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Abstract
The paper deals with characterisation and modelling of laser milling process on silicon carbide hard ceramic. To this end, a
Yb:YAG pulsed fiber laser was adopted to mill silicon carbide bars. Square pockets, 5×5 mm2 in plane dimension, were
machined at the maximum nominal average power (30W), under different laser process parameters: pulse frequency, scan speed,
hatching distance, repetitions and scanning strategy. After machining, the achieved depth and the roughness parameters were
measured by way of digital microscopy and 3D surface profiling, respectively. In addition, the material removal rate was
calculated as the ratio between the removed volume/process time. Analysis of variance (ANOVA) was adopted to assess the
effect of the process parameters on the achieved depth, the material removal rate (MRR) and roughness parameters, while
response surface methodology (RSM) and artificial neuronal networks (ANNs) were adopted to model the process behaviours.
Results show that both RSM and ANNs fault in MRR and RSm roughness parameters modelling. Thus, an integrated approach
was developed to overcome the issue; the approach is based on the use of the RSMmodel to obtain a hybrid Training dataset for
the ANNs. The results show that the approach can allow improvement in model accuracy.
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1 Introduction

Silicon carbide (SiC) is a high-performance advanced or tech-
nical ceramic; it has attracted increasing attention thanks to its
superior properties in terms of specific strength, specific mod-
ulus, hardness, wear resistance, thermal and chemical resis-
tance and thermal stability. As a consequence, SiC has appli-
cation in several industrial fields, such as aerospace, automo-
tive, mechanics, chemicals, electronic, defence, textile and
biomedical.

Even if advanced ceramic components are produced in near
net shapes by way of power sintering, further machining is
generally required to give the required tolerance and finishing

or to produce complex shape and micro-sized features.
Conventional machining of ceramic materials is associated
with low material removal rate (MRR), high tool wear and
high manufacturing costs [1–3]. Thus, it is mainly adopted
for the shaping of green bodies (i.e. before the sintering). In
last years, different non-conventional techniques were pro-
posed to machine advanced ceramic components, such as
electrical discharge machining (EDM and WEDM), abrasive
water jet (AWJ) or laser machining (LM). However, each of
these shows some limitations. EDM and WEDM are applica-
ble only on electrically conductive materials or require a com-
plex process to machine the insulating ones [1, 2, 4–6]. In
addition, EDM is characterised by low MRR and tool wear
as well as the presence of the heat-affected zone (HAZ) [1, 2].
AWJ does not suffer problems like low MRR (generally
higher than EDM) and tool wear and can machine any mate-
rial, including insulators [1–3]. However, also in this case,
damage (micro-cracks and network cracking) can occur, due
to the high compressive load resulting in the impact of the
abrasive particles [7]. Furthermore, in order to have precise,
smooth and small feature, complex systems (5 axis machine)
and high focussing AWJ equipment (i.e. small jet diameter)
are required [8, 9].
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Laser milling (LM) is a competitive process to machine
advanced ceramics [2, 10–15]. In this technique, the laser
beam removes material layer by layer following
predetermined patterns. Since a single removed layer has a
small depth (1–10 μm), a deep profile can be obtained by
repeating the process more times, up to achieve the required
depth. During the process, the machined surface can be varied
to obtain 2D ½ shapes.

Compared to other processes, LM offers several advan-
tages, such as no mechanical contact, no tool and tool wear,
complex fixing equipment is not required and easy automa-
tion. In addition, since the laser beam is few microns in diam-
eter, it is possible to obtain complex and fine shapes with good
accuracy. It is environmentally friendly since it does not re-
quire any additional pollutant components (as the dielectrics
for EDM). Therefore, there is a great interest in applying this
technology for the machining of micro-sized features on ce-
ramic materials [16–18]. However, also laser milling shows
some drawbacks, such as low MRR and the presence of ther-
mal damages (recast layer, microfracture, HAZ), and it re-
quires process parameters optimisation. As a matter of fact,
laser interaction involves several removal mechanisms: melt-
ing and vaporisation [19, 20], thermal degradation [21–23],
thermal stress [24, 25] and mechanical effect (the molten ma-
terial pulls-out due to the vaporisation-induced recoil force
[19, 26, 27]). Thus, the presence of each mechanism depends
on the laser characteristics (wavelength, spot diameter, pulse
length, average power and pulse frequency) and the investi-
gated material as well as the process parameters different.
Consequently, researchers have spent many efforts to identify
the effect of the process parameters on the removal mecha-
nisms and achieved geometry and surface quality, as well as
provide models able to forecast the geometry and the surface
quality once the process parameters are assigned.

In the literature, several methods are proposed to model the
processes behaviours, such as finite element analysis (FEM),
statistical methodology (SM) and cognitive systems (CS).
However, each method shows advantages and limitations.
FEMs are generalised methods, but require deep knowledge
of the interaction mechanisms [28] and long computational
times depending on the phenomenon complexity and the res-
olution degree.

Statistical models have been often used because they re-
quire a limited number of trials for the process analysis; they
are implemented in commercial software, which simplifies the
model building and reduces the computational time to a few
minutes. In addition, statistical methodologies allow obtaining
a robust model that can be also adopted in process optimisa-
tion [16, 20, 29–34]. However, statistical models impose an
existing model (i.e. an equation) on the given data (experi-
mental data); in other words, the relationship between input
and output is obtained as the best fitting solution. This intro-
duces a systematic error since the adopted equation is not sure

that it is the best one for the specific problem [35–37].
Conversely, cognitive systems, and in particular artificial neu-
ral networks (ANNs), extract the relationship directly from
data as an input/output (domain/range) pair by imposing a
priori architecture (the NN) rather than an existing model.
The advantage of this approach is that, under the appropriate
conditions, ANNs are able to model a complicated relation-
ship for the modelling to adapt to the different problems [38,
39], solving engineering issues in industrial applications, such
as in-process control [40, 41], and optimisation procedures
[42–44], as well as in non-destructive evaluation [45].
Moreover, ANNs can allow robust models even in the pres-
ence of a high noise ratio [38, 46, 47]. However, ANNs re-
quired an adequate number of experimental trials to train the
network (i.e. large experimental dataset), an appropriate selec-
tion of the network configuration [38, 46, 48, 49] and a train-
ing phase that can be significantly long (several hours).

There are several studies about laser milling of advanced
ceramics [11–14, 16–19, 24, 25, 30]; however, in the authors’
knowledge, there is lack of paper specifically focussed on the
laser milling of SiC.

The present paper deals with the laser milling of SiC
with the aim to detect which and how the process param-
eters affect the laser beam–material interaction, and to
explain the effect of the process parameters on the
achieved depth, the MRR and surface quality. Therefore,
a 30-W Yb:YAG pulsed fiber laser was adopted to ma-
chine silicon carbide bars, changing the following laser
process parameters: pulse frequency, scan speed, hatching
distance and repetitions. Thus, the achieved depth and the
roughness parameters were measured by way of digital
microscopy and 3D surface profiling, respectively. The
material removal rate was calculated as the ratio between
the removed volume and the process time. Analysis of
variance was adopted to assess the effect of the process
parameters on depth, MRR and roughness parameters.
Response surface methodology (RSM) and artificial neu-
ronal networks were adopted to model the process behav-
iours. Results show that, for the adopted laser and under
the tested conditions, it is possible to machine SiC
obtaining a depth up to 240 μm with a moderate surface
roughness (Ra in the range 0.6–3.3 μm). The RSM meth-
odology involves large errors in MRR and RSm rough-
ness parameters modelling (Errors [%] are about 25% and
39%, respectively). Similarly, also ANN can fail in the
MRR and RSm modelling (Errors [%] are about 34%
and 57%, respectively). Thus, an integrated approach
was developed to overcome the issue; the approach is
based on the RSM model to obtain a hybrid Training
dataset for the ANNs. The results show that the approach
can allow improvement in model accuracy, since the
Errors [%] are reduced to 14.9 and 14.3 for RSm and
MRR, respectively.
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2 Materials, equipment and procedures

2.1 Materials

The investigated material was a sintered silicon carbide (SiC)
in the form of bars, 25×5×5 mm3 in dimension, supplied by
TKC-Technische Keramik GmbH. SiC is technical ceramic
characterised by exceptional hardness, high strength, low den-
sity (compared to steel), high elastic modulus, high thermal
shock resistance, chemical inertness, high thermal conductiv-
ity (compared to other ceramic materials) and low thermal
expansion. Thanks to its properties, SiC has found extensive
application in aerospace and automotive components (brake
discs, bearings or as oil additive), electronics component (for
the production of LEDs, diode and semiconductor), hydraulic
valve bodies and seal rings, missile parts, munitions, pistons,
watch components, orthopaedic equipment and, of course, as
abrasive (carborundum).

In Table 1, the chemical composition and the main proper-
ties of the SiC ceramic are reported as declared by the produc-
er, while in Fig. 1, images of the specimen and its surface are
reported.

2.2 Laser system

Figure 2 shows a schematic of laser milling processes (LMP).
As aforementioned, in this technique, the laser beam is
adopted to remove the material layer by layer. First, the con-
tour of the geometric pattern is defined in CAD environment;
then, the inner area delimited by the contour is machined from
side to side by hatching: the laser beam moves line after line
up to completely cover the area to be machined. The distance
between the lines is called hatching distance (Hd). Since the
machined layer is thin, the process is repeated several times,
up to the required depth. The number of times the area is
hatched is called repetitions (R).

The experimental tests were performed adopting a laser
system (LASIT Fly30 fiber) equipped with a Q-switched
pulsed Ytterbium fiber laser (IPG, model: YLP-RA30-1-50-
20-20) working at the fundamental wavelength λ=1064 nm.
The system is equipped with a galvanometric scanning head, a
“flat field lens” 160 mm in length, a suction system and a
monitoring camera and it is controlled via a personal comput-
er. The latter allows the geometric patterns generation (con-
tour and hatching distance) and setting of the process param-
eters: average power (Pa), scan speed (Ss) pulse frequency (f)
and repetitions (R). Since the laser source works at a fixed
pulse duration (D=50 ns), the pulse energy (Ep) and the pulse
power (Pp) can be calculated by way of the well-known equa-
tions [50, 51]:

Pe ¼ Pa

f
ð1Þ

Pp ¼ Pe

D
¼ Pa

f ⋅D
ð2Þ

Moreover, knowing the beam footprint or the beam diam-
eter (ds) and the hatching distance (Hd), it is possible to

Table 1 Chemical composition and main properties of SiC

Chemical composition Unit Value

SiC [%] 94.3

Al2O3 [%] 3.6

Y2O3 [%] 2.1

Main properties

Density [g/cm3] 3.1

Young’s modulus [GPa] 450

Hardness (HV10) [MPa] >2600

Electrical conductivity [S/cm] 0.2–1

Thermal conductivity [W/m°K] 120–200

Linear thermal expansion [10-6/°K] 4

Fig. 1 SiC specimens and SEM image of the specimen surface
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calculate the overlapping factor along the directions parallel
(Of %) and orthogonal (Ho %) to the laser beam travel, that
represents the superposition between two consecutive pulses
(pulse overlapping) and between two consecutive lines (hatch-
ing overlap), respectively:

Of %½ � ¼ 1−
Ss= fð Þ

dsþ Ss⋅Dð Þ
� �

⋅100≈ 1−
Ss

f ⋅ds

� �
⋅100 ð3Þ

Ho %½ � ¼ 1−
Hd

ds

� �
⋅100 ð4Þ

This kind of laser source was chosen for the good absorp-
tion of SiC at its wavelength, the possibility to release high
pulse power (up to 20 kW) and the higher conversion efficien-
cy (about 25%) as well as its flexibility, which makes it suit-
able to perform different operations, like marking, texturing,
micromachining and surface treatments on several materials,
such as metals [20, 43, 52, 53], composite materials [29, 54]
and, of course, ceramics [13, 19, 55]. In Table 2, the detailed
characteristics of the laser system are reported, while in Fig. 3

the laser equipment and an example of SiC milled specimen
are reported.

2.3 Experimental procedures

In order to study the process behaviours, a systematic ap-
proach to planning design of experiments (DOE) was adopted.
This approach involves different tasks: problem definition; a
collection of information about the process by way of biblio-
graphic analysis and relevant background; control factors (i.e.
the process parameters) and their level definition, response
variables (measured quantities) identification, experimental
planning, tests execution and data analysis [56–58]. As afore-
mentioned, laser machining involved different mechanisms:
melting and vaporisation [19, 20], thermal degradation
[21–23], and mechanical effect (the molten material pull-out
due to the vaporisation-induced recoil force [19, 26, 27]). The
presence of each mechanism depends on the laser character-
istics (wavelength, spot diameter, pulse length, average power
and pulse frequency), the investigated material as well as the
adopted process parameters (scan speed, hatching distance,
pulse frequency, repetition,…).

The selection of the control factors and their values is a
critical issue in experiment planning. Based on relevant bibli-
ography [11, 14, 15, 30, 32–34, 48], previous studies [13, 19,
29, 59, 60] and preliminary tests, a 33×22 full factorial plane
was developed according to the design of experiment (DOE)
[56, 57, 61]. It was chosen to fix the average power at the
maximum level (30W) and to change the scan speed, the pulse
frequency and the number of repetitions on 3 levels. The
hatching distance and the scanning strategy (Strategy) were
selected on 2 levels (the scanning strategy represents the
hatching mode). Table 3 summarises the factors and their
levels adopted for the experimentation.

In detail, the average power was fixed at the maximum
value to assure a high material removal rate. The scan speed
and the pulse frequency were selected based on preliminary
tests. During these tests, it was noted that too high scanning
speed or pulse frequency (that corresponds to low pulse ener-
gies or pulse power according to Eqs. (1–2)) does not allow
machining, while too low scan speed (<500 mm/s) allows the

Fig. 2 Schematic of laser milling
process

Table 2 Laser system characteristics

Characteristic Symbol Value Unit

Wavelength λ 1064 nm

Nominal average power Pa 30 W

Pulse frequency f 30÷80 kHz

Pulse duration D 50 ns

Maximum pulse energya Ep 1 mJ

Maximum pulse powera Pp 20 kW

Scan speed Ss 1 ÷ 5000 mm/s

Mode TEM 00 --

M2 1.2 ÷ 1.5 --

Focused spot diameterb ds ≈ 80 μm

Power consumptionc -- 120 W

aAt Pm = 30 W and f = 30 kHz
bAs declared by the producer for a 160-mm flat field lens
c At the maximum power output
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formation of a greater amount of molten material, and this
material solidifies on the machined surface producing the pro-
trusion of the same from the surface and the presence of
micro-fracture; this is consistent with that reported in [19].

The hatching distance controls the lateral superposition
(hatching overlap) between two parallel scansions. Too large
value does not assure a sufficient overlapping, especially when
small surfacesweremachined, while too narrowHdmay involve
local over-heating, micro-fractures formation and debris accu-
mulation. Thus, to assure an adequate hatching overlap, Hd
was selected as a fraction of the declared beam spot at the focus-
ing point (about¼ and½ of the declared beam spot diameter, see
also Fig. 2). It is worth noting that, while the overlapping per-
centage varies in the range 60–90% (Eq. (3), for Ss=1000 and
f=30 kHz and Ss=500 and f=60 kHz, respectively), the hatching
overlap varies between 25 and 50% (Eq. (4), for Hd=60 and
Hd=40, respectively). The difference in overlapping may result
in texture formation on the surface (due to the formation of burr
rows at groove sides), with a consequent increase in roughness.
Therefore, in order to reduce this phenomenon, it was decided to
adopt a pattern made of horizontal lines placed along with four

different directions 0°, 90° and ±45° (CROSS strategy) or two
single directions: 0° and 90° (NET strategy), as reported in Fig.
4, where each angle is carried out during a single repetition. The
number of repetitions was selected to consider the need to use a
multiple of four (due to the CROSS strategy that requires a
minimum of four repetitions) and to obtain a depth to be mea-
sured with a low error and in any case less than the depth of field
of the laser system (about ±0.5 mm respect the focussing point)
to avoid excessive defocusing. To reduce the effect of any noise
factor, the order of trials was fully randomised. No test replica-
tion was performed; in other words, one test for each control
factor combination(treatment) was performed. This choice may
introduce a limitation in the determination of higher-order inter-
actions (as a matter of fact, no high order interaction can be
checked), as well as in terms of model robustness. In addition,
the replications adoption is not useful for ANNs modelling since
it introduces errors during the trial phase and prevents the fitting
[46, 62]. However, also considering the number of tests carried
out (108 tests or treatments), this choice is an acceptable com-
promise in terms of the resolution of the statistical model and the
number of tests to perform.

10 mm

a) b)

c)

Fig. 3 a Laser equipment; b
milling operation; c example of
SiC component after laser milling

Table 3 Factors and levels
adopted for the experimentation Factor Symbol Unit Levels

1 2 3

Scan speed Ss mm/s 500 750 1000

Frequency (pulse power)a f (Pp) kHz (kW) 30 (20) 40 (15) 60 (10)

Repetition R -- 20 40 60

Hatching distance Hd μm 40 60 --

Strategy -- -- CROSS NET --

a In the brackets, the pulse power (Pp) calculates by way of Eq. (2).
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To quantify the process behaviour, the following response
variables were selected: machined depth, material removal
rate (MRR), calculated as the machined volume/process time,
and the surface roughness parameters. The depth was mea-
sured by way of digital microscopy (Hirox, mod. KH-8700)
as the average value of three profiles, 10 mm in length, ac-
quired over the whole cavity. The surface roughness was mea-
sured by way of a 3D surface profiling system (Taylor
Hobson, mod. Talysurf CLI 2000) equipped with an inductive
gauge 2 μm radius diamond stylus. For each specimen, 4
profiles, 4 mm in length, were acquired directly in the cavity,
adopting an axis resolution of 0.5 μm, a lateral resolution of
0.5 μm and a vertical resolution of 40 nm. Before the measur-
ing, in order to avoid debris retention, each specimen was
cleaned with acetone in an ultrasonic bath for 5 min.

Surface analysis software (TalyMap Universal, release
3.1) was adopted to measure the roughness parameters Ra
(arithmetic mean deviation of the assessed profile), Rz
(maximum height of the profile), Rt (total height of the
profile), and RSm (mean spacing of profile elements),
according to UNI EN ISO 4287:2009 standard [63]. For
each treatment, the average value of the four profiles was

adopted as roughness parameters. Once the depth was
measured by digital microscopy, the material removal rate
(MRR) was calculated as the ratio between the machined
volume/treatment time by way of the equations:

ti ¼ total beam travel

scan speed
⋅R ¼ L⋅ L=Hdð Þ

Ss
⋅R ¼ L2⋅R

Hd⋅Ss
ð5Þ

Machined volume ¼ L2⋅Depth ð6Þ

MRR ¼ Machined volume

ti
¼ L2⋅Depth

� �
⋅
Hd⋅Ss
L2⋅R

ð7Þ

where ti is the machining time and L the size of the square
pocket side (5 mm).

In addition, electronic microscopy (ZEISS mod.
LeoSUPRA 35) was adopted to study the surface
morphology.

2.3.1 Statistical analysis and model development

In order to detect the presence of relationships between the
control factors and the response variables, analysis of variance
(ANOVA) was adopted. The ANOVA tests the significant
differences between the means of the response variables by
partitioning its total variation into different sources (error, ex-
perimental group membership…) and comparing the variance
due to the between-groups (or treatments) variability with that
due to the within-group (i.e. the same treatment) variability.
The analysis was carried out by way of the software
Minitab®18. A confidence level of 95% (α = 0.05) was
adopted during the analysis. Before the analysis, the
ANOVA assumptions were successfully checked by way of
the analysis of residuals, according to what was reported in
[56]. Once the significant parameters were determined, it was
possible to develop the statistical model by way of the re-
sponse surface methodology (RSM). For each response vari-
able and, since the Strategy is a categorical factor, for each
Strategy level, RSM provides a regression equation (second-
degree polynomial) to model the process behaviour. Each
equation relates to the control factors (Ss, f, R, Hd) and their
products (Ss2, F2, R2, Ss×f, Ss×R, Ss×Hd, f×R, f×Hd, R×Hd)
to a response variable (Depth, MRR and the roughness param-
eters: Ra, Rz, Rt RSm) by way of 14 constants (K1, K2, ...,
K14). The basic equation is the following:

Source ¼ K1 þ K2⋅Ssþ K3⋅ f þ K4⋅Rþ K5⋅Hd

þ K6⋅Ss2 þ K7⋅ f 2 þ K8⋅R2 þ K9⋅Ss� f

þ K10⋅Ss� Rþ K11⋅Ss� Hdþ K12⋅ f � R

þ K13⋅ f � Hdþ K14⋅R� Hd ð8Þ

1

3

2

4

a)

1

3

2

4

b)

Fig. 4 Schematic of adopted strategy: aCROSS strategy; bNET strategy
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where the term “Source” indicates the response variable.
This methodology is often adopted for the multiobjective op-
timisation [15, 20, 29, 59, 60, 64]. In addition, like the
ANOVA, RSM provides information about the statistical sig-
nificance of the control factors and their combination inside
the model as well as the errors performed in the estimation.

2.3.2 Artificial neural network configuration set-up

One of the issues to take into account in the development of
neural networks is the choice and implementation of the net-
work architecture. More specifically, the type of network
(Back Propagation,…) and the number of nodes in the input,
hidden and output level strongly influence the predictive re-
sponse. Based on bibliographic analysis [42, 48, 49, 65, 66]
and relevant background [46, 62, 67], it was chosen to adopt
feed-forward back propagation neural networks (FFBPNN)
since the latter is particularly suitable to understand functional
relationships between given inputs and outputs. In FFBPNN,
two- or more layer cascade-network can learn by examples
any finite input-output relationship arbitrarily well given
enough hidden neurons.

Since, as can be inferred by Section 3.1, all the control
factors are involved in the definition of all the response vari-
ables (directly or by way of an interaction) according to [46, 48,
62], the input nodes were selected equal to the control factor
numbers: 5 (i.e. each input node represents a factor numbers).
Conversely, according to previous studies [46, 62], the size of
the output layer was fixed at 1. Thus, each response variable
was elaborated separately. It is worth noting that a restricted
number of tests with a multi-output configuration (i.e. adopting
many response variables at the same time) were also carried out
during the pre-test phase. However, these tests confirmed the
results of the previous studies [46, 62], i.e. a lack of ability in
the depth prediction. Therefore, these results have not been
reported here for the sake of briefness.

For the determination of the nodes in the hidden layer, the
function “Intelligent Problem Solver - IPS” of the software
Statistica® R7 was adopted. This function automatically de-
velops and trains several network architectures and compute
predictions from each by adopting advanced algorithms to
determine the selection of inputs (i.e. the control factors to
be adopted in the input layer), the number of hidden units,
and other key factors involved in the network design. The
algorithms can search indefinitely, although after some a
priori unknown period, it is unlikely to make further progress.
During this phase, the designer must guard against over-learn-
ing, using techniques such as “early stopping”. In addition,
several techniques, such as regularisation and sensitivity anal-
ysis, are adopted to help in the design process. The algorithms
can be stopped either when certain of networks are analysed or
after a fixed time (here it was selected a “searching time” of 2
h, corresponding to a no less of 1400 analysed networks for
each response variable). Thus, the best ANN is selected
adopting the function “Balance Error Against Diversity”.
Although the IPS may require significant computing times
(several hours), it can test a large number of different types
of networks, then propose the best solution/solutions or an
ensemble of solutions in the analysed domain. Clearly, some
of these networks are inadequate to model the process since
they use too few response variables. The main advantage of
this technique is that it is “fast”, i.e. doing the same procedure
manually, the computational times would be tremendously
greater.

The software allows the setting of the nodes in the hidden
layers (min and max) and the number of hidden layers (1 or 2).
Here, it was chosen to vary the node numbers in the range 5–
50, and to adopt both the single- and double-layer architec-
tures. However, all networks with two layers, with the same
processing time, produced higher errors. Therefore, for the
sake of briefness, below, only the results obtained with
single-layer networks are discussed. In Fig. 5, a schematic of
the ANN architecture is reported.

Depth,

MRR,

Ra,

Rz,

Rt,

RSm.

f

R

Hd

Strategy

Ss

Inputs (=5) Output (=1)

Hidden layer (n=5÷50)

1

2

3
...

...

...

n

...

...

Fig. 5 Schematic of adopted
ANN architecture
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In order to build the FFBPNN, the Training-Validation-
Testing (T-V-T) was adopted. By this method, the experimen-
tal dataset is divided into three separate subsets: Training,
Validation and Testing. The ANN model is initially fit on a
set of examples (the Training dataset), used to adjust the
weights of the connections between the neurons in the net-
work. Successively, the model is used to predict the responses
for the observations comparing the model data to the experi-
mental data contained in the Validation dataset. This subset is
not used to train the network but acts as an independent check
during the training phase. Moreover, it is adopted to stop the
training process when the error on the Validation dataset in-
creases because of the over-fitting problems (i.e. the network
tends to model the noise present in the Training dataset rather
than the overall phenomenon; thus, the Training error is re-
duced but the Validation and Testing errors increase). For this
purpose, the Sum-squared function (the sum of the squared
differences between the target and actual output values on
each output unit) is adopted. Finally, the Testing dataset is
used to provide a further unbiased evaluation of the final mod-
el adequacy. This aspect is often neglected since the
Validation dataset is, generally, also adopted for the error
measurement, as it avoids the subtracting of useful data for
network training. However, the adoption of the Testing
dataset allows having a more impartial evaluation.

The selection of the dimension of the three subsets (T-V-T) is
a critical issue in ANN development, since it affects the network

response. A small number of points in the Training dataset can
affect the convergence of the model. At the same time, also a
reduced size of the Validation or Testing dataset can prevent a
correct stop of the learning phase or invalidate the network
validation.

Here, it was chosen to adopt 20 treatments for the Testing
dataset, and to divide the remaining values between the Training
dataset (68 treatments, corresponding to about the 77% of the
remaining data) and Validation dataset (20 treatments, corre-
sponding to about 23% of the remaining data). The selection
of the three datasets was fully randomised, assuring that an equal
amount of data for the two strategies was adopted for each
dataset. In addition, a second group of ANNs were developed
adopting for the Training dataset both the experimental data and
the data obtained by the RSM model. Conversely, for the
Validation and Testing datasets, only experimental data were
adopted. These ANNs are described in detail below in Section 4.

3 Results

3.1 ANOVA results and effect of process parameters

The ANOVA assumes that the observations are normally and
independently distributed with the same variance for each
treatment or factor level. Before the analysis, the ANOVA
assumptions were successfully checked byway of the analysis

Table 4 ANOVA table for Depth, MRR, Ra, Rz, Rt and RSm

Source Depth [μm] MRR [mm3/min] Ra [μm] Rz [μm] Rt [μm] RSm [μm]

F-value p-value F-value p-value F-value p-value F-value p-value F-value p-value F-value p-value

Ss [mm/s] 275.78 0.000 7.79 0.001 105.69 0.000 65.12 0.000 38.21 0.000 14.13 0.000

f [KHz] 5.53 0.006 4.68 0.012 317.83 0.000 271.79 0.000 164.77 0.000 1.98 0.145

R 633.27 0.000 5.43 0.006 61.38 0.000 31.08 0.000 14.53 0.000 20.66 0.000

Hd [μm] 84.86 0.000 128.51 0.000 0.03 0.874 3.26 0.075 4.07 0.047 15.21 0.000

Strategy 57.98 0.000 53.83 0.000 0.00 0.987 7.15 0.009 4.85 0.031 15.89 0.000

Ss×f 0.19 0.944 0.50 0.736 8.90 0.000 6.70 0.000 4.54 0.002 1.75 0.148

Ss×R 21.64 0.000 1.36 0.255 0.49 0.745 0.93 0.452 0.72 0.581 0.68 0.608

Ss×Hd 12.83 0.000 10.44 0.000 2.33 0.104 1.56 0.217 1.46 0.239 2.66 0.077

Ss×Strategy 0.02 0.983 3.06 0.053 2.82 0.066 1.06 0.352 0.28 0.756 0.24 0.784

f×R 1.04 0.394 1.02 0.403 16.53 0.000 8.66 0.000 3.26 0.016 2.50 0.049

f×Hd 2.00 0.142 0.74 0.480 9.06 0.000 5.09 0.009 4.15 0.020 3.56 0.034

f×Strategy 1.79 0.175 0.62 0.543 3.10 0.051 0.52 0.597 0.30 0.744 7.92 0.001

R×Hd 12.92 0.000 6.30 0.003 0.52 0.595 1.26 0.291 0.97 0.383 0.52 0.596

R×Strategy 4.71 0.012 1.73 0.185 2.03 0.139 0.48 0.621 0.19 0.831 6.34 0.003

Hd×Strategy 54.65 0.000 24.40 0.000 21.27 0.000 50.64 0.000 38.15 0.000 14.33 0.000

Error [%] 3.18 19.64 6.05 7.74 12.23 28.72

R-sq [%] 96.82 80.36 93.95 92.26 87.77 71.28

R-sq (adj) [%] 95.39 71.48 91.21 88.81 82.31 58.29

Significant factors are highlighted in bold text
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of residuals, according to what was reported in [56]. However,
for the sake of brevity, this analysis was not reported here. In
Table 4, the results of ANOVA are summarised for all the
response variables in terms of p-value and the F-value. The
analysis was carried out adopting a 95% confidence level (α =
0.05). Thus, a control factor is statistically significant (i.e. its
variation affects the response variable) if the p-value is less
than 0.05. While the presence of an interaction (p-value<0.05)
indicates that the effect of a control factor on the response
variables depends on the level (value) of the other control
factor. The F-value indicates the weight of the effect; the
greater the F-value, the greater the variation of the response
variables at control factors change. The table also provides the
error estimators: R-sq [%], R-sq (adj) [%] and Error [%]. The
R-Sq [%] (R-square or R2) describes the amount of variation
in the observed response that is explained by the control fac-
tors; R-sq (adj) [%] is a modified R-Sq [%] that has been
adjusted for the number of terms in the analysis, while the
Error [%] is complementary to 100 of R-sq [%].

From Table 4, almost all the control factors are statistically
significant for the different response variables, except that Hd
and Strategy for Rz, Hd for Rt and f for RSm parameter. In
addition, several interactions are present, too. The F-values indi-
cate that themost influencing factors are, by order of importance,
R and Ss for the Depth, Hd and Strategy for the MRR, and f and
Ss for Ra, Rz and Rt. For the RSm parameter, there are several
significant factors and an interaction with very similar weight (F-
values): Ss, R, Hd, Strategy and the interaction Hd×Strategy.

It is worth noting that, in all the cases where one or more
control factors are not significant, there is at least one strong
interaction (with high F-value). As shown below, this indi-
cates the presence of anti-synergic interactions that can mask
the presence of a main effect.

Once the significance of the control factors and their inter-
action has been verified by ANOVA table, to study their effect
on the response variables, the main effect plots and the inter-
action plots were carried out. However, for the sake of brief-
ness, only the factors and interactions with greater weight
(high F-value) are discussed in the following section.

3.2 Interaction mechanisms and effect of process
parameters

The possibility to effectively machine very brittle materials, as
the SiC, without degradation or fracture production depends
on the interaction mechanisms (cold ablation, vaporisation,
melting, mechanical effect, cracking…) that determine the
quantity of molten material produced and how heat is accu-
mulated in the machining area during the process itself.

For the adopted sources (see Table 2), the power density
(Pd>1.99*10^12 W/m2) is high enough to produce, during the
laser pulse action, the material melting and vaporisation, as
reported in [10, 19]. The vaporised material forms hot plasma

from the leading edge of the pulse and the plasma is sustained
during the rest of the pulse. Therefore, a significant part of the
removal mechanisms is due to the vaporisation-induced recoil
force (so-called recoil pressure [26]). According to the de-
scribed mechanisms, the molten material is partially ejected
from the surface by the gas vapour and plasma pressure and
only a limited part of the material is deposited on the surface
or in the neighbour. The latter quickly dissipates in the surface
of the material leading to the formation of a recast zone (recast
layer). Moreover, although SiC melts at about 1900°C, in
presence of oxygen at above 1100° C, SiC decomposition is
obtained according to the following reaction [68]:

2SiCþ 3O22→2SiO2 þ 2CO

The SiC decomposition contributes to the gas formation and
moltenmaterial expulsion, as confirmed by the presence of white
porous deposit (formed by incoherent SiO2) on the edge pocket
(see Fig. 6), small filaments on the surfaces (Fig. 7) and light

As received

a) Machined

b)

Fig. 6 SiO2 white deposit between the machined and unmachined a
100×; b 500×. Surface machined at Ss=500, f=60 kHz, Hd=40 μm,
R=60, CROSS strategy
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brown and inconsistent particles (made of SiO2 +C traces) found
far away to the sample after the machined process.

However, the contribution of each removal mechanism
(melting, vaporisation, degradation, recoil pressure) and then
the overall mechanism depends on the process parameters. In
details, low pulse frequency corresponds to high pulse energy
and pulse power (see Table 3); thus, the plasma formation and
the mechanical effect are favoured: this allows to obtain a
smooth and regular surface characterised by a texture formed
during the last scansion, a very limited number of droplets and
some voids due to the droplets or SiC particles detachment, as
visible in Fig. 8, where surfaces obtained at Ss=500 mm/s,
f=30 kHz and R=60 are reported. Conversely, at high frequen-
cy, the reduction of the pulse energies and the increase of the
pulse overlapping results in a reduction of the mechanical
effect and, at the same time, an increase of the local
overheating. Consequently, the molten material increases
and the surface results characterised by a large number of
droplets. As can be inferred by the analysis of Fig. 9, where
images of the surface obtained at 1000 mm/s, 60 kHz and 20
repetitions are reported. From the analysis of the various

surfaces, it was possible to note that the increase in the number
of droplets seems to be linked neither to the cutting speed nor
to the number of repetitions. Conversely, the adoption of a
larger hatching distance results in the formation of droplets
that are larger in size as visible comparing the image on the
right and left side of Fig. 9. However, excluding the presence
of the pores, no evident damages (fractures) are visible on the
surface also when magnification of 2000× is adopted (for
instance in Fig. 7). This is due in part to the selection of the
value to be adopted in the experimentation during the pre-tests
and in part to the fact that, also in the actual worst conditions,
the molten materials form only a thin recast layer or droplets;
consequently, the contraction due to the phase transition is not
such as to produce fractures.

In Fig. 10, the main effect plots for the different response
variables are reported. In the figure, the continuous lines indi-
cate the significant factors, vice versa the dashed ones.

From Fig. 10a, the depth decreases at the increasing of scan
speed, hatching distance and pulse frequency, while it in-
creases at the increasing of the repetitions and passing from
CROSS to NET strategy. In addition, the interaction
Hd×Strategy shows an F-value higher than the frequency f.

The effects of Ss, R and Hd are expected, since the latter
determine the total energy released per unit area (Es). This can
be calculated through the following:

Es ¼ Pa⋅ti
S

¼ Pa⋅
L2⋅R
Hd⋅Ss

⋅
1

L2 ¼ Pa⋅R
Hd⋅Ss

ð9Þ

where ti is themachining time and S is themachined area (L
2).

Obviously, the higher the Es (lower Hd and Ss), the higher the
depth, as also confirmed by Fig. 11, where the depth is reported
against Es as a function of the strategy. This is consistent to
previous studies performed on different materials [19, 59, 60].

It is worth noting that the effects of f and the Strategy are
not justified by the Es dependence (Eq. (9)). However, they
can be related to the pulse power and the temperature reached
by the materials during the machining itself, respectively.
More in detail, the lower the frequency, the higher the pulse
energy and the pulse power (Eqs. (1) and (2)). Consequently,
at low frequencies, also the plasma developed during the ab-
lation is more intense; this results in a greater contribution of
the mechanical effect. However, compared to the other control
factors, the effect of frequency is quite limited, as confirmed
by the low F-value. On the other hand, for a small machined
area, the Strategy influences the local temperature, since the
time required to reposition the laser on the same point changes
at the Strategy changing (the time doubles passing from NET
to CROSS). Clearly, a higher temperature of the substrate
allows a higher material removal, since the energy required
for material machining is reduced. This effect is confirmed in
the Hd×Strategy interaction (Fig. 12a), where it can be

a)

b)

Fig. 7 SEM images of surface obtained at Ss=1000 mm/s, f=30 kHz,
R=20, Hd=40 μm, strategy=CROSS at a 1000× and b 2000×
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observed that when adopting the narrow step (which allows the
material local heating) and the NET strategy, the reached depth
increases. The previous behaviours are confirmed by the MRR
diagrams: as a matter of fact, the MRR increases passing from
CROSS to NET strategy (Fig. 10b). The effect of Hd onMRR is
explained considering that, despite low Hd promotes local
heating, it results in a longer process time. Since the MRR is
obtained as a ratio between the removed volume and the time,
the effect of the latter prevails over the heating effect.

The roughness parameter Ra varies in the range 0.6–3.3 μm,
and that, considering the adopted laser source (a nanosecond
pulse duration), is a good result. Ra decreases at the Ss increase
or at the f and R increase (Fig. 10c), while it seems insensitive to
both Hd and Strategy. The increase of Ss has two effects: a
decrease of both the pulse overlaps and the local temperature.
Therefore, the single laser pulse produces a less deep crater with
a wide distance between the previous and the following crater,
resulting in a smoother surface. Conversely, as aforementioned,
the increase of the frequency results in overheating phenomena,
the mechanical effect is reduced and droplets are produced;
therefore, the roughness increases. The roughness increase due
to the repetitions increases is a consequence of the surface re-
working; consequently, the surface roughness can only worsen,
and this is consistent with the literature analysis [13, 19, 60].

About the effect of Hd and strategy, it is worth noting that their
effects are hidden by the presence of an anti-synergic interaction
as visible by the interaction plots (Fig. 12b). As expected, the
roughness parameters Rz and Rt follow the Ra behaviours, with
the difference that the first is weakly influenced by the Strategy
while the second is weakly influenced by both Hd and Strategy
(Fig. 10d and Fig. 10e). it is reasonable to assume that this is a
consequence of the droplets’ size increase occurring under these
conditions. However, the F-values of Hd and Strategy, when
compared with those of Ss, f and R, are one or more order lower
(Table 4).

About the RSm, it varies in the range 0.03–0.13 mm, and
these values suggest that the RSm may depend on the pres-
ence of burrs and drops of recast material produced at the
edges of the laser path, the material structure, since the latter
is obtained by powder sintering, as well as the direction of the
laser beam along the last surface scansion, as visible in Fig. 8
and Fig. 9. From Fig. 10f, the effect of Ss and R is similar to
those described for the other roughness parameters.

The effect of Hd and Strategy is more complicated to de-
scribe, since their interaction is significant (from Table 4, p-
value=0.000) and the F-value of the interaction is of the same
order as that the single parameter ones (from Table 4, F-val-
ue=15.21, 15.89 and 14.33 for Hd, Strategy and their

Fig. 8 Images of surfaces obtained at Ss=500 mm/s, f=30 kHz, R=60, a Hd=40 μm, strategy=CROSS; b Hd=60 μm, strategy=CROSS; c Hd=40 μm,
Strategy=NET; d Hd=60 μm, strategy=NET
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interaction, respectively). Generally speaking, an increase in
Hd involves an increase in the distance between the channels
produced by the laser during the single travel (see Fig. 2). This
is true for the CROSS strategy, as inferred by Fig. 12c where
the interaction plot Hd-Strategy is reported for the RSm.
Conversely, for the NET strategy, a change in the Hd does
not affect the RSm (as it was confirmed by the ANOVA test
performed on only the NET data).

About the Strategy, it is worth noting that for the CROSS
strategy, the last beam travel is placed along the 45° and the
roughness was acquired along the 0° direction, then the dis-
tance between two parallel lines is higher than the hatching
distance (0.057 μm and 0.085 μm for the Hd=0.4 μm and
Hd=0.6 μm, respectively); for the NET strategy, the rough-
ness was acquired along with one of the scanning directions;
in both cases (CROSS and NET), the RSm average values are
highest than the Hd. Consequently, the RSm is not only a
function of the distance of the grooves formed during the laser
machining (i.n. Hd), but it also depends on the mode in which
the droplets and the burr are produced on the surface.
Adopting the CROSS strategy, the distance between the
groove edge is higher, and each surface scansion partially
removes the surface topography produced in the previous
scansion; consequently, the surface is smoother and more

regular, and the droplets have no preferential organisation;
thus, the measurement is more sensitive to actual Hd.
Conversely, the surface produced adopting the NET is the
superposition of more travel in the same direction, resulting
in a different organisation of droplets and ribs, as visible com-
paring the surfaces reported in Fig. 9. Consequently, for the
NET strategy, the effect of the change in Hd is partially hidden
by the presence of the debris.

3.3 Response surface model

Due to the complexity of the phenomena occurring during
laser milling operation, the response surface methodology
(RSM) was adopted to model the process. As aforementioned,
RSM provides a regression model (second-degree
polynomial) able to describe the relationship between control
factors and the response variables. Generally speaking, the
model requires a number of points not necessarily larger, so
it allows obtaining a model with a limited number of tests,
provided the experimental plan is properly designed for the
analysis (for instance, the quadratic terms, necessary to model
the curvature presence, are available only for control factors
with at least three levels). On the other hand, since the com-
mercial software uses predefined laws (here a second-degree

Fig. 9 Images of surfaces obtained at Ss=1000 mm/s, f=30 kHz, R=60, aHd=40 μm, strategy=CROSS; b Hd=60 μm, strategy=CROSS; c Hd=40 μm,
strategy=NET; d Hd=60 μm, strategy=NET
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polynomial), it is not sure these are the best appropriate equa-
tions to model the physical phenomenon.

Before the model construction, the analysis of the statistical
significance of the model term was carried out for each re-
sponse variable. Table 5 summarises the results together with

the errors performed in the estimation. As for the ANOVA table,
this test assesses the significance of the control factors in the
model and provides an estimation of their weights in the model
(the F-value). From Table 5, the significant terms are almost the
same of the ANOVA (Table 4); thus, the model is sufficiently
sensitive in identifying the significant factors and interactions.
The table also provides the error estimators: Error [%], R-sq
[%]; R-sq (adj) [%], and R-sq (model) [%]. The first three terms
have the same meaning described for the ANOVA table; the last
one indicates a measure of how well the model predicts the
response for new observations. However, the analysis of the
errors performed by the models shows a good correlation for
the Depth, Ra and Rz (high R-sq.s); a correlation just enough
for the Rt parameters (good R-sq.s) and a low correlation for the
MRR and RSm parameters (low R-sq.s). In Table 6, the regres-
sion equation in uncoded units for the different response vari-
ables, separate for the two strategies, is reported. In Fig. 13, the
model data, calculated by means of the equations of Table 6, are
reported against the experimental one. In the figure, the dotted
l ine at 45° represents the reference l ine: model

Fig. 10 Main effect plots for a Depth, b MRR, c Ra, d Rz, e Rt and f RSm

Fig. 11 Achieved depth as a function of the Energy density
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response=experimental data; Error [%] = 0. Figure 13 clearly
shows that the RSM model is able to follow the general trend
of all the control factors, since in any case the points align along
the reference line. Depth, Rz and Rt show a better fitting since
their points are closer to the reference line. The Ra parameter has
a singular behaviour: the trend follows the reference line; the
points are enough closed; however, the model overestimates
the experimental values (there is an upward shift). Conversely,
both MRR and RSM present some points far from the reference
line (i.e. show a certain data dispersion).

3.4 Artificial neural network models

3.4.1 ANN

In Table 7, the architecture and Error [%] obtained in
Training, Validation and Testing datasets of the best fitting
ANNs are reported. From the table, the number of nodes in
the hidden layer varies within the selected range (minimum 8,

maximum 32 nodes, compared to the 5–50 nodes adopted in
the networks development), so it is confirmed the validity of
the adopted choices. On the other hand, the Error [%] per-
formed on the Training, Validation and Testing datasets are
different, as also clearly visible in Fig. 14, where the three
errors are reported for the different response variables. The
latter indicates that the network is not reliable enough to guar-
antee a limited error on the entire dataset domain (or similarly
for a wide range of process conditions). However, even with
this limitation, neural networks offer a forecasting property
that is comparable to that obtained with RSM model. This is
easily noticed by comparing Fig. 13 to Fig. 15, where, in the
latter, the data obtained by the ANNs, calculated for the
Validation and Testing datasets, are reported against the ex-
perimental one. More in details, from the figure, a good agree-
ment between the model and the experimental data is ob-
served for the Depth, Rz and Rt, since the data fault straddling
and close to the 45° line (model response=experimental data),
while some scattered points are still visible for MRR, RSm
and, in a lesser way, for the Ra parameter.

3.4.2 Development of a hybrid artificial neural network
(H.ANN)

As aforementioned, both RSM and ANN show a good ability
in modelling some parameters with low error (Depth, Ra, Rz,
Rt), while they seem inadequate in modelling either the MRR
or the RSm (Error [%] = 59 and 70, respectively). In general,
results provided by the models are affected by different
sources of uncertainty; the latter is related to the sample di-
mension, to the process variability and to the simplification
introduced by the model itself. The first source of uncertainty
can be overcome by increasing the experimental levels, while
the process variability is usually reduced by introducing test
replications. However, both these solutions require an increase
in the experimental efforts. The third cause (the simplification
adopted in the model) is a systematic error for which statistical
methodologies, especially when the interpolation law cannot
be selected, do not provide a useful tool, while cognitive
methods can be used fruitfully [35–37].

On the other hand, one of the problems affecting the ANNs
effectiveness is the number of points adopted in the training
phase. ANNs need substantial data to train upon, especially
when the model has complex relations (as for MRR and RSm
parameters). If they are too few, the network may not achieve
the convergence or may achieve the convergence only in a
sub-domain of the overall hypervolume, corresponding to
the process condition of the Training subset (this also happens
when over-fitting problems occur). However, this may also
depend on the complexity of the relationships between depen-
dent and independent variables. As a matter of fact, neural
networks can model the depth, since the latter has a “simple
relationship” within the control factors (see Fig. 11), while

Fig. 12 Interaction plots for a Depth, b Ra, c RSm
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they fail especially in correspondence to the parameters that
are difficult to model even with the RSM.

A possible solution is to increase the number of points in
the Training dataset, decreasing the numbers for Validation
and Testing ones; however, this solution would result in a less
effective model in performance assessment. In other words,
even having a reduced error in the training phase, it would not
be possible to verify the model! Anyhow, further ANNs were
also developed by increasing the number of points in the
Training dataset to 78 and reducing the Testing dataset to
10. However, also for these ANNs, errors and behaviours
comparable with that just described were observed.
Therefore, in order to investigate the possibility to forecast
the MRR and RSm parameters by way ANNs, taking also into
account the ability of neural networks to work in the presence
of noise [38, 46, 47], it was decided to develop a new series of
networks combining both experimental data and RSM model
to obtain a new Training dataset. This new approach has the
advantage of not requiring further tests. This operation re-
quires a careful selection of the data in terms of number and
process conditions, since an excess of RSM data could lead
the network to converge towards the RSM model itself, while
adding data on the borderline or outside of the experimental

process conditions, since the RSM model is valid only within
the tested conditions, could add an excessive noise.

Hence, a new group of ANNs, namely hybrid ANNs
(H.ANN) was developed adopting for the Training dataset
parts of the experimental data (58 treatments) and data from
RSM model (96 treatments). The latter was calculated by Eq.
(8) in the middle range of the control factor levels. Table 8
shows the selected levels.

Furthermore, to impose the ANN convergence to the ex-
perimental data (i.e. the stop of the training phase) and to
validate on an actual dataset, 40 and 20 experimental data,
taken in equal parts from the CROSS and NET strategy, were
adopted for the Validation and Testing datasets, respectively.
In addition, to cover the entire hypervolume, all the experi-
mental data were randomly selected making sure that their
distribution was such as to superimpose the Training dataset
one. Thus, before the analysis, the normal distributions of
Training, Validation and Testing datasets adopted were com-
pared and, since a good superposition of the curves was ob-
served, the new datasets were obtained. All the other settings
of the H.ANN were unchanged, except for the searching time
of MRR and RSm parameters that was extended at 4 and 8 h,
respectively, since the latter result is difficult to model.

Table 5 Analysis of variance for RSM model

Source Depth [μm] MRR [mm3/min] Ra [μm] Rz [μm] Rt [μm] RSm [μm]

F-value p-value F-value p-value F-value p-value F-value p-value F-value p-value F-value p-value

Ss [mm/s] 560.05 0.000 12.63 0.001 174.12 0.000 119.69 0.000 82.32 0.000 22.00 0.000

f [KHz] 8.61 0.004 7.25 0.008 423.34 0.000 425.67 0.000 300.12 0.000 3.50 0.065

R 1322.91 0.000 7.47 0.008 107.47 0.000 59.56 0.000 30.95 0.000 35.79 0.000

Hd [μm] 85.98 0.000 123.59 0.000 0.11 0.737 1.89 0.172 2.85 0.095 15.92 0.000

Strategy 66.47 0.000 55.48 0.000 0.12 0.730 6.53 0.012 5.05 0.027 10.13 0.002

Ss×Ss 26.24 0.000 0.39 0.535 5.26 0.024 2.80 0.098 1.50 0.224 0.73 0.396

f×f 1.17 0.282 0.37 0.542 21.52 0.000 6.74 0.011 3.79 0.055 0.54 0.464

R×R 0.34 0.560 3.72 0.057 3.10 0.082 2.08 0.152 1.78 0.186 0.90 0.345

Ss×f 0.02 0.897 0.42 0.518 23.62 0.000 17.90 0.000 14.76 0.000 2.58 0.112

Ss×R 87.90 0.000 0.75 0.388 0.11 0.743 0.20 0.653 1.02 0.316 0.01 0.914

Ss×Hd 26.60 0.000 17.00 0.000 3.35 0.071 1.88 0.174 1.93 0.169 4.62 0.034

Ss×Strategy 0.00 0.956 6.96 0.010 4.08 0.046 1.83 0.180 0.55 0.462 0.06 0.810

f×R 2.21 0.140 0.13 0.721 39.39 0.000 20.42 0.000 8.90 0.004 0.07 0.798

f×Hd 4.21 0.043 1.37 0.245 3.77 0.055 4.73 0.032 5.47 0.022 5.75 0.019

f×Strategy 3.54 0.063 0.69 0.407 5.07 0.027 0.49 0.488 0.26 0.614 14.43 0.000

R×Hd 28.65 0.000 9.21 0.003 0.00 0.996 0.16 0.694 0.13 0.716 0.07 0.789

R×Strategy 9.88 0.002 0.50 0.481 2.10 0.151 0.78 0.380 0.32 0.571 5.56 0.021

Hd×Strategy 57.39 0.000 22.41 0.000 16.18 0.000 43.73 0.000 38.02 0.000 12.52 0.001

Error [%] 3.65 24.79 9.34 10.78 14.77 38.98

R-sq [%] 96.35 75.21 90.66 89.22 85.23 61.02

R-sq (adj) [%] 95.61 70.20 88.75 87.04 82.25 53.05

R-sq (pred) [%] 94.33 62.69 85.74 83.68 77.72 41.33

Significant factors are highlighted in bold text
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Table 9 shows the architecture and Error [%] obtained
in Training, Validation and Testing datasets for the best
fitting H.ANNs. The same data are also compared in Fig.
16. From the results, the errors obtained on Training,
Validation and Testing datasets are closer than those for

the ANNs (see Table 7 and Fig. 14). Thus, H.ANNs are
more robust in the forecasting of the overall hypervolume.
On the other hand, the error obtained by the H.ANNs on
the Testing dataset is less, while the error measured on the
Training and Validation dataset appears higher than the
one measured for the ANN. Therefore, it can be deduced
that, although to a limited extent, ANNs are affected by
the RSM model data introduction. However, the most sig-
nificant result is the strong reduction of the error mea-
sured on the Testing dataset for both MRR and RSm.
This is confirmed also by the analysis of Fig. 17 where
the ANNs data are plotted against the experimental data.
From the latter, in addition, the absence of scattered
points far from the reference curve can be observed.

4 Discussion

To compare the performances of the three methods (RSM,
ANN and H.ANN) in Fig. 18, the overall errors obtained by
the ANN models on both the Validation and Testing datasets
(Table 7 and Table 9, column “V+T”) were compared to the
RSM Error [%] (Table 5). From the figure, excluding the two
most critical parameters (i.e. MRR and RSm), all the models
also have satisfactory error values [%]. About MRR and RSm,
the H.ANN shows the best performances with Errors [%] that
are 14.9 and 14.3 for the RSM and ANN, respectively.

It is worth noting that, compared to the ANN, in the
case of the Depth and Rt, the adoption of the H.ANN
results in error increasing. A possible reason is that the
adoption of the H.ANN is useful mainly when the re-
sponse of RSM is better than the response of the ANN
(i.e. ANN has a lower R[%]). In this condition, the in-
crease of the training dataset allows a better convergence
of the results (e.g. for MRR, Ra, Rz and RSm) since it
increases the trainset dimension. Conversely, when the
ANN shows already a response better than the RSM, the
adoption of additional data (affected by a certain error)
can only get worse the response. These observations, on
the one hand, confirm that, compared to the RSM, the
ANNs have a greater ability in complex phenomena
modelling; on the other hand, they need a sufficiently
large training dataset.

Either way, results appear encouraging; moreover, the
hybrid approach appears as a useful method especially
when the regression model (i.e. the RSM) is not fully ad-
equate to predict the response variable (such as in the case
of MRR and RSm) or when the number of repetitions is
such as not to constitute a sufficiently robust database. In
these cases, the integration of the two methods in a hybrid
one can lead to an improvement in the response of the
predictive model itself.

Table 6 Regression equation in uncoded units for the response
variables, separate for the two strategies

Source CROSS strategy NET strategy

Depth 161.6 − 0.3965 Ss + 0.09 f +
5.922 R − 1.511 Hd +
0.000175 Ss2 − 0.0117 f2 +
0.00312 R2 + 0.000051 Ss×f
− 0.002831 Ss×R +
0.002542 Ss×Hd − 0.00735
f×R + 0.01657 f×Hd −
0.03300 R×Hd

224.8 − 0.3960 Ss + 0.39 f +
6.309 R − 3.036 Hd +
0.000175 Ss2 − 0.0117 f2 +
0.00312 R2 + 0.000051 Ss×f
− 0.002831 Ss×R +
0.002542 Ss×Hd − 0.00735
f×R + 0.01657 f×Hd −
0.03300 R×Hd

MRR 3.81 − 0.00577 Ss + 0.0085 f +
0.0123 R + 0.0204 Hd +
0.000001 Ss2 − 0.000380
f2+ 0.000550 R2 − 0.000014
Ss×f − 0.000013 Ss×R +
0.000108 Ss×Hd −
0.000097 f×R + 0.000494
f×Hd − 0.000972 R×Hd

6.00 − 0.00442 Ss + 0.0156 f +
0.0074 R − 0.0303 Hd +
0.000001 Ss2 − 0.000380 f2

+ 0.000550 R2 − 0.000014
Ss×f − 0.000013 Ss×R +
0.000108 Ss×Hd −
0.000097 f×R + 0.000494
f×Hd − 0.000972 R×Hd

Ra 2.810 − 0.00076 Ss − 0.0639 f
− 0.0001 R − 0.0080 Hd+
0.000002 Ss2+ 0.000993 f2

− 0.000187 R2 − 0.000038
Ss×f − 0.000002 Ss×R −
0.000018 Ss×Hd +
0.000610 f×R + 0.000311
f×Hd − 0.000001 R×Hd

2.473 − 0.00116 Ss − 0.0711 f
+ 0.0034 R + 0.0080 Hd +
0.000002 Ss2 + 0.000993 f2

− 0.000187 R2 − 0.000038
Ss×f − 0.000002 Ss×R −
0.000018 Ss×Hd +
0.000610 f×R + 0.000311
f×Hd − 0.000001 R×Hd

Rz 15.74 − 0.00231 Ss − 0.159 f +
0.0317 R − 0.1203 Hd +
0.000007 Ss2 + 0.00343 f2 −
0.000936 R2 − 0.000203
Ss×f − 0.000017 Ss×R −
0.000082 Ss×Hd +
0.002712 f ×R + 0.002131
f×Hd − 0.000296 R×Hd

8.32 − 0.00393 Ss − 0.172 f +
0.0449 R + 0.0414 Hd +
0.000007 Ss2 + 0.00343 f2 −
0.000936 R2 − 0.000203
Ss×f − 0.000017 Ss×R −
0.000082 Ss×Hd +
0.002712 f×R + 0.002131
f×Hd − 0.000296 R×Hd

Rt 16.27 + 0.00160 Ss − 0.128 f +
0.0852 R − 0.1587 Hd +
0.000006 Ss2 + 0.00324 f2 −
0.001087 R2 − 0.000232
Ss×f − 0.000047 Ss×R −
0.000105 Ss×Hd +
0.002254 f×R + 0.00289
f×Hd − 0.000344 R×Hd

7.06 + 0.00048 Ss − 0.140 f +
0.0959 R + 0.0310 Hd +
0.000006 Ss2 + 0.00324 f2 −
0.001087 R2 − 0.000232
Ss×f − 0.000047 Ss×R −
0.000105 Ss×Hd +
0.002254 f×R + 0.00289
f×Hd − 0.000344 R×Hd

RSm 0.0831 − 0.000041 Ss −
0.00208 f − 0.000127 R +
0.000751 Hd + 0.000000
Ss2 + 0.000008 f2 +
0.000005 R2 + 0.000001
Ss×f − 0.000000 Ss×R −
0.000001 Ss×Hd +
0.000001 f×R + 0.000020
f×Hd − 0.000002 R×Hd

0.1436 − 0.000043 Ss −
0.00270 f + 0.000167 R +
0.000032 Hd + 0.000000
Ss2 + 0.000008 f2 +
0.000005 R2 + 0.000001
Ss×f − 0.000000 Ss×R −
0.000001 Ss×Hd +
0.000001 f×R + 0.000020
f×Hd− 0.000002 R×Hd
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Fig. 13 Comparison between RSMmodel data and experimental one for aDepth, bMRR, c Ra, d Rz, e Rt, f RSm. The dashed lines at 45° indicate the
condition: model=experimental

Table 7 Best fitting ANN
architecture and error obtained in
Training, Validation and Testing
datasets

Response variable ANN code Hidden nodes Error [%]

Training Validation Testing V+T*

Depth [μm] MLP 5:5-32-1:1 32 0.8 0.5 3.5 2.4

MRR [mm3/min] MLP 5:5-20-1:1 20 10.5 3.3 59.0 33.9

Ra [μm] MLP 5:5-9-1:1 9 3.9 2.3 19.8 14.4

Rz [μm] MLP 5:5-11-1:1 11 12.1 5.1 16.7 11.6

Rt [μm] MLP 5:5-8-1:1 8 12.3 6.9 19.6 14.1

RSm [mm] MLP 5:5-20-1:1 20 33.8 16.1 70.2 57.4

*Error measured on the Validation and Testing datasets.
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5 Conclusion

Laser milling of SiC advanced ceramic was performed by way
of a 30-W Q-switched Yb:YAG fiber laser changing the scan
speed, the pulse frequency, the hatching distance, the repeti-
tion and the strategy. ANOVA was performed to analyse the
effect of the process parameters. Response surface methodol-
ogy (RSM) and artificial neural network (ANN) were adopted
to model the process. From the results, within the experimen-
tal conditions adopted in this work, the main conclusions are
the following:

& The adopted fiber lasers can mill the SiC ceramic,
allowing a MRR up to about 5 mm3/min, and a smooth
surface (Ra varies in the range of 0.6–3.3 μm).
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Fig. 14 ANN errors measured for the Training, Validation and Testing
datasets

Fig. 15 Comparison between ANNmodels data and experimental one for aDepth, bMRR, cRa, dRz, eRt, fRSm. The dashed lines at 45° indicate the
condition: model=experimental
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& The mechanisms involved during the laser milling
are complex and depend on all the selected parame-
ters (Ss, f, R and strategy). However, the analysis of
variance has proven to be a useful tool for identify-
ing the significant control factors and their weights.

& The depth is mainly affected by the total released energy
(by way of R, Ss and Hd). However, the pulse frequencies
and the Strategy also have an important role.

& The material removal rate is mainly affected by the
hatch distance (Hd) and the scan strategy. It is rea-
sonable to hypothesise that both Hd and Strategy
conditioned the material temperature during the pro-
cess and then the achieved depth and the MRR.

& The roughness parameters Ra, Rz and Rt mainly depend
on the f, Ss and R, while the hatching distance and the
Strategy show a secondary role. The RSm is the most
controversial parameter since it is affected in the same
manner by all parameters.

& Both RSM and ANN can easily model the machine
depth and the roughness parameters: Ra, Rz and Rt,
allowing a low error in the estimation (<15%).

Conversely, they are not able to estimate MRR and
RSm roughness parameters with low error.

& An integrated approach was developed to overcome the
latter issue; the approach is based on the RSM model to
obtain a hybrid Training dataset for the ANN.

& The results show that the ANNs trained with the hybrid
dataset show a drastic reduction of the error committed in
the evaluation of both the MRR and the RSm.

& This approach is suitable in all cases where few training
datasets are available.

& Moreover, the integrated approach appears as a useful
method especially when the regression model is not full
adequate to predict the response variable or when the
number of repetitions is such as not to constitute a suffi-
ciently robust database.

& Apart from the results obtained for the most critical
parameters (MRR and RSm), comparing the
H.ANNs and RSM techniques, it must be highlight-
ed that the latter has the advantage of requiring
shorter processing times. Moreover, RSM also pro-
vides a set of equations immediately available for
process optimisation.

Table 8 Factors and levels
adopted in RSM model to build
the Hybrid Training dataset

Factor Symbol Unit Levels

Scan speed Ss mm/s 600; 700; 800; 900

Frequency (pulse power)* f (Pp) kHz (kW) 35 (17); 50 (12); 55 (11)

Repetitions R -- 30; 50

Hatching distance Hd μm 40; 60

Strategy -- -- CROSS; NET

*In the brackets, the pulse power (Pp) calculates by way of Eq. (2).

Table 9 Best fitting H.ANN
architecture and error obtained in
Training, Validation and Testing
datasets

Response variable H.ANN code Hidden nodes Error [%]

Training Validation Testing V+Ta

Depth [μm] MLP 5:5-29-1:1 29 1.4 3.2 1.3 2.7

MRR [mm3/min]b MLP 5:5-23-1:1 23 10.7 16.5 11.4 14.9

Ra [μm] MLP 5:5-18-1:1 18 16.7 10.5 10.7 10.4

Rz [μm] MLP 5:5-29-1:1 29 6.8 9.6 7.6 9.3

Rt [μm] MLP 5:5-5-1:1 5 6.8 17.9 12.3 16.4

RSm [mm]b MLP 5:5-13-1:1 13 14.7 11.4 18.8 14.3

a Error measured on the Validation and Testing datasets.
b Searching time = 8 h
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