In
relation to Eq. 18 for this paper we average the maximum
pixel intensity of the sensor over several input images.

μy,max = 1

K + 1

K∑
i=0

max(yk) ≈ 1

K + 1

K∑
k=0

yk(0, 0) (18)

This value μy,max is independent of the image dimension
or laser spot size and can even be transferred to other
intensity distributions. However, it should be noted that
this modelling is only applicable if there is one global
intensity maximum which can be unambiguously assigned
to a single pixel.
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For a more detailed subpixel analysis, a peak between
pixels can also be used. However, for this modelling it
is important, as described before, that there is only one
global maximum per region of interest. However, several
observation areas in one measurement image are also
conceivable. But this is not part of the modelling in this
study.

Moreover, such maximum value can also be utilised if the
laser beam hits the surface at a different angle. In this case,
it is noteworthy that the size of the laser spot changes with
different angles, and thus, the total power of the laser is dis-
tributed over another area. Accordingly the maximum value
mentioned above changes, but can still be applied as a crite-
rion. As already explained above and illustrated in Fig. 5, we
define the maximum irradiance of the measurement image
as the origin of the Gaussian intensity distribution of the
point laser. For this reason we can state that the maximum of
the i-th output image max(yi) is the image centre yi(0, 0).
This corresponds to the origin of the laser profile. Thus,
max(yi) ≈ yi(0, 0) applies.
In addition, following the idea of Eq. 14, the inhomoge-
neous image of the reflected laser spot can be characterised
as the sum of all individual pixel intensity values of the
camera image by:

μy,total = 1

K + 1

K∑
k=0

M∑
i=0

N∑
j=0

yk(i, j) (19)

This equation provides a measure of the reduced total
energy detected from the camera sensor for a certain
optical setup over a given exposure time. Similar to the
calculation of the maximum pixel value μy,max described
above, this integral of the pixel intensity values μy,total

also provides the sensor characteristics independent of
the brightness distribution in the measurement image.
Considering a known intensity distribution function, μy,max

can be converted into μy,total and vice versa. In this
case, both characteristics are equally applicable for the
subsequent modelling. However, the calculation of μy,total

might be a little more robust for the characterisation of
an image brightness distribution with a large variation of
brightness values.

Due to the very large and strongly varying influence of
the laser beam propagation within the fibre material, the
sub-pixel evaluation of the laser spot is not considered in
this paper. We assume here that the maximum of the laser
spot is always directly on a single pixel. Obviously this does
not correspond to reality, but the difference is negligible
due to the strong optical influence of the fibre material.
The following section explains the procedure for using the
modified EMVA 1288 in combination with an appropriate
Point Spread Function (PSF) for the reflected laser spot.

4.2 Image plane photon distribution

Within this section the Fisher Information is calculated
based on the EMVA 1288 sensor model and an appropriate
PSF. Therefore, it is required to model the laser spot which
is reflected back from the fibre material. Afterwards, the
probability density function of this reflected laser spot
image on the sensor is determined. On this basis, the FIM is
calculated.

To begin with, Eq. 20 represents the PSF of the reflected
laser spot. As previously justified, this reflected laser spot is
centred within the image.

q(x, y) = 1

2πσg,xσg,y

√
1 − �2

e
− 1

2(1−�2)

[
x2

σ2
x

+ y2

σ2
y

− 2�xy
σxσy

] (20)

This indicates, that the distribution’s centre point is
aligned with the centre point (0,0) of the observation. For
a more realistic modelling we consider that the angles α

and β can rotate independently of each other. Thus, the
laser spot can be shaped oval on the surface. For this reason
a two-dimensional Gaussian function is applied here. The
standard deviations σg,o given in Eq. 21 specify the shape
of the observed, reflected laser spot. This parameter consists
of the actual standard deviation of the initially emitted
laser spot σla,o as well as the additional beam propagation
offset parameter pb,m,o from Eq. 8. This describes the
beam propagation within the composite material and the
re-emission at another near by position on the materials
surface.

σg,o = pb,m,o + σla,o , with

σla,o = FWHMo

2
√

2ln(2)
and pb,m,o ∈ R

+ (21)

On this basis, Eq. 22 specifies the photon distribution
over the sensor image plane under consideration of a
magnification factor M given in Eq. 1 from the optical setup.
For this, θ defines the used parameter vector.

(22)

The lens distortion at the edges of the image is less than
0.2% for the viewed wavelength range [52]. Additionally,
the reflected laser spot is captured very close to the optical
axis. Thus, asymmetries from the optical setup can be
neglected. For this reason, the magnification in x and y
direction should be very similar. Thus, the magnification M
is the average of the magnifications in the x direction Mx

and in the y direction My . This leads to M = 1
2 (Mx +
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My). As explained above, we assume that the centre of the
reflected laser spot is in line with the centre of the viewing
area. This leads to x0 = y0 = 0.

4.3 Sensor datamodel

Afterwards, the representation of the reflected laser spot
on the image plane is utilised to determine its effect on
each individual pixel. For this purpose, the random variable
Hθ,k specifies the number of recognised electrons in each
individual k-th pixel of the viewing region:

Hθ,k = Sθ,k(μθ,k) + Bθ,k(βθ,k) + Wθ,k(μq, σq) (23)

For this ,Sθ,k is an independent Poisson random variable
which represents the photons converted into electrons.
Bθ,k is an independent Poisson random variable which
specifies the electrons caused from background noise in
each pixel. In this case, the background noise describes the
number of detected electrons without any incident light.
Thus, in this paper, background noise consists only of
sensor internal noise. Accordingly, this is equivalent to dark
noise and does not refer to disturbing ambient lighting or
similar. Wθ,k represents a Gaussian random variable which
specifies the amount of electrons caused by readout noise
in a pixel. Due to mathematical calculation rules for the
Poisson distribution, for Sθ,k and Bθ,k can be stated that
V ar(Sθ,k) = μθ,k and V ar(Bθ,k) = βθ,k . In contrast, Wθ,k

is Gaussian distributed with mean μq and V ar(Wθ,k) = σ 2
q .

Wθ,k is used in accordance with the readout noise from
the EMVA 1288 model in Section 4.1. This EMVA 1288
model specifies the both statistical parameters. Concluding
the mean number of electrons of the detected sensor signal
for each k-th pixel νθ,k is given by:

νθ,k = μy(k) = Kηqeμθ,k + βθ,k (24)

This consists of the actual information μθ,k and some
sensor internal background noise βθ,k . Accordingly, the
readout noise is not part of νθ,k . The variable μy(k)

was previously given from the EMVA 1288 Eq. 16 from
Section 4.1.1. According to the properties of the Poisson
distribution μθ,k + βθ,k lead to V ar(μθ,k + βθ,k) = (νθ,k +
βθ,k).

In this case βθ,k in Eq. 25 is the mean number of counted
electrons of the dark current of the image sensor. For this
representation Eq. 16 from Section 4.1.1 is considered.

βθ,k = Kμd = μy.dark (25)

In accordance with Eq. 26, the signal intensity is dis-
tributed over the sensors image plane with mean μθ,k . More

precisely, the average number of photons detected within the
sensor region Ck over the time interval [t0, texp] is shown.

μθ,k =
∫ texp

t0

�θ(t)

∫

Ck

fθ (x, y)dxdy (26)

Under consideration of Eqs. 12 and 14 as well as
reflectivity of the material from Section 3.1.1, μθ,k is
calculated as:

μθ,k = μp,maxfθ (x, y)

= C

2M3πσg,xσg,y

√
1 − �2

μp,max

= texpλla

hc

ApxC

2M3πσg,xσg,y

√
1 − �2

Epx,max

with C = e
− 1

2(1−�2)

[
x2

σ2
g,x

+ y2

σ2
g,y

− 2�xy
σg,xσg,y

]

(27)

As mentioned above, considering a Gaussian beam pro-
file with centre (0,0) gives Epx,max = Ela(0, 0)�m�s�a�f .
The corresponding reduction factor �i are introduced above
in Section 3.1 and Section 4.1.1. For the following calcu-
lations we assume, that σg = σg,x = σg,y . For this, we
first assume, σla = σla,x = σla,y . This is valid due to the
marginal tilting of the laser and camera as well as small laser
beam variance compared to the beam propagation of the
fibre material. Furthermore, we assume a direction invari-
ant beam propagation within the material pb,m = pb,m,x =
pb,m,y .

Due to the anisotropic composite material and the fibre
angle dependent reflection behaviour, as already described
from Stokes-Griffin and Compston [43], in reality the beam
propagation will probably vary with the fibre orientation.
Additionally, laser speckle can lead to a jagged contour of
the laser spot in reality. However, since we only consider
a very small laser spot projected which is detected almost
perpendicularly, such effects were neglected here. If the
laser spot is projected and detected at a large angle, this
assumption must be reconsidered.

However, the focus of this paper is primarily on proving
the basic validity of the proposed model. In order to keep the
calculations as comprehensible as possible, this assumption
is applied despite the potential deviation from a realistic
beam propagation.

Hence, it is possible that the laser spot has a slightly
oval shape in reality, whereas in the calculation the spot
is ideally circular. However, the peak value should be only
slightly affected by this assumption, as the input energy is
not influenced by the ratio of the direction-dependent beam
propagation.

In the investigations in this paper, we are checking
the potential error for this assumption and examine if an
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adjustment is necessary. Thus, this assumption needs to be
taken into account in the evaluation of the model. With
this information, Eq. 7 from Section 3.3 can be applied.
Accordingly, μθ,k can be written as:

μθ,k = 1

2M3πσ 2
g

μp,maxe
− x2+y2

2σ2
g

= texpλlaApx

2hcM3π(pb,m + σla)2
Epx,max

e
− x2+y2

2(pb,m+σla )2

(28)

Applying the previous assumptions for σg and pb,m leads
to Eq. 29 for the mean detected sensor signal νθ,k for the
k-th pixel.

νθ,k = K

(
ηqe

texpλlaApx

2hcM3πσ 2
g

Epx,maxe
− x2+y2

2σ2
g + μd

)
(29)

Taking the previous calculations into account, Eq. 30
presents the accumulated Probability Density Function
(PDF) ρθ,k(z) for the accumulated signal and noise random
variable Hθ,k from Eq. 23 with respect to an individual
pixel k.

ρθ,k(z) = e−νθ,k

√
2πσ 2

q

∞∑
l=0

νl
θ,k

l! e
− (z−l−μq )2

2σ2
q

, z ∈ R, θ ∈ �

(30)

As previously introduced, the readout noise μq is
Gaussian distributed over the considered pixel region.
In contrast, the signal as well as background noise are
Poisson distributed across the evaluated pixel. z represents
the photon counter. νθ,k gives the mean for the Poisson
distributed photon hits within the signal μθ,k including
background noise βθ,k . μq represents the mean of the
corresponding Gaussian distributed readout noise per pixel
with variance σ 2

q . The signal and the readout noise can
be assumed to be independent random variables. This
implies that the convolution of both PDFs is expressed as
a multiplication of the individual PDFs. This formulation is
inspired from Chao et al. [7].

Compared to the laser peak signal μθ,k the readout noise
μq is very small. For this particular case, if μq << μθ,k we
can assume that μq = 0. Applying this assumption leads to
the following PDF for each k-th pixel:

ρθ,k(z) = νz
θ,ke

−νθ,k

z! (31)

This equation is used for the FIM calculation in the
following section.

4.4 Calculation of Fisher Information
and Cramér–Rao bound

Subsequently the general form of the FIM for some
observed data is given by:

I(θ) = −E
[
∂2lnρθ (ω)

∂θi∂θj

]
(32)

In this equation ω represents the considered data with
the corresponding PDF ρθ (ω) and a given parameter vector
θ [62]. Thus, this Eq. 32 presents the derivative of the log
likelihood function in relation to θ for each individual pixel
[7]. Derived from this, the FIM over multiple pixels can be
calculated from the given PDF from Eq. 31. On this basis the
accumulated FIM over all Z pixels of the considered sensor
area is represented through:

I(θ) =
Z∑

k=1

E

[(
∂lnρθ,k(z)

∂θ

)	 (
∂lnρθ,k(z)

∂θ

)]
(33)

For the typical form of this estimation problem, θ para-
metrises just the true value νθ,k in the k-th pixel of the
Poisson component of the data. Thus, the corresponding
FIM can be written as:

I(θ) =
Z∑

k=1

(
∂νθ,k

∂θ

)	 (
∂νθ,k

∂θ

)
E

[(
∂ln(ρθ,k(z))

∂νθ,k

)2
]

(34)

This formulation of the FIM is inspired by Chao et al. [7].
In this case the FIM for the entire viewing area is calculated
from the sum of the individual FIMs of each k-th pixel.
Subsequently, the score function for an unbiased estimator
is given by:

S(νθ,k) =
(

∂ln(ρθ,k(z))

∂νθ,k

)2

(35)

Considering the properties of a Poisson distribution the
Fisher Information of νθ,k is represented as:

I (νθ,k) = V ar
(
S(νθ,k)

) = 1

νθ,k

(36)

Evaluating Eq. 34 with the Fisher Information for νθ,k

from Eq. 36 results in the following FIM:

I(θ) =
Z∑

k=1

(
∂νθ,k

∂θ

)	 (
∂νθ,k

∂θ

)
· 1

νθ,k

(37)

Subsequently, the CRLB can be calculated on basis of the
FIM. This CRLB describes the lower bound to any unbiased
estimator for our problem. It can be derived by evaluating
the inverse of the FIM, which is widely interpreted as a kind
of covariance matrix. Thus, the CRLB can be used to obtain
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the performance on the estimator used in an experiment. If
the experimental results are close to the CRLB for long data
sequences the estimator is called efficient [62]. In this case
the estimator is optimal in terms of accuracy. The diagonal
elements of the following inequality represent the CRLB
values.

var(θ̂) ≥ I (θ)−1 (38)

In order to illustrate the CRLB results in this paper, they
are exemplary calculated for μp,max and σg . Then they are
plotted with respect to the exposure time and the number of
incident photons. Thus, the parameter vector is specified as
θ = {μp,max, σg}.
The following section explains the simulative calculation of
a laser spot image according to the previously introduced
model.

5 Simulation of the incoming photons
and their processing

Within this section the sequence of the implemented sim-
ulation is presented. This serves to simulate the image of
the reflected spot laser on the camera sensor and the cor-
responding output signal. This simulation is based on the
sensor model and the corresponding PSF from Section 4 for
the spot laser specified in Section 3.1.

Since this simulation is intended to pragmatically
reproduce a recorded real laser spot quite well, assumptions
which are necessary for the previous statistical evaluation
were slightly modified for an improved simulation outcome.

The simulation was implemented in Python 3.8.4.
Additionally, the libraries numpy 1.19.0, matplotlib 3.2.2
and scipy 1.5.0 were used. All calculations were performed
sequentially on the Central Processing Unit (CPU).
Furthermore the input and output of the simulation as well
as deviations from the modelling in Section 4 are explained
below.

(1) Input: The simulation receives all relevant character-
istic values from the sensor system, lens, material and laser
beam as input. In addition, the exposure time and sensor
amplification are necessary. All the corresponding parame-
ters are presented for the experimental setup in Section 3.1.
The sensor properties consist of the quantum efficiency ηqe,
the mean dark noise μd , as well as mean value and standard
deviation of the readout noise μq, σq . Furthermore the area
of a single pixel Apx is required. This is calculated from
the pixel dimensions spx,x and spx,y . As already stated in
Section 3.1, the fill factor for the installed sensor is almost
100%. Due to this reason the fill factor is assumed to be one
in this simulation and is not considered any further.

The lens and optical characteristics consist of the
adjusted aperture f-number fa , the focal length f of the
lens, the absorption coefficient of the built-in filter �f and
the working distance dw of the lens. The corresponding
values and relationship between these influencing factors
are introduced in Section 3.1. Due to Eq. 12 the relative
reflectivity of the material �m is required. Furthermore in
accordance with Eq. 8, the beam propagation parameters
p1, p2 are utilised. The laser spot is defined through the
laser wavelength λla , laser power PL and the FWHM of the
Gaussian laser profile in x and y direction. These values are
utilised in Eqs. 11 and 14 and introduced in Section 3.1.

(2) Approximated top hat profile: Following the
characteristics of a reflected laser beam profile introduced in
Section 2.2.1 from Stokes-Griffin and Compston [43], a top
hat like laser profile is enforced for the applied simulation.

At this point, the assumption of a Gaussian intensity
profile from the calculations in Section 4 is extended.

Accordingly, we assumed that values above a certain
intensity level result in a nearly homogeneous part of the
sensor image. The case diffraction in Eq. 39 expresses this.
The corresponding top hat maximum value in Eq. 40 is
specified according the function in Eq. 9 of the laser beam
profile. The parameter rT H defines the width of the top
hat plateau in the beam profile. Considering the originally
Gaussian beam profile, this value is chosen to be quite small

in this paper rTH =
√

1
8 .

μy(i, j) =
{

μy,max,TH μy(i, j) > μy,max,TH

μy(i, j) other
(39)

μy,max,TH = 1

exp(2
r2
TH
w2 )

= 1

exp( 1
4 )

(40)

(3) Image visualisation and output: The simulated
reflected laser spot images are first exported as 16-bit
greyscale Tagged Image File Format (TIFF) images. Those
serve a comparable evaluation of the real measurements and
the simulated data. Then these simulated images are applied
to the same evaluation chain than the real measurement
images. Accordingly, the simulated reflected laser spot
images are evaluated with the identical methods as the real
measurement images.

The procedure of a simulation run is illustrated in Fig. 6.
The corresponding implemented equations are given at the
end of each box.

In the following section, the results of the simulation
are compared to the real measurement images. Therefore,
the performance of the simulation and the deviations from
the real measured reflected laser spot images are examined.
Furthermore, the captured laser spot images are reviewed.
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Fig. 6 The flow chart illustrates the sequence of the simulation. The
steps are sequentially numbered. The corresponding and implemented
equations for each simulation step are given

6 Results

In this section, initially the reflection and transmission prop-
erties of the fibre composite material are presented. Then
the results of the laser spot measurements are compared to
the simulated laser spot data.

6.1 Beam propagation parameters estimation

This section presents the approximated results for the beam
propagation parameters p1 and p2 from Eq. 8. The cor-
responding methodology was discussed in Section 3.3. In
conclusion, an overview of all applied simulation parame-
ters is shown. This serves as the basis for the subsequent
validation experiments.

The corresponding results from the estimation of p1 and
p2 are presented in Fig. 7.

Fig. 7 Plot of the approximated beam propagation parameters p1 and
p2 for different fibre orientations γ . The mean values and the standard
deviations are given in the legend for each parameter. p1 and p2 are
given in metre

The mean values for all measurements μ(pi, γ ) per
rotation angle γ are plotted for both parameters p1 and p2

on the two ordinates. The total mean of all measurements
μ(pi) and the corresponding standard deviation σ(pi) are
presented in the legend. The two overall mean values
μ(p1) = 2.48 m and μ(p2) = 34.55 m are applied to
all simulations in this paper. The standard deviations for
both parameters σ(p1) = 0.32 m and σ(p2) = 1.20 m
are quite small. This indicates a robust fitting process.
Furthermore, this strengthens the validity of applying a
direction independent beam propagation parameter pb,m as
assumed in Section 4.3.

All corresponding parameters applied for the simulation
are summarised in Table 3. The simulation parametrised in
this way is used for the evaluation in this study. The italic
parameters are estimated from experiments. All the other
variables are given from the discussions in Section 3.1.

6.2 Laser spot image evaluation

Within this section we compare the output of the imple-
mented simulation from Section 5 with the analysis results
for the real reflected laser spot. As described above, both
the real and the simulated camera image of the reflected and
imaged laser spot are examined with the same methods and
identical configurations.

In order to give a visual impression of the match of the
simulation with a real reflected laser spot image, a simu-
lated image and a captured reflection image are compared in
Fig. 8. Furthermore, Fig. 8 panel c illustrates the overlap-
ping of both images. However, it is noteworthy that this
comparison serves only as an exemplary illustration. The
integration time texp = 0.9 ms is applied for this sce-
nario. These images display the laser spot reflected from
the fibre material and imaged in the camera. The significant
deviation from an ideal Gaussian intensity profile can be
attributed to the optical properties of the observed material.
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Table 3 The table summarises all input parameters for the applied simulation in this paper

Parameter Symbol Value(s) Unit Ref.

Focal length f 0.0502 m [52]

Pixel size x spx,x 5.5 · 10−6 m [46]

Pixel size y spx,y 5.5 · 10−6 m [46]

A/D conversion resolution - 10 bit [48]

Dynamic range - 60 db [48]

Sensor A/D conversion gain K 0.11 DN
e

[48]

Sensor quantum efficiency ηqe 38 % [46, 47]

Dark noise μd 70 e
s

[48]

Readout noise (mean) μq 26 e
s

[6]

Readout noise (STD) σq 408.33 e2

s2 [6]

Laser power PL 0.001 W [45]

Laser profile FWHM — x FWHMla,x 72.8 · 10−6 m [45]

Laser profile FWHM — y FWHMla,y 80.4 · 10−6 m [45]

Laser wavelength λla 6.5 · 10−7 m [45]

Working distance dw 0.25 m

Aperture f-number fa 11 -

Image width - 240 px

Image height - 240 px

Exposure time texp {0.0001, 0.0005, 0.0009} s

Top hat factor rT H

√
1
8 -

Material reflection �m 2 %

Beam propagation factor p1 2.48 m

Beam propagation offset p2 34.55 m

The corresponding values and their units are given. Additionally, the literature references are provided, unless the values are defined or
experimentally determined in this paper. The italic entries indicate that these are experimentally estimated material parameters

Nevertheless a 2D Gaussian approximation of the reflected
laser spot beam profile is reasonable, due to the transferabil-
ity of the presented approach to other materials. We need
to consider, that the material is illuminated with a Gaus-
sian intensity profile. Beyond that the top hat plateau of the
reflected laser spot can be significantly smaller for differ-
ent fibre materials. In such cases, the match with a Gaussian
reflection profile is much larger. Moreover, the displace-
ment of the laser spot from the image centre is related to
the thickness of the specimen holder and minor geometric
deviations in the fibre material. However, these effects can
be neglected, since the laser spot is characterised through
a Gaussian fitting over all pixels of the region of interest.
Furthermore, the optical influences of the fibre material are
assumed to be very large. Thus, it is assumed that minor
deviations from the optical viewing axis have only marginal
impact on the results.

We clearly see that the simulated top hat plateau fits
very closely with the real laser spot image. However, the
true laser spot image drops significantly steeper at the
edge than the simulated measurement image. This results

from our simulation assumption of a Gaussian intensity
distribution with artificially generated top hat behaviour.
We have to keep in mind that the calculations and analyses
in this paper are based only on abstract parameters of the
intensity distribution and not on the actual image of the
laser spot. Accordingly, the deviations of the simulation
in this region do not cause major concerns. Furthermore,
we see regularly horizontal lines on the top hat plateau
of the real laser spot image in Fig. 8b. These small
intensity variations presumably resulted from interference
phenomena mentioned above. Obviously, these intensity
fluctuations have an influence on the maximum value of
the laser spot. Here, we assume that the top hat plateau
consists of all pixels with an intensity value greater than
half the image maximum. Furthermore, all image pixels
with less than 2% intensity drop from the image maximum
belong to the intensity peaks in a measurement image. In
this scenario, the ratio of peak to top hat pixels is between
1 and 5% for the measured images. For this reason, they are
negligible compared to the overall intensity level of the top
hat plateau. This confirms the assumption previously made
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Fig. 8 Comparative illustration of the simulated and the recorded
laser spot images for texp = 900 μs. (a) Simulated laser spot
image. A Gaussian intensity profile and an enlarged standard devia-
tion with respect to the inter material beam propagation are applied.
(b) Exemplary captured reflected laser spot image. Therefore, the

Picotronic DC650-1-3(8x25)-C500 laser illuminates the composite
materials which reflects the beam to the AT C5-4090 camera sensor.
(c) Superposition of the simulated laser spot image (a) and the actually
recorded image data (b)

that interference effects do not need to be investigated in
detail.

6.2.1 Peak Signal-to-Noise Ratio analysis

Initially, we consider the PSNR metric for the laser spot
analysis. As stated above in Section 3.2, PSNR is the
most promising for analysing white image noise [12, 58].
Subsequently, we examined the feasibility of characterising
laser speckle and slight intensity variations on the laser spot
as such a type of image noise via PSNR. The corresponding
results are presented in Fig. 9.

Figure 9a shows the calculated PSNR mean values for
the comparison of the simulated reference images and the
corresponding real reflected laser spot images for different
fibre orientations γ . The error bars represent their standard
deviations. The mean values of the concatenated PSNR
are in the interval [53, 58] dB. The corresponding standard
deviations are in the interval [0.7, 3.4] dB. This clearly
illustrates that the greatest PSNR values are obtained for
the shortest exposure time and vice versa. The standard
deviation, on the other hand, is quite similar for all exposure
times.
For the interpretation of the PSNR larger values indicate
lower noise and the other way around. Consequently, the
PSNR values can be interpreted to represent less noise or
intensity fluctuations on the top hat plateau of the laser spot
for a shorter exposure time. This is certainly a plausible
explanation, as disturbances and intensity fluctuations
increase with longer exposure times. Furthermore, we notice
that the graphs with potentially sufficient exposure times
texp = 500 μs and texp = 900 μs are relatively close

to each other. Both graphs are within the range of their
own standard deviations. The red curve with a potentially
insufficient exposure time of texp = 100 μs is beyond the
standard deviations of the other two plots except for γ =
90◦. Thus, these PSNR values can possibly be an additional
indicator for the evaluation of a reasonable exposure time
for this application. However, with the data evaluated in
this paper, we cannot prove that the effects described above
are significant and that they will appear reliably for other
configurations. Further investigations were not carried out
since the focus of the this study is on the overall assessment
and modelling the given assembly.
In Section 3.2 we presented the expected value range for
the calculated PSNR values for a proper correlation between
the simulated and the real recorded laser spot measurement
image. This range should be between 50 and 60 dB for
the available data. Even taking the standard deviation
into account, the PSNR values calculated here are well
within this expected range of values. Thus, despite visual
deviations, the simulated image correlates comparatively
closely with the captured laser spot images.

6.2.2 Investigation of laser intensity fluctuations

Another scoring metric especially developed for the analysis
of laser spots is the spatial speckle contrast value Cs

previously introduced in Eq. 2 from Section 2.2.1. We
applied this metric to the captured image of the entire laser
spot reflected from the composite. Applying this metric to
the full image and not to small regions of the image enables
the investigation of laser spot intensity fluctuations. Hence,
the laser speckle as well as intensity fluctuations due to
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Fig. 9 The figure presents the results for the assessment metrics PSNR
and spatial speckle contrast Cs on the entire laser spot image. The find-
ings for different exposure times texp and various rotation angles γ are
compared for the simulation and the recorded measured data. The cor-
responding standard deviations given. (a) Peak Signal-to-Noise Ratio

results for the comparison of the simulated and the real laser spot mea-
surement image. (b) The figure illustrates the intensity fluctuation of
the recorded laser spot image through the application of the spatial
speckle contrast Cs on the entire measurement image

near-surface beam propagation in the material are examined.
The corresponding results for the measurements and
simulations in this paper are shown in Fig. 9b. Cs is given in
px on the ordinate and the corresponding sample rotation γ

on the abscissa. As already explained above, the simulation
does not consider sample rotation. Thus, the simulated
laser intensity fluctuations are assumed constant for all
γ . Obviously this constant value does not very accurately
represent reality. However, this simulated value mainly
serve to provides a reference to evaluate the Cs values
calculated for the real measurement images. Thus, this is
adequate for the level of detail investigated here. To analyse
the laser intensity fluctuation, this modified spatial speckle
contrast is the standard deviation of the laser spot image in
relation to its mean image intensity. The value range for the
real reflected laser spot image is between 4.4 px and 9.5
px with a standard deviation between 0.35 px and 1.8 px.
However, we like to clarify that the speckle properties of the
laser also depend on the bandwidth and coherence length
of the laser. Nevertheless, in this study we intend to only
superficial analyse the suitability of this metric for assessing
the quality of the input signal. Furthermore, the entire
reflected laser spot image is observed. Accordingly, also
expanding regions with strongly varying laser intensities
have an influence on the Cs value. The comparatively large
beam propagation close to the surface of the composite,

which is illustrated in Fig. 7, has a great influence on the
occurrence of these larger intensity fluctuations regions.
The results for the simulated images are between 3.5 px and
5.2 px. Considering the estimations of the aperture size fa

from Section 3.1, the average diameter of a speckle grain
d̄s for fa = 11 is about 1.87 times the pixel size spx which
means d̄s(fa = 11) ≈ 1.87 px. This value provides a
rough approximation of a theoretical error range for the
simulated Cs values. This error range closely corresponds to
the maximum standard deviation of 1.8 px of the measured
speckle contrast values.

At first, we see that the Cs value for the simulated
laser spot is only slightly below the measurement results
standard deviation. Furthermore, a value decrease for all
measurements at α = 90◦ and a subsequent significant
increase for the values between α = 90◦ and α =
180◦ are evident. In addition, we observe a decrease in
mean image intensity with lower exposure time, while the
standard deviation remains relatively constant. Accordingly,
this leads to higher laser intensity fluctuations at lower
exposure times. This behaviour is also evident for the
simulated values. We have to mention again that the Cs

value presented here contains the speckle of the laser as
well as intensity fluctuations due to laser beam propagation
and re-emission in the material. The beam profile and the
intensity of the laser as well as the corresponding laser
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spatial speckle contrast remain constant. However, due to a
variation in exposure time, varying amounts of photons are
detected over the imaged reflected laser spot. This leads to
a change in intensity fluctuation for the considered images
of the entire reflected laser spot. Due to the Cs values for
the simulated images outlined above, the assumption of
a Gaussian intensity profile on the image plane, as well
as the top hat modification according to Eq. 39, is valid.
Furthermore, the standard deviation of the speckle contrast
σ(Cs, texp) for texp = 100 μs exposure time is about double
the standard deviation for texp = 500 μs and texp = 900 μs.
This means that for texp = 100 μs very differently shaped
reflected laser spot images are captured. Thus, this is an
indication for an insufficiently short exposure time. In this
case the laser spots can only be recorded sufficiently well
under certain conditions. However, for the exposure times
texp = 500 μs and texp = 900 μs, the standard deviation
σ(Cs, texp) is significantly smaller and almost identical for
all measurements. This metric is particularly well suited for
the evaluation of the laser spot image quality for a given
exposure time. However, this assessment is only valid if the
entire laser spot is represented in the cropped image and the
sensor avoids saturation.

6.2.3 Top hat magnitude analysis

Subsequently, the intensity maxima of the imaged reflected
laser spots are analysed in Fig. 10. Such maxima are
defined as input parameters for the EMVA 1288 modelling.
Thus, they are suitable for the comparison of the simulated
images with the real recorded measurement images.
Figure 10a illustrates the actual pixel intensity maxima of
the simulation and the average maxima of the measurements
for each sample rotation angles γ . This serves to evaluate
the top hat laser intensity level defined in Section 5.
Figure 10b shows the maxima from the Gaussian curve
fitting for both, the simulated and the real measurement
images over the sample rotation angles γ . The standard
deviations of the individual points are given as error bars.
Again, the simulation is independent of the rotation angle γ

and thus forms a constant straight line.
We see in Fig. 10b that the top hat maximum values

of the measured images are very close together for each
exposure time and rotation angle. The maximum value
difference is about 6 units, independent of the rotation angle
or the exposure time. Thus, these maximum values appear
to be a stable criterion for detecting a laser spot on a
fibre composite material. Furthermore, the largest standard
deviations at γ = 0◦ and γ = 135◦ are very small with < 10
brightness units. The simulated maximum values deviate
from the real average values by about 43 units in the worst
case. For the two longer exposure times texp = 500 μs

and texp = 900 μs this deviation is < 8 units. This is in
a similar range than the variation of the measured values
for different rotation angles. Nevertheless, in comparison
to the total maximum intensity of > 800 units, this
deviation is very small. Moreover, these small deviations
between the simulation and the measured values indicate
that the assumptions for the modelling of �s in Eq. 13 are
sufficient.

6.2.4 Gaussian fitting amplitude evaluation

Figure 10b presents the calculated maximum values from
the Gaussian curve fitting for both the simulated and the
real measurement images. The individual values are again
plotted over the rotation angles γ . Accordingly, error bars
indicate the standard deviations. We see clearly that the
calculated Gaussian maximum values vary significantly
over different exposure times. For texp = 100 μs the
maxima are in the range of 839 to 924 brightness units. The
brightness values are considerably larger for the two longer
exposure times. They are between 992 and 1062 brightness
units. In addition, the large standard deviation of at worst
227 units for texp = 100 μs is quite striking. In contrast, for
the exposure times texp = 500 μs and texp = 900 μs only
a maximum standard deviation of the intensity values of 51
units is obtained. A possible reason for this major difference
might be the sensitivity of the camera sensor. In case of
texp = 100 μs the incident irradiance of the sensor might
drop below its sensitivity threshold. The large standard
deviations for the measures for texp = 100 μs indicate that
the border areas of the laser spot are just at the sensitivity
boundary of the camera sensor and thus the reflection
is partly detected and partly rejected. In this respect we
need to mention that no additional dark level threshold
was set in the camera configurations. The corresponding
“DarkLevelOffset” parameter [47] of the camera was set
to zero. However, the findings about the meaning of the
speckle contrast from Fig. 9b are supported. This confirms
that texp = 100 μs is an insufficiently short exposure time
for the application.

Apart from the presumably insufficient exposure time
texp = 100 μs the simulated maxima and the measured
average maximum intensities differ less than 100 intensity
units from each other. In this case the simulated maxima
are larger than the measured values. Taking into account
the top hat magnitudes from Fig. 10a, this indicates that the
mathematical modelling of the input image and the curve
fitting with a Gaussian function provide reasonable results.
Nevertheless, a perceivable deviation from the actual laser
spot image exists. This effect is qualitatively demonstrated
in Fig. 8 for the simulated and an exemplary captured laser
spot image.
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Fig. 10 The figure presents the actual top hat maxima and the approx-
imated Gaussian amplitudes for the simulation and the real measure-
ment images for different samples rotations γ and the three examined
integration times. The corresponding standard deviations are given

from the error bars. (a) Visualisation of actual measured and simulated
maximum values of the reflected laser spot. (b) Amplitudes estimated
from 2D Gaussian fitting for the simulation and the recorded laser spot
images

6.2.5 Investigations on laser spot dimensions

In accordance with the previously mentioned limitations
of the applied mathematical model, we investigate the
dimensions of the Gaussian laser spot approximation. Then
we compare them to the simulated laser spot dimensions.
For this reason Fig. 11 presents the directional independent
average standard deviations from all 2D Gaussian curve fits.
In this case, the standard deviation value does not represent
a statistical parameter but the width of the approximated
laser spot at a certain image intensity value. Thus, the
width of the laser spot is analysed at a given position.
These parameters are presented for all images of each
corresponding fibre orientation angle γ . These values are
compared to the directional and rotational independent
laser spot width at standard deviation intensity level from
the simulation σGaus,Sim. Again, the results for the three
different exposure times are examined.

Initially we recognise that the σGaus,Sim values for texp =
500 μs and texp = 900 μs are more closely aligned than
for texp = 100 μs and texp = 500 μs despite the identical
exposure time difference of �texp = 400 μs. Moreover, a
significant rise for the recorded images between γ = 45◦
and γ = 90◦ is noticeable. Afterwards the curves drop con-
siderably towards γ = 135◦. The standard deviations of the
spot widths for different angles and exposure times are rel-
atively similar. Their values range from 1 px to 4 px. The

simulated laser spot widths at standard deviation position
correspond very well with the curve fittings of the measured
laser spot profile. For the range between γ = 0◦ and γ =
90◦ the maximum difference between the simulation and
the fitted measurements is only about 2 px. For γ = 135◦
and texp = 100 μs the difference is about 4.5 px. How-
ever, the standard deviation of the measured spot widths
for this exceptional case is also around 4 px. We noticed
that the simulated values are always within the standard
deviation of the measured and fitted values or rather very
close to it. This simulated average spot diameter at stan-
dard deviation position is based on the Gaussian laser beam
profile and the beam propagation model from Eq. 8. Due
to the perpendicular irradiation of the material and other
major optical influences, no directional dependence of the
material sample is considered for the simulated values. Fur-
ther research is necessary to incorporate these directional
influences into the simulation for non-perpendicular illumi-
nation. Consequently, the simulated values are valid for all
fibre orientations γ equally, but have an increased overall
uncertainty. Furthermore is noteworthy that the given sim-
ulated reference values do not represent the average of the
measured values. Due to the approach for the experimental
determination of the beam propagation parameters p1 and
p2 the simulated reference plots look very similar to the
averaged measurement values. However, as outlined above,
the simulated values match the measured values well for
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Fig. 11 Directional independent averaged diameter of the reflected
laser spot at standard deviation intensity level, estimated from the 2D
Gaussian laser spot fitting. The corresponding fitting values for the
simulated and the captured images are compared and plotted for each
sample rotation γ

different exposure times and fibre orientations. For this
reason, we conclude that the simplified modelling of the
beam propagation from Eq. 8 and the estimation of the
model parameters p1 and p2 according to Fig. 7 allow a
sufficiently accurate simulation.

6.2.6 Analysis of the accumulated pixel values

Finally, the integral of all pixel intensity values of the
examined image regions, for the given fibre orientations γ

are analysed. This is shown in Fig. 12.
Accordingly, the corresponding standard deviations of

the accumulated intensities are indicated with an error bar.
For this, we have to remember that the image intensity
values are directly correlated to the amount of incident
photons. Consequently, we assume a linear response of
the camera pixels. Thus, neither an intermediate fitting
model nor other assumptions are made to calculate these
values. With the exception of the integrals for γ =
135◦ and texp = 500 μs at the position γ = 0◦,
all simulated accumulated values are within the standard
deviation of the integrals from the measurement images.
Nevertheless, we notice a slight increase of the simulated
values compared to the average values of the measurement
images. Furthermore, it is noteworthy that the standard
deviations of the measured integral values up to 1.1 ·

Fig. 12 Summed pixel values of the imaged reflected laser spot for
different fibre orientations γ . The associated standard deviations are
calculated from images with the same fibre orientation. The measured
and the simulated values are presented

106 px are relatively large. This effect is equally evident
for all considered exposure times. This clearly indicates
the varying appearance of individual laser spots in the
measurement images. Thus, it is reasonable to carry out a
model-based fitting of the measurement images in order to
achieve evaluable results. This also justifies the Gaussian
curve fitting for the investigations from above. Furthermore,
this complex laser material interaction makes the modelling
of the reflected laser spot in the measurement image
more difficult. However, these sufficient simulation results
confirm the assumption for the parameter �s from Eq. 13
once more. Moreover, this standard deviation can also act as
a kind of uncertainty indicator for the laser reflection. Thus,
it also provides information about the precision of a depth
measurement.

6.2.7 Evaluation of the Fisher Information

In the following Fig. 13 the calculated CRLB for θ =
{μp,max, σg} for the exposure times and photon counts are
presented exemplary. The applied calculation parameters
are listed above in Table 3.

As previously explained, the CRLB indicates the mini-
mum variance for a certain parameter. Thus, we can deter-
mine the accuracy of estimating this particular parameter
from a given model. The minimum variance for μp,max is
in the interval V ar(μp,max) = [

3 · 107, 2.65 · 1014
]
. For

the minimum variance of σg the value range V ar(σg) =

3986 Int J Adv Manuf Technol (2021) 116:3965–3990



Fig. 13 Plot of the CRLB values of the number of photons as well
as the expansion of the simulated reflected laser spot image over the
exposure time on the left and number of incident photons on the right.
(a) Plot of the CRLB values of the number of photons V ar(μp,max)

and the expansion of the simulated, reflected laser spot V ar(σg) for
various exposure times texp . (b) Plot of the CRLB values of the number
of photons V ar(μp,max) and the expansion of the simulated, reflected
laser spot V ar(σg) for different amounts of incident photons μp

[
2 · 10−18, 1.25 · 10−16

]
applies for both plots. It is note-

worthy that the variance of σg is very small in each case.
In contrast, for μp,max the calculated variance is very large.
This means that the number of photons μp,max can be esti-
mated with very large uncertainty. On the other hand, σg

can be estimated very well. Furthermore, we recognise that
the minimum variance of σg increases significantly in this
model for very small exposure times. However, this is plau-
sible but indicates a limitation of the beam propagation
model from Eq. 8. For larger exposure times this minimum
variance increases smoothly. For the variance of the num-
ber of incident photons V ar(μp,max) a significant rise of
the variance with increasing number of incident photons is
evident in both plots. Concluding, it should be mentioned
again, that the two parameters V ar(μp) and V ar(σg) have
only been examined exemplary to show the usability of the
CRLB. For a more detailed investigation an extensive FIM
and CRLB must be established and evaluated.
The results of this paper are discussed in the following
section.

7 Discussion

This section discusses the major findings of this study and
links them to the related research. In this paper different
methods for modelling a sensor image and evaluating the
corresponding data are investigated.

In the literature, Wang et al. [14] suggested a 2D
Gaussian modelling for a laser beam reflected from CFRP
material. This model corresponds rather accurately with the
characteristics of the Gaussian approximated real reflected
laser spot in this study. Accordingly, the assumption of a
Gaussian beam profile for a reflected laser spot is valid for
the simplified modelling in this study. However, in order to

reproduce the top hat laser profile from Stokes-Griffin and
Compston [43] an alternative beam modelling needs to be
considered.

Furthermore, our results indicate that the camera sensor
modelling according to the modified EMVA 1288 procedure
yields reasonable results for a basic modelling of the con-
sidered test case. This answers the first research question.
A more precise modelling of the reflected laser requires
a more detailed description of the interaction of the laser
beam with the fibre composite material. For the simulation
of the reflected laser and the mathematical camera model, a
top hat plateau is artificially formed as previously explained.
Therefore, we assume that all values above the Gaussian

beam profile position rTH =
√

1
8 equal the value of the

Gaussian intensity profile at this position. Despite the sim-
plicity of this hypothesis, our experimental results indicate
their validity.

Referring to the second research question, we would
like to summarise the informative value of the examined
metrics for the application case under consideration. The
PSNR primarily show the correspondence between the
measured and the simulation images. The spatial speckle
contrast of the entire laser spot image and the corresponding
standard deviation are reliable measures for investigating
the image intensity fluctuations. Thus, they are sensible to
assess the sufficiency of the exposure times. In this case
larger speckle contrasts and higher variances indicate an
insufficient exposure time. The standard deviations of the
approximated laser spot maximum values are a reasonable
metric for assessing the laser spot quality. Since a robust
laser spot shape leads to precise depth measures, this
is implicitly a feasible metric for this scenario. In the
performed experiments this standard deviation is quite large
for the exposure time texp = 100 μs. This means, that
an exposure time of texp = 100 μs is too short for
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this application case. Accordingly we carried out that the
maximum value of the top hat plateau yield a stable measure
for detecting the laser spot also for insufficient exposure
times. Furthermore, it appears that the standard deviations
of the accumulated pixel values can serve as an uncertainty
parameter for the depth image estimation. Finally, the
CRLB results seemed to be suitable to analyse the accuracy
and limitations of the applied model. In this particular case
these calculated values show a good predictability of the
laser spot size but a poor estimability of the number of
incident photons.

The approaches outlined in this study for modelling a
sensor and evaluating signal quality can be applied in future
research to evaluate the behavioural variation of detection
and classification algorithms with changing signal quality.
This further research is necessary to evaluate the impact
of a varying signal quality on the defect detection and
classification accuracy. Using the approaches from this
study, the increase in efficiency of the inspection step during
production can then be assessed in relation to the signal
quality.

The following section summarises the findings from this
paper and highlights the added value of our research.

8 Conclusion

In this section we summarise the key findings of this paper
and highlight the contribution to industry and research. We
have shown that the modelling of a Laser Line Scan Sensor
with a modified European Machine Vision Association
1288 approach is suitable. Additionally this model is
implemented in a simulation and is then compared to the
experimental results in this study. For this purpose it is
necessary to consider the perpendicular degree of reflection
of the fibre material.
Furthermore, we demonstrated that the Gaussian laser spot
fitting characteristics are also meaningful for a top hat
profile. However, metrics such as speckle contrast are
particularly well suited to simply assess the sufficiency of
a configured exposure time. This procedure is also used to
evaluate the presence of distinctive image characteristics.
The presented Cramér–Rao lower bound provides a sensible
way to evaluate the camera model. Here it is particularly
noticeable that the the size of the laser spot can be estimated
very well. On the other hand, the number of incident
photons is rather difficult to estimate with this model.

The findings from this paper are very beneficial for
developers of camera-based inspection systems for the
Automated Fibre Placement process. Our findings support
the material specific selection of a sensor and its optical
design. Furthermore, the model implemented in the simula-
tion serves to identify potential limitations of the inspection

of a certain component prior to the actual production. We
presented a model- and simulation-based approach for mod-
elling a Laser Line Scan Sensor in this paper. With low
effort this procedure and the presented evaluation meth-
ods can be transferred to other camera-based inspection and
production processes. Therefore, the added value of this
research is not limited to the fibre placement technology.

In future research the introduced spot laser model needs
to be extended to the application of a line laser. In addi-
tion, the model should take movement influences during
scanning at varying velocities into account. Furthermore,
the analysis of the Fisher Information Matrix and Cramér–
Rao lower bound needs to be extended to determine an
efficient estimator.

Moreover, the influence of the signal quality on the
behaviour of the subsequent algorithms should be investi-
gated in more detail.
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