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Abstract
This paper presents an accurate machining feedrate prediction technique by modelling the trajectory generation behaviour
of modern CNC machine tools. Typically, CAM systems simulate machines’ motion based on the commanded feedrate and
the path geometry. Such approach does not consider the feed planning and interpolation strategy of the machine’s numerical
control (NC) system. In this study, trajectory generation behaviour of the NC system is modelled and accurate cycle
time prediction for complex machining toolpaths is realised. NC system’s linear interpolation dynamics and commanded
axis kinematic profiles are predicted by using finite impulse response (FIR)–based low-pass filters. The corner blending
behaviour during non-stop interpolation of linear segments is modelled, and for the first time, the minimum cornering
feedrate that satisfies both the tolerance and machining constraints has been calculated analytically for 3-axis toolpaths of any
geometry. The proposed method is applied to 4 different case studies including complex machining toolpaths. Experimental
validations show actual cycle times can be estimated with >90% accuracy, greatly outperforming CAM-based predictions. It
is expected that the proposed approach will help improve the accuracy of virtual machining models and support businesses’
decision-making when costing machining processes.
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1 Introduction

With the introduction of concepts like virtual manufac-
turing [1] and digital twins [2], building process models
and predicting actual machining process conditions in the
computer environment has become paramount in attaining
higher productivity and throughput in today’s manufactur-
ing. For example, accurate machining cycle time prediction
is vital for industry during the quotation process to ensure
achievable and profitable contracts. The prediction mod-
els and generation of accurate digital twins are a collective
modeling effort which requires both detailed modelling of
the process and the dynamic machine behaviour. Consid-
ering the machining processes, current literature provides
accurate models to predict milling process physics [3–5].
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Nevertheless, when applied in practice, these models show
large discrepancies from the actual process behaviour.

One reason can be identified as the influence of the
machine tool drive dynamics. In particular, the behaviour
of the numerical control (NC) plays a key role. Trajectory
generation (interpolation) algorithms embedded in the NC
system control the feedrate profile, which is a key input
for machining process models. For example, contouring
(positioning) errors alter tool engagements [6] which lead to
inaccurate force predictions [7]. Thus, in order to accurately
develop realistic digital twins for machining processes,
the feedrate profile generated by the NC system of a
machine tool must be accurately predicted. This paper deals
with modelling and prediction of interpolator dynamics of
modern NC systems to accurately estimate machining cycle
times and cutting forces along complex parts.

In this paper, the term “cycle time” is used to measure
the “machining cycle time” which refers to the overall
feed motion duration to travel along a machining part
program. Once a part program (G-code) is deployed a
CNC machine tool, the NC unit parses the part program
and interpolates the tool motion between successive cutter
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locations (CL). Most modern CAM systems provide tool-
paths in terms of discrete CL data and rely on linear
interpolation algorithms that run in the NC units. With
the introduction of cheap memory modules, long part
programs do not pose a limit, and even basic circular
paths are programmed with series of short linear segments
[8, 9]. Therefore, modern NC systems are equipped with
propriety algorithms that interpolate these lengthy series
of short CL blocks smoothly. These algorithms are called
Look-ahead or Compressor functions and are capable of
generating a non-stop motion with a time optimal feedrate
profile [10] that respects kinematic limits of the machine
[12, 13]. Prediction of a machine’s actual feedrate profile
requires detailed modelling of the NC system’s real-time
interpolation behaviour. This includes the motion transition
between CL blocks, for example a typical feedrate profile
for continuous motion is shown in Fig. 1. During the
initial linear motion from zero to commanded feedrate,
the performance and behaviour of the machine tool is
dependent upon the acceleration and jerk constraints alone.
However, as the tool approaches the end of the first CL line
(corner transition 1 in Fig. 1) to change the feed direction,
the tool decelerates to a minimum cornering feedrate
before accelerating again to the commanded feedrate. The
reduction in feedrate in the vicinity of CL line junction

point is due to both the machine tool satisfying the tool
centre point (TCP) error tolerance constraints throughout
the cornering transition and the machine tool kinematic
constraints [19]. The TCP error can be seen at corner
transition 2 where the TCP is at maximum displacement
between the CL line and the TCP position. The TCP error
constraint imposed upon the toolpath limits the maximum
feedrate during cornering transitions and this significantly
affects the overall machining cycle time.

Most NC systems utilise jerk-limited trajectory gener-
ation to smoothly alter feedrate and interpolate along CL
lines [12, 14]. The generated feedrate profile is defined
in the form of a cubic polynomial [8]. Axis acceleration
limits are imposed based on the torque/power capacity of
the drives, and the jerk limits are set to limit unwanted
vibrations during rapid feed motion [15]. This general jerk-
limited feedrate profile is well-known, and acceleration and
jerk limits of the machine can be read from the NC system.
Therefore, the use of jerk-limited trajectory as a template
allows prediction of feedrate kinematics of modern NC
systems and it can correctly predict point-to-point (P2P)
trajectories. During P2P interpolation, the tool accelerates
from a full stop to the set feedrate and decelerates again for a
full stop at the end of the CL line. Once the acceleration and
jerk limits are known, the feedrate profile can be generated

Fig. 1 Typical kinematic profiles of an NC program
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to predict cycle times. Past research considered modelling
of NC behaviour of 3 and 5 axis machine tools for both P2P
and contouring paths [11, 16, 17].

Predicting feedrate profiles along short segmented
complex toolpaths for high-speed machining (HSM) is a
challenging task. This is due to the fact that look-ahead
modules of NC systems alter jerk limits on the fly as it
blends series of CL lines to generate a non-stop smooth
continuous feed motion. Here, modelling the path blending
behaviour is crucial. NC systems blend linear CL lines
together smoothly whilst applying geometric blending error
and kinematic limit control. Machine tool literature reports
that circular arcs [8] and cubic [8] or quintic splines [12]
can be used for such geometric path blending. There are
also methods based on filtering where the discrete toolpath
is blended based on low-pass filtering. Finite impulse
response (FIR) filters are used for such purpose [18].
Such filtering-based techniques are more computationally
efficient and greatly favoured for real-time interpolation on
NC systems. For instance, Heidenhain [19, 20], Mitsubishi
[21] and more recently Siemens [22] NC systems utilise
FIR and IIR (infinite impulse response) filters for look-
ahead and non-stop smooth interpolation. Typically, users
enter a blending tolerance which confines the path blending
(contour) errors. Based on the blending tolerance, the NC
system approximates the given discrete CL lines and plans
the fastest motion with its kinematic limits. Therefore,
accurate prediction of cycle times for conventional toolpaths
requires modelling of NC system’s non-stop interpolation
behaviour along linear paths.

This paper models the non-stop interpolation behaviour
of modern NC systems and predicts feedrate profiles along
HSM toolpaths by considering the real-time path blend-
ing behaviour of NC systems. Section 2 briefly introduces
the low-pass filtering-based real-time interpolation method,
which is used as a template. It is then used to predict
P2P and contouring motion of NC systems in subsequent
Section 3. Illustrative examples and experimental valida-
tions are provided in each section. Finally, Section 4 pro-
vides realistic cycle time, feedrate profile and cutting force
prediction for complex aerospace parts.

2 Low-pass filtering-based real-time
interpolator dynamics

This section models real-time interpolation behaviour
of an NC system to predict the feedrate profile and
overall machining cycle time. Most conventional NC
systems utilise IIR or FIR filtering–based techniques for
computationally efficient real-time interpolation and feed
profile planning. In this work, finite impulse response (FIR)
filters are used to capture the NC system’s behaviour. A

Fig. 2 Impulse response of a 1st-order FIR filter

simple 1st-order FIR filter can be expressed in the Laplace
(s) domain by:

Mi(s) = 1

Ti

1 − e−sTi

s
, i = 1 . . . n, (1)

where s is a complex number and Ti is the time constant of
the ith filter. The impulse response is depicted in Fig. 2. As
seen in Eq. 1, the filter contains an integrator, which acts to
smooth the input signal. These two features of 1st-order FIR
filters are appealing from a NC system perspective, since
G-codes (represented by rectangular velocity pulses) can be
convolved through a series of such filters to generate smooth
velocity profiles. Since the area underneath the rectangular
impulse response is unitary, the area underneath the original
input is not altered [18, 19, 21–24].

Figure 4 illustrates this filtering-based interpolation
procedure. As shown, consider a G-code for a total
displacement command of L at a feedrate of F . It is
represented by a velocity pulse with an amplitude of F and
duration of Tv; hence, L = FTv . Subsequent convolution of
the velocity pulse with the FIR filter yields the higher order
velocity response. Using 2-FIR filters in series generates
reference trajectories with piece-wise constant jerk profiles
and using three FIR filters in series further smooths the
reference velocity making them snap limited. Although
jerk-limited trajectories are most common in high-speed
machinery, snap-limited trajectories are tuned for ultra-
precision machines [25] to further mitigate the effect of
unwanted vibrations.

The duration of the original velocity pulse Tv and the
time constants of the filters Tn determine the velocity and
acceleration profiles, which can be derived analytically
by evaluating the convolution integral between the input
velocity pulse and the rectangular impulse response of the
filter as follows:

v′(t) = v(t) ∗ m(t)

= 1

T1

∫ t

0
([v(τ) − v (τ − Tv)] [u(t − τ) − u (t − T1 − τ)]) dτ

= 1

T1

[∫ t

0 v(τ)u(t−τ)dτ −∫ t

0 v(τ)u (t − T1 − τ) dτ

−∫ t

0 v (τ −Tv) u(t−τ)dτ +∫ t

0 v (τ −Tv) u (t−T1−τ) dτ

]
(2)
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where v(t), v′(t) and m(t) represent the velocity pulse,
interpolated velocity signal and the impulse response of the
FIR filter (Eq. 1) respectively. For multiple first-order FIR
filtering with different time constants, a detailed analysis is
given in [18]. This research introduces linear interpolation
using FIR filters with identical time constants.

2.1 FIR interpolation withmatching time constants

Typically, the time constants of FIR filters are selected
to mitigate structural vibrations of the machine tool [27].
Matching the time constant with the vibration period of
the lightly damped modes helps avoid exciting them during
rapid acceleration. One method to specify the time constants
is to set them equal, T1 = T2. In this special case, the
FIR filter acts as a pure low-pass filter with a roll-over
frequency of ωc ≈ 2π

T1
. Figure 3 shows the attenuation

in the frequency response for multiple FIR filters with
matching time constants. The time constant, when set low
enough, helps prevent the excitation of any higher frequency
vibrations during rapid accelerations. This simpler method
compared to tuning individual filters provides a convenient
method of vibration suppression during high feedrates.

For interpolation using 2-FIR filters with matching time
constants, the transfer function of the resulting FIR filter
is:

M2FIR(s) =
(

1

T1

1 − e−sT1

s

) (
1

T1

1 − e−sT1

s

)
(3)

and the resulting velocity profile when a rectangular feed
pulse v(t) is filtered T1 = T2 < Tv becomes:

v′(t) = v(t) ∗ m2FIR(t) (4)

v′(t)=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

F

2T 2
1
t2 0 ≤ t < T1

F
2T1

(−t2 + 4T1t − 2T 2
1

)
T1 ≤ t < 2T1

F 2T1 ≤ t < Tv
F
2T1

(−t2 + 2Tvt − T 2
v + 2T 2

1

)
Tv ≤ t < Tv + T1

F

2T 2
1

(
t2−2Tvt−4T1t+(Tv +2T1)2

)
Tv + T1 ≤ t <Tv +2T1

(5)

Fig. 3 Magnitude of the frequency response of multiple FIR filters

The corresponding acceleration and jerk responses can be
derived from Eq. 5 as:

a′(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

F

T 2
1
t 0 ≤ t < T1

F

T 2
1

(−t + 2T1) T1 ≤ t < 2T1

0 2T1 ≤ t < Tv
F

T 2
1

(−t + Tv) Tv ≤ t < Tv + T1

F

T 2
1

(t − Tv − 2T1) Tv + T1 ≤ t < Tv + 2T1

(6)

j ′(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

F

T 2
1

0 ≤ t < T1

− F

T 2
1

T1 ≤ t < 2T1

0 2T1 ≤ t < Tv

− F

T 2
1

Tv ≤ t < Tv + T1

F

T 2
1

Tv + T1 ≤ t < Tv + 2T1

(7)

When a square velocity pulse of magnitude F and length
Tv is convolved with a first-order FIR filter with time
constant T1, the result is a trapezoidal velocity profile with
constant acceleration of magnitude F/T1 (Fig. 4b). The
total length of the kinematic profiles is extended by the filter
time constant T1 to Tv + T1. When the trapezoidal velocity
profile is convolved with a second first-order FIR filter
with a matching time constant T1 = T2, the smoothness
(order) of the velocity profile is increased. The continuity
increases from C1 to C2, where Cn is the space of nth order
continuously differentiable functions, as shown in Eq. 5 and
Fig. 4c. However, using the matching time constant T1 = T2
results in five sections in the kinematic profile and not seven
as for the case for two different time constants where T1 �=
T2. The resulting acceleration profile is triangular around
T1 and Tv + T1 with peak magnitudes F/T1 and lengths of
2T1; the now jerk-limited profile has peak magnitudes of
F/T 2

1 . The total length of the kinematic profiles is extended
to Tv +2T1. The relationship between T1 and Tv determines
the kinematic constraints as for the different filter cases.

Convolving the velocity profile with a third first-order
FIR filter with the same time constant T1 = T2 = T3 results
in a C3 velocity profile, C2 acceleration profile and C1

jerk profile. The velocity, acceleration and jerk equations
for the 3-FIR case are shown in Appendix A. The smooth
acceleration profile has a peak magnitude of 3F/4T1 at
times 1.5T1 and Tv + 1.5T1 and the jerk profile has peak
magnitudes of F/T 2

1 . The overall length of the kinematic
profiles has been extended from the original square velocity
pulse length Tv to Tv+3T1. The total filter delay when using
3-FIR filters with matching time constants T1 is therefore
3T1.

It can be shown that a high order FIR filter can be
accurately modelled and implemented with using only 3
first order FIR filters. The benefit of using 3 or more first
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Fig. 4 Smooth trajectory generation by 3 first-order FIR filters with matching time constants

order FIR filters with the same time constant is that the
filter response approaches that from a Gaussian filter. The
Gaussian response has no overshoot whilst minimising the
acceleration and deceleration time periods which makes
it the ideal time domain filter for interpolating kinematic
profiles [28]. The ability to approximate the Gaussian filter
with 3 FIR filters with the same time constant simplifies
the design and selection of the filter to a single design
parameter T1. For both the 2 and 3 FIR filter cases, T1 can be
analytically calculated from the maximum permissible jerk
Jmax using Eq. 6 and Eq. 32 respectively as follows:

Jmax = ΔF

T 2
1

, −→ T1 =
√

ΔF

Jmax

(8)

2.2 Identification of real-time interpolator dynamics
of an NC system

The previous section presented the filtering-based real-time
trajectory generation. In this section, it is shown how the
interpolator response of a machine tool can be modelled via
the identification of the filter time constants. A case study
was conducted on the DMG Mori eVo 40 machine tool
shown in Fig. 5. The machine is commanded by a single
G-code to move 6 mm at a speed of 3000 mm/min, and
the interpolated reference motion profile is recorded on the
NC system directly at a sampling time of Ts = 0.003s.

Figure 5c to h show the recorded kinematic profiles. The
machine is set to undergo a simple point-to-point (P2P)
motion and therefore the tool comes to a full stop before
moving to the next commanded position. As shown for the
measured system, the NC system generates smooth velocity
and acceleration profiles. The acceleration profile mimics
a smooth “bell-shaped” profile. Overall, acceleration and
deceleration duration are measured to be Tacc = Tdec =
0.0765 s. The cruise velocity portion is roughly measured
to be 0.023 s. In order to simulate the feed profile, a
series of 2- and 3-FIR filters are used. For the 2-FIR
case, the time constant is selected as T1 = Tacc

2 and for

the 3-FIR case, it is set to T1 = Tacc

3 . The predicted
velocity, acceleration and jerk profiles for the 2-FIR case
are shown in Fig. 5c, e and h respectively. The time of
the measured displacement is equal to the time of the
predicted displacement. The difference between the velocity
profiles is due to the acceleration. The 2-FIR case exhibits
the triangular acceleration profile compared to the smooth
measured response. The maximum acceleration for the 2-
FIR case is constrained and less than the measured response.

In order to compare the different filter cases, the
machine is commanded to move along the same G-code,
and the proposed interpolator model for the 3-FIR case
is used. As shown in Fig. 5d, the velocity profiles for
the 3-FIR case closely resemble the measured velocity
profile and the total time of the measured displacement
matches the total time for the simulated displacement. The
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Fig. 5 Measured and predicted
velocity, acceleration and jerk
profiles for 2-FIR (c,e,g) and
3-FIR (d,f,h) P2P motion
interpolation

simulated acceleration profile is smooth and the maximum
acceleration is higher than for the 2-FIR case but still lower
than the measured response. Increasing the order of the
simulated system would allow the maximum acceleration to
approach the measured response. In general, by increasing
the order of the FIR filter, the predicted acceleration
profile of the filtered pulse approaches the acceleration
profile of the measured response and results in a simulated
velocity profile which closely resembles the dynamics of the
machine interpolator.

The filter delay is calculated from the jerk Eq. 8 and the
duration of the acceleration phase in each case is equal to
the total filter delay. The time constant (filter delay) can be
analytically calculated from machine tools’ specifications
(Jmax) and therefore kinematic profiles can be generated
using FIR filters without the requirement for parameter
identification through system testing.

In this section, it has been shown that the dynamics of
an NC interpolator are increasingly well-approximated by
the series combination of identical first-order FIR filters. In
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addition, the relationship between the parameters of these
first-order filters and the resulting interpolator response
has been derived.

2.3 Multi-axis P2Pmotion generation

FIR filtering–based interpolation of single axis motion was
presented in the previous sections. Extending the method
to P2P multi-axis linear motion this section describes the
process to interpolate kinematic profiles between two points
using high order FIR filters.

The start and end positions of a linear G01 command in
3 axes can be represented by Ps = [

Ps,x, Ps,y, Ps,z

]T and

Pe = [
Pe,x, Pe,y, Pe,z

]T , respectively, as shown in Fig. 6a.
The tool displacement L is calculated by taking the

Euclidean norm of the vector between the two commanded
positions, L = ‖Pe − Ps‖2. The velocity pulses of each axis

Fig. 6 Multi-axis interpolation based on high order FIR filtering

(
vx, vy, vz

)
are calculated by multiplying the feed pulse v(t)

by the unit velocity vector u = (Pe − Ps)/‖Pe − Ps‖2.
dP(t)
dt

= Ṗ(t) = v(t)u =
⎡
⎣ vx(t)

vy(t)

vz(t)

⎤
⎦ (9)

where Ṗ(t) represents the first time derivative of the P2P
displacement (Fig. 6b).

In order to generate (and interpolate) the reference
velocity commands (v′

x, v
′
y, v

′
z), the individual axis velocity

pulses (vx , vy , vz) are convolved with the FIR filter (Fig. 6c
and d):

dP′(t)
dt

= Ṗ′(t) =
⎡
⎣ v′

x(t)

v′
y(t)

v′
z(t)

⎤
⎦ = Ṗ(t) ∗ m(t) (10)

Finally, the filtered position commands are generated by
integrating the filtered axis velocity commands:

P′(t) =
⎡
⎣ p′

x(t)

p′
y(t)

p′
z(t)

⎤
⎦ =

∫ t

0

⎡
⎣ v′

x(t)

v′
y(t)

v′
z(t)

⎤
⎦ dτ (11)

3 Prediction of interpolator behaviour
during non-stopmotion

The previous section showed that P2P linear interpolation
behaviour of an NC system can be modelled by velocity
pulses low-pass filtered by a series of first-order FIR filters.
The only required parameter to predict the machine’s feed
profile and accurately estimate the resulting cycle time
is the time constant, i.e. total delay of the FIR filter.
As shown, the filter time delay can be calculated from
the maximum permissible jerk (Eq. 8) and commanded
feedrate. This section focuses on accurate prediction of
interpolator behaviour during non-stop contouring motion,
which is the most commonly used interpolation technique
for high-speed machining (HSM).

3.1 Modelling of non-stop (contouring)
interpolation behaviour

Typical high-speed machining toolpaths found in die and
mould manufacturing or in aerospace industry consist of
series of short segmented toolpaths [29]. When interpolated
in HSM mode, the NC interpolator does not undergo a
full stop at the end of each CL line. Instead, the CL
lines are blended together for a non-stop smooth motion
interpolation where machining feedrate is reduced to a
cornering speed Vc around junction points of the CL blocks
(see Fig. 1). The prediction of Vc is crucial to accurately
capture the actual feedrate profile and estimate the resultant
cycle time. Several constraints affect the cornering speed
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(Vc) and overall acceleration profile around the CL data
points. Firstly, Vc is controlled by the blending (cornering)
tolerance [16]. Typically, lower blending tolerance delivers
more accurate motion but generates slower feed profiles.
In contrary, a larger tolerance value allows faster speeds
and shorter overall cycle time. The relationship between
the blending tolerance and the feed drop around the corner
must be captured. Secondly, the deceleration/acceleration
profile and the transition duration from the programmed
feedrate (F ) to the cornering speed (Vc) are dictated by
acceleration and jerk limits of the machine. Both of these
key characteristics must be modelled to accurately predict
the varying feedrate profile along HSM toolpaths.

In an effort to accurately model the interpolator
behaviour, the feed pulse distribution shown in Fig. 7b is
proposed in this manuscript. Notice that the feed pulse
profile is different from the case used for the P2P motion.
Feed pulses of each CL block are commanded back-to-
back with no dwell time in between. In other words, they
are constructed as a continuous pulse stream. The duration
of the feed pulse is Tv . Notice that the feed pulse does
not have a constant amplitude of F . Instead, around CL
block junctions the feed command value is dropped down
to Fc. Such small feed pulse is added to model the blending
kinematics, commanding the feedrate to drop down to a
cornering feed of Fc. The duration of the cornering feed
pulse is set to Tb, which controls how long the deceleration
and acceleration last around the blend.

When the feed pulse profile is interpolated with a FIR
filter, the resulting velocity profiles are smooth velocity
profiles that better approximate the actual velocity profiles
of the machining interpolator. Figure 7a and Fig. 7c show
the toolpath and the corresponding interpolated X-axis and
Y-axis velocity profiles respectively. The total length of the
velocity profiles is equal to the sum of the pulse lengths
plus the filter delay Td . Figure 7d shows the cornering
feedrate Vc of the resultant velocity profile is equal to the
commanded blending pulse feedrate Fc and this occurs at
half the filter delay Td/2 from the start of the Y-axis profile.

The cornering feedrate is controlled by setting the
blending velocity pulse Fc equal to the desired cornering
tangential velocity Vc and setting the acceleration and
deceleration time for the interpolated feed profile equal to
the time required to reduce from F to Fc. A scaling factor
is applied to F to represent Fc as a function of commanded
feedrate F :

Fc = Fα = Vc (12)

where Vc is the resultant 3-axis TCP velocity defined as

Vc =
√

v′2
x + v′2

y + v′2
z (13)

and v′
x, v

′
y and v′

z represent the interpolated axis
velocities at the minimum corning feedrate.

Fig. 7 FIR-based interpolation of a right angled toolpath with a
constant feedrate

The total acceleration and deceleration time of the
interpolated feed profile to reach Fα from F is represented
by Tb, it is a function of the filter delay Td , and it can be
calculated as:

Tb = 1

2
Td (1 − α) (14)

The final task when modelling the pulse train is
calculating the main velocity pulse lengths Tv . In Section 2,
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the length of the velocity pulse Tv was calculated fromL/F ;
however, with the introduction of the blending pulses, Tv

must be modified in order to preserve the total area of the
pulses and hence the TCP displacement.

The commanded TCP displacement is calculated from
the total area of the velocity pulse and the blending pulse,
and this can be seen in Fig. 7b where the total area within the
X-axis and Y-axis pulses is equal to L1 and L2 respectively.

For a single axis displacement L, the pulse areas
comprise of the main pulse (calculated as FTv) and the
blending pulse (calculated as FcTb):

L = FTv + FcTb (15)

Rearranging Eq. 15 and incorporating Eq. 12 yields the
modified value of Tv as:

Tv = L

F
− αTb (16)

Equation 16 holds for velocity commands with a single
blending pulse; this is the case for the initial and final CL
lines in a part program which start and end at zero feedrate
(full stop). The remaining displacements in a part program
are continuous and therefore the commands consist of a
velocity pulse with a blending pulse either side as shown in
Fig. 8. Accordingly, each cornering blend consists of two
back-to-back blending pulses.

For the entire pulse train, each G01 command or
CL line can be represented by an index k with k=1
corresponding to the initial command in the part program.
The associated feedrate commands in the part program are
hence denoted F(k). Therefore, for the main commands in
a part program, the modified value of Tv is calculated as:

Tv(k) = L(k)

F (k)
− α(k)Tb(k) − α(k + 1)Tb(k + 1) (17)

For constant feedrate, the adjoining blending pulses are
symmetric. This leads to symmetrical interpolated velocity
profiles and results in symmetrical displacement profiles,
translating to the same toolpath trajectory for both forward
and backward passes resulting in a more accurate finish.

3.2 Filtered signal generation

The composition of the velocity pulses and filtered
kinematic profiles was shown in the previous section. In
practice, the strategy for interpolation of multi-segmented
NC toolpaths using high order FIR filtering, as shown in
Fig. 8, is as follows:

1. Read NC code and parse commanded X,Y, Z posi-
tions and feedrate commands from individual G01
commands and extract defined tolerance setting.

2. Calculate toolpath geometry (cornering angles θT CP )
and unit velocity vectors for each G01 command.

3. Calculate cornering feedrates where Vc = Fc =
Fα from the maximum permissible feedrate for the
cornering angle and defined tolerance (Eq. 29 and
Eq. 30) (demonstrated in Section 3.3).

4. Calculate pulse velocities F and velocity blending pulse
widths Tb followed by modified velocity pulse widths
Tv (Eq. 16 and Eq. 17).

5. Synchronise timed axis velocity pulses and generate
unfiltered axis velocity signals (pulse train).

6. Define FIR filter time constants for the commanded
feedrate from maximum permissible jerk (Eq. 8).

7. Using high order FIR filtering with matching time con-
stants interpolate the axis velocity pulse signals to gen-
erate smooth kinematic profiles for each axis (Eq. 10).

8. Finally, integrate the filtered velocity signals to generate
synchronised accurate position commands in the time
domain (Eq. 11).

Sections 3.1 and 3.2 described the components of the veloc-
ity pulse train and application of FIR filtering for generation
of kinematic profiles for non-stop high speed motion. The
following sections will analytically demonstrate the relation-
ship between the cornering speed Vc to the blending error
and axis kinematic limits and ultimately demonstrate how
Fc is selected to guarantee these constraints are satisfied.

3.3 Kinematic profiles for the 2-FIR filter case

The geometry of velocity blending pulses was presented and
calculated in Section 3.1. The pulse signals are interpolated
using FIR filters to generate kinematic profiles that control
the cornering feedrate. This section analytically derives the
equations for the kinematic profiles when using velocity
blending pulses and FIR filtering–based interpolation to
control the cornering feedrate. In doing so, the authors are
able to analytically calculate the blending pulse feedrate
command Fc which satisfies both TCP error and machine
kinematic constraints during cornering transitions.

Using 2-FIR filters with matching time constants to
interpolate a velocity pulse signal results in the kinematic
profiles shown in Fig. 9. The profiles are split into 5 sections
during acceleration/deceleration as shown in Fig. 9b for
the Y-axis acceleration. The objective of the analytical
expressions is to calculate the interpolated displacement
at the point of maximum TCP error and the interpolated
velocity at the minimum cornering feedrate. This occurs at
half the total filter delay Td/2 (see Fig. 9a). The total filter
delay for the 2-FIR case is Td = 2T1, where T1 is calculated
from the maximum permissible jerk (Eq. 8), resulting in
the maximum TCP error and minimum cornering feedrate
occuring at T1. Figure 9b shows T1 is at the start of section 3;
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therefore, only sections 1–3 of the kinematic profiles need
considering. The analytical expressions for sections 1–3 of

the displacement, velocity, acceleration and jerk profiles for
the 2-FIR case are presented in Eqs. 18 to 21 respectively.

s′(t)=
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a′(t) =

⎧⎪⎪⎨
⎪⎪⎩

αF

T 2
1

t 0 ≤ t < Tb

F

T 2
1

(t + Tb (α − 1)) Tb ≤ t < T1

F

T 2
1

((1 − 2α) t + 2T1α − Tb + Tbα) + T1 ≤ t < Tb + T1

(20)
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The interpolated axis velocity at maximum TCP error
(minimum cornering feedrate) occurs at t = Td/2 =
T1; therefore, in the 2-FIR filter case, this results in the
following expressions for interpolated velocity (Eq. 22) and
displacement (Eq. 23):

v′ = 1

2

F

T 2
1

(
T 2
1 − T 2

b (1 − α) + 2T1Tb (α − 1)
)

(22)

s′ = 1
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T 2
1

(
T 3
1 + 3T1T

2
b (1 − α) + 3T 2

1 Tb (α − 1) + T 3
b (α − 1)

)
(23)

Using Eq. 14, the interpolated displacement (Eq. 22) and
velocity (Eq. 23) can be expressed in terms of F and α:

v′ = F

2
α

(
−α2 + α + 1

)
(24)

s′ = F

6
T1 α

(
−α3 + α2 + 1

)
(25)

Figure 10 shows a cornering transition between two CL-
lines or G01 commands. The maximum TCP contouring
or corner blending error εT CP occurs in the centre of
the cornering trajectory and is calculated by evaluating
the interpolated axis displacements s′ at t = T1. The

interpolated axis displacements are calculated from Eq. 25,
and the vectors from the corner transition to these positions
are represented by l1 and l2.

The contouring error εT CP (shown in Fig. 10) is
calculated from the Euclidean distance between the vectors
l1 and l2.

εT CP = ‖l2 − l1‖ =
√

l21 + l22 + 2l1l2 cos θT CP (26)

where θT CP represents the TCP cornering angle. Assuming
constant feedrate in this example, l1 = l2 = lε, in which
case, Eq. 26 simplifies to the following expression:

ε2T CP ≤ 2l2ε (1 + cos θT CP ) (27)

Inserting Eq. 14 and Eq. 23 into Eq. 26 enables the TCP
corner blending error to be defined as:

εT CP =
√
2

6

√
F 2 T1

2 α2 (cos θT CP + 1)
(−α3 + α2 + 1

)2
(28)

Using Eq. 28, the TCP error can be calculated for any
toolpath geometry and commanded feedrate. The kinematic
profiles for the 3-FIR case are shown in Fig. 17 in Appendix
B and the derivation of TCP error for the 3-FIR case is
included in Appendix C.

To ensure minimum cycle times, the actual feedrate must
remain as close to the commanded feedrate as possible
throughout the toolpath including cornering transitions.
However, to satisfy both jerk and TCP error constraints,
there is a maximum permissible cornering feedrate. Using
Eqs. 28 and 42, it is possible to calculate the relationship
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Fig. 8 Non-stop interpolation of kinematic profiles using high order
FIR filtering

between TCP error, maximum permissible cornering
feedrate and cornering angle for the 2-FIR and 3-FIR filter
cases respectively.

Rearranging Eq. 28, the maximum permissible cornering
feedrate for the 2-FIR filter case must satisfy:

FT1
√
cos (θT CP + 1)

(
α4 − α3 − α

)
− 3

√
2εT CP ≤ 0

(29)

Fig. 9 Interpolated kinematic profiles of velocity blending pulses
using 2-FIR filters

and for the 3-FIR filter using Eq. 42, the maximum
permissible cornering feedrate must satisfy:

FT1
√
cos (θT CP + 1)

(
16α5+16α4− 8α3− 16α2− 85α − 1

)

−192
√
2εT CP ≤ 0 (30)

For a commanded feedrate F and range of cornering
angles θT CP ∈ [0◦, 180◦], Eqs. 29 and 30 are solved
for solutions 0 < α ≤ 1 to calculate the limit to
the feedrate scaling factor α. When multiplied by the

Fig. 10 Toolpath showing contouring error and cornering angle
between two consecutive G01 commands
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commanded feedrate F , this represents the maximum
permissible cornering feedrate that can be achieved whilst
satisfying the kinematic and tolerance constraints. The
blending pulse feedrate Fc is commanded to this limit value.

The reduction in cornering feedrate for both the 2-FIR
and 3-FIR filter cases is shown in Fig. 11. Cornering
feedrates selected below the curves will satisfy the TCP
error constraints for the commanded feedrate and cornering
angle. The figure shows the limits for 10μm and 50μm
tolerance constraints. For the 50μm tolerance, the figure
shows higher cornering feedrates can be achieved compared
to the 10 μm case. It can also be recognised that higher
feedrates can be achieved in the 3-FIR case. Therefore,
there is an advantage of using 3-FIR filters to reduce the
overall machining cycle time as the tool can remain at
higher feedrates during cornering transitions than for the
2-FIR case. Despite the advantage of using a higher order
filter, there remains a limit to the order of filters that
can be used effectively for trajectory generation. As the
order is increased, the filter time constant reduces. In the
frequency domain, the notch (as shown in Fig. 3) will shift
to higher frequencies. This will be constrained by the lowest
structural mode of the machine tool.

This section has shown a method of using multiple first-
order FIR filters with matching time constants to model
continuous linear interpolation of velocity pulse signals.
It has been shown that the cornering feedrate and TCP
error can be controlled using velocity blending pulses. This
method has been extended to predict feedrates and machin-
ing cycle time for toolpaths of any geometry and defined
TCP tolerance. The following section demonstrates and
validates the proposed method on industrial case studies.

4 Experimental validation

Machining experiments were conducted on a DMG
Mori Universal eVo 40 5-axis machining centre with a

Fig. 11 Minimum cornering feedrate and cornering angle curves
shown for 10μm and 50μm tolerance settings at 2000 mm/min for
both 2 and 3 first-order FIR cases

Heidenhain TNC640 controller. Two short toolpaths were
used for pocketing operations and a single long aerospace
part program is evaluated in the cycle time prediction. The
section concludes with validation of the feedrate prediction
method integrated with a virtual machining model.

4.1 Case studies on pocketing toolpaths

The first two case studies, as shown in Fig. 12, consist
of a contour and a trochoidal pocketing toolpath. These
toolpaths are generated by CAM software [30], and the
part programs are deployed to the machine directly with
no modification. Table 1 shows the cutting conditions. As
noted, 2 different feedrates 1000 and 3000 mm/min are
used. The most important setting is contour error tolerance
for HSM. Two different contouring tolerances, 10 and 50
μm, are used. Table 1 summarises the cycle time results.
All simulated trajectories in the case studies were modelled
using the method described in Section 3.2 and 3-FIR
filters.

4.1.1 Machining cycle time estimation

The predicted machining cycle times are compared with the
measured CNC and CAD/CAM calculated machining cycle
times. The results are presented in Table 1 and Fig. 13a. For
all cases, the predicted machining cycle times are accurate
to within 3% of the measured cycle time with the exception
of the trochoidal pocket (1000 mm/min, 10μm case) which
is 5.52%. These compare favourably to the CAD/CAM
calculated cycle times which has an error range from 0.22 to
54.99%. The significant result is the trochoidal pocket (3000
mm/min and 10μm case). The proposed method is able to
accurately predict the increase in machining cycle time from
14.40 to 30.99 s when tightening the tolerance from 50 to
10μm, which is within 2.72% of the measured cycle time.
This is compared to an error of 54.99% for the CAD/CAM
calculated cycle time.

Fig. 12 Contour (left) and trochoidal (right) pocketing toolpaths
designed in Siemens NX CAM
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Table 1 Machining cycle times for contour and trochoidal pocket at different machining parameters

Case study Feedrate Tolerance Measured CAD/CAM FIR CAD/CAM FIR

(mm/min) (microns) time time prediction prediction prediction

(s) (s) time error (%) error (%)

(s)

Contour pocket 1000 10 27.07 26.56 27.32 -1.88 0.92

Contour pocket 1000 50 26.82 26.56 26.95 -0.97 0.48

Contour pocket 3000 10 10.37 8.85 10.46 -14.66 0.87

Contour pocket 3000 50 9.6 8.85 9.73 -7.81 1.35

Trochoidal pocket 1000 10 42.38 40.69 44.75 -3.98 5.59

Trochoidal pocket 1000 50 40.78 40.69 41.30 -0.22 1.28

Trochoidal pocket 3000 10 30.13 13.56 30.99 -54.99 2.86

Trochoidal pocket 3000 50 14.04 13.56 14.40 -3.41 2.56

4.1.2 Prediction of feedrate profile

To demonstrate the performance of the feedrate prediction
method, a number of toolpath features were selected.
The predicted, CAD/CAM calculated and measured CNC
tangential velocities at these particular features were
recorded and are presented in Tables 2 and 3. The contour
pocket features consist of (1) a long G01 segment, (2) a
sharp corner and (3) a rounded corner consisting of small
G01 segments. The trochoidal pocket features consist of (1)
the stepover segment and (2) the main arc. Depending on the
tolerance and the commanded feedrate, large differences in
tangential velocity can exist between the stepover segment
and the main arc of a trochoidal toolpath which in turn
results in a large cyclical variation of cutting forces. It
is for this reason they are included in this study. The
features described above are shown on the toolpaths in
Fig. 13 and the corresponding position with respect to
displacement and tangential velocities are demonstrated
directly beneath. Overall, the prediction error ranges from
0.1 to 10.3% compared with CAD/CAM calculated error
range of 0.22–2555%, where the error is calculated as
a percentage difference from, and with respect to, the
measured tangential velocity. The performance of the
proposed feedrate prediction method at each feature is
described below:

Long G01 segment The prediction error range is between
0.1 and 0.13% compared to the CAD/CAM calculated error
range of 0.27–0.3%. The high accuracy is to be expected as
no feedrate limiting features are present in the segment. The
differences in measured velocity compared to the idealised
CAD/CAM values are due to interpolator rounding during
trajectory generation.

Sharp corner The prediction error range is between 7
and 20% compared to the CAD/CAM calculated error

range of 107–2555%. The fundamental difference is due
to the CAD/CAM calculation not taking into account the
cornering kinematic constraints due to tolerance and thus
not predicting the reduction in feedrate during the cornering
segment. This holds true for all of the features demonstrated
except the long G01 segment. For the 10μm tolerance cases,
the tool comes to an almost complete stop — 4% and 11%
of the commanded feedrate for the 3000 mm/min and 1000
mm/min cases, respectively; the presented method predicts
these reductions.

Rounded corner The prediction error range is between 0.3
and 5.4% compared to the CAD/CAM calculated error
range of 0.2 and 168%. The significant result is the 3000
mm/min and 10μm case (Fig. 13c) where the CAD/CAM
calculation does not account for the reduction in velocity
due to the tolerance requirement. The CAD/CAM calculated
error is 168% compared to the measured value and the
prediction error is within 2.4%.

Trochoid stepover The prediction error range is between
0.1 and 10% compared to the CAD/CAM prediction
error range of 0.2–0.5%. The CAD/CAM calculation does
not predict any differences along the trochoidal toolpath
between the stepover and the main arc. This can be seen in
Fig. 13d for the 3000 mm/min 10μm case. The blue line
shows the CAD/CAM prediction but the actual kinematic
profile is very different. The stepover results in tangential
velocities close to the commanded feedrate as the cornering
angles between the segments are less acute than for the rest
of the main arc.

Trochoidmain arc The prediction error range is between 0.6
and 7% compared to the CAD/CAM calculated error range
of 0.2–208%. The reduction in tangential velocity around
the main arc is due to the cornering angles between the
segments. The influence of the toolpath tolerance on the
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Fig. 13 Pocketing case studies — predicted, measured and CAD/CAM tangential velocities

cornering tangential velocity can be seen in Fig. 13d and
Fig. 13f. The increase in tolerance from 50 to 10μm results
in more than a 65% reduction in tangential velocity around
the main arcs of the trochoids. The prediction method

accurately predicts the feedrate within 1.5% of tangential
velocity measured at the main arc. Taking this result one
step further, this demonstrates that a feedrate driven cutting
force model when incorporating the prediction method will
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Table 2 Contour pocket case study: tangential velocity prediction and performance

Case Feedrate Tolerance Analysis

study (mm/min) (microns) point Tangential velocities (mm/min)

Measured CAD/CAM Proposed CAD/CAM Proposed

prediction error prediction

error

Contour 1000 10 Point 1 1003 1000 1004 -0.30% +0.10%

Contour 1000 50 Straight 1003 1000 1004 -0.30% +0.10%

Contour 3000 10 G01 3008 3000 3005 -0.27% -0.10%

Contour 3000 50 3008 3000 3004 -0.27% -0.13%

Contour 1000 10 Point 2 124 1000 143 +706% +15%

Contour 1000 50 Sharp 482 1000 446 +107% -7%

Contour 3000 10 Corner 113 3000 93 +2555% -17%

Contour 3000 50 465 3000 370 +545% -20%

Contour 1000 10 Point 3 994 1000 940 +0.6% -5.4%

Contour 1000 50 Rounded 998 1000 995 +0.2% -0.3%

Contour 3000 10 Corner 1120 3000 1093 +168% -2.4%

Contour 3000 50 2996 3000 2929 +0.13% -2.23%

be able to predict the cyclical cutting forces due to the 65%
variation in magnitude of feedrate fluctuations around the
trochoidal toolpath.

4.2 Case study 3— aerostructure toolpath

An industrial toolpath was chosen to validate the method
against a representative aerostructure part. The part program
consists of three toolpaths — roughing, finishing #1 floors
and finishing #2 walls as shown in Fig. 14. The part
programs were run at three tolerance settings, 10μm, 20μm

and 50μm to demonstrate the significant impact tolerance
has on machining cycle times and therefore on feedrate
and cycle time prediction. Table 4 compares the predicted
machining cycle times with both the measured cycle times
and the predicted times from a commercial CAD/CAM
software package for each individual toolpath.

The overall machining cycle times, calculated by
summing the cycle times for the 3 sections of the part
program, are shown in Table 5. The CAD/CAM prediction
error ranges from 62.41% under prediction for the 10μm
case to 36.42% under prediction for the 50μm case. The

Table 3 Trochoidal pocket case study: tangential velocity prediction and performance

Case study Feedrate Tolerance Analysis

pocket (mm/min) (microns) point Tangential velocities (mm/min)

Measured CAD/CAM Proposed CAD/CAM Proposed

prediction error prediction

error

Trochoidal 1000 10 Point 1 1005 1000 1003 -0.50% 0.20%

Trochoidal 1000 50 Trochoid 1005 1000 1004 -0.50% 0.10%

Trochoidal 3000 10 Stepover 2994 3000 2687 +0.20% 10.3%

Trochoidal 3000 50 3014 3000 2985 -0.46% 0.96%

Trochoidal 1000 10 Point 2 938 1000 872 +6.61% 7%

Trochoidal 1000 50 Trochoid 1002 1000 994 -0.20% 0.60%

Trochoidal 3000 10 Main Arc 973 3000 958 +208% 1.5%

Trochoidal 3000 50 2986 3000 2838 +0.47% 4.96%
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Fig. 14 Aerostructure toolpaths (shown in order of operation)

actual CAD/CAM predicted times do not change as the
software does not account for tolerance; the calculation
is based upon distance travelled along the toolpath and

ideal feedrate. Therefore, as the tolerance is relaxed, the
measured cycle time approaches the CAD/CAM case and
their prediction becomes more accurate.

The prediction error from the proposed method (as shown
in Table 5) ranges from 3.50% over prediction for the 10μm
case to 4.69% for the 50μm case. The 20μm case has a
prediction error of 5.34% under the measured cycle time which
is approximately 10% of the CAD/CAM error (51.49%) for
that particular case. The aerostructure case study validates
the model for predicting both feedrate and machining
cycle times for varying tolerance settings on very complex
industrial toolpaths far outperforming the CAM software.

4.3 Case study 4— accurate cutting force prediction
using predicted feedrates

Lastly, the importance of accurate feedrate prediction for
virtual machining models is demonstrated. This is realised
by estimating cutting forces along the complex trochoidal
toolpath shown in Fig. 15. Predicting the cutting forces,
considering the complex tool engagements on this toolpath,
is realised by adapting the cutting force prediction model
presented in [4] with the proposed feedrate prediction
method. Readers should refer to [2] and [4] for details of the
cutting force model.

To validate the feedrate prediction method with a cutting
force model, machining trials were conducted on the 5-axis
DMG Mori eVo 40 machining centre fitted with a Heidenhain
TNC640 controller. The toolpath, shown in Fig. 15, was
designed using NX CAM as a trochoidal pocketing operation.
A 40mm × 60mm × 10mm open sided pocket was selected
as the test feature as shown in Fig. 16. A 2-fluted 12-mm solid
carbide end mill with a HSK-63A tool holder was used.
The workpieces were 236mm × 30mm × 6mm aluminium
7075, each held using a Geradi compact grip vice mounted
to the dynamometer. A Kistler 9139AA dynamometer and

Table 4 Machining cycle time comparison for aerostructure part case study

Section Feedrate Tolerance Measured CAD/CAM Proposed CAD/CAM Proposed

(mm/min) (microns) time time prediction error (%) prediction

(s) (s) time error (%)

(s)

Roughing 8000 10 1017.40 332 1032.80 -67.37 1.51

Finish floor 8000 10 543.75 213 606.75 -60.83 11.59

Finish walls 8000 10 133.31 92 114.30 -30.99 -14.26

Roughing 8000 20 752.40 332 711.05 -55.87 -5.50

Finish floor 8000 20 435.01 213 420.85 -51.04 -3.26

Finish walls 8000 20 125.61 92 111.01 -26.76 -11.62

Roughing 8000 50 551.52 332 478.66 -39.80 -13.21

Finish floor 8000 50 334.37 213 368.28 -36.30 10.14

Finish walls 8000 50 115.92 92 107.90 -20.63 -6.92
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Table 5 Total machining cycle times and errors for measured, predicted and CAD/CAM

Total machining cycle times Errors (%)

Case Feedrate Tolerance Measured CAD/CAM Proposed CAD/CAM Proposed

(mm/min) (microns) (s) (s) prediction prediction

(s)

1 8000 10 1694.46 637 1753.85 -62.41 3.50

2 8000 20 1313.02 637 1242.91 -51.49 -5.34

3 8000 50 1001.81 637 954.84 -36.42 -4.69

a National Instruments USB-6343 multi-channel DAQ was
used to acquire cutting force data at 10kHz. The machining
centre was connected to a local area network via a RJ45
network cable such that the machine controller data was
accessed by two methods. The first using a pre-defined
MTConnect datastream through a TCPIP connection at
20Hz and the second using an LSV2 protocol direct to the
controller through a TCPIP connection at 111Hz.

The predicted cutting forces during the trochoidal section
are shown in Fig. 15. The peak predicted cutting force for
the standard feedrate model is 673N compared to 380N for
the filtered feedrate model, from the peak measured cutting
forces this gives prediction errors of 96.2% and 10.8%
respectively. In the cornering section of the toolpath, the
peak predicted cutting force for the standard feedrate model
is 821N compared to 656N for the filtered feedrate model,
from the peak measured cutting forces this gives prediction
errors of 37.3% and 9.7% respectively. The validation trials
show that the inclusion of an accurate feedrate profile in the
cutting force model enables a more accurate prediction of
cutting forces for complex toolpaths.

5 Conclusions

A novel method of accurately modelling the trajectory
generation of NC systems has been proposed. The main
conclusions from this research are as follows:

1. An accurate method of feedrate prediction using FIR-
based linear interpolation was introduced.

2. The method was demonstrated along short segmented
complex toolpaths.

3. The linear interpolation dynamics and commanded axis
kinematic profiles of NC systems were predicted using
both 2 and 3 first-order finite impulse response filters
with the same time constant.

4. The corner blending behaviour during non-stop interpo-
lation of linear segments was modelled by introducing
velocity blending pulses.

5. For the first time, the minimum cornering feedrate that
satisfies both the tolerance and machining constraints has
been calculated analytically for toolpaths of any geometry.

6. The reduction in machining cycle time by using 3 FIR
filters compared to 2 FIR filters was proven analytically.

Fig. 15 Simulated and
measured resultant cutting
forces for a trochoidal pocket
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Fig. 16 Machined AL7075 pocket using a trochoidal toolpath

7. The feedrate prediction method was validated experi-
mentally against four different case studies demonstrat-
ing industrial 3-axis machining toolpaths.

8. The proposed method demonstrated cycle times can be
estimated with >90% accuracy, greatly outperforming
CAM-based predictions.

9. The predicted feedrate method was incorporated into
a cutting force model, demonstrating an increase in
cutting force accuracy for a complex toolpath, and
validated experimentally.

Further work will integrate the methods into virtual
machining and digital-twin models and extend the method
to 5-axis machining. In addition to experimental trials,
virtual NC kernels and NC emulators will be used to
compare offline prediction methods.

Appendix A: Kinematic equations for 3-FIR
case
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T 3
1

(
−t + 3

2T1

)
T1 ≤ t < 2T1

F

T 3
1

(t − 3T1) 2T1 ≤ t < 3T1
0 3T1 ≤ t < Tv
F

T 3
1

(−t + Tv) Tv ≤ t < Tv + T1

2F
T 3
1

(
t − Tv − 3

2T1

)
Tv + T1 ≤ t < Tv + 2T1

F

T 3
1

(−t + Tv + 3T1) Tv + 2T1 ≤ t < Tv + 3T1

(33)
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Appendix B: Kinematic profiles for 3-FIR case

Fig. 17 Velocity, acceleration and jerk profiles generated by blended
velocity pulses interpolated 3-FIR filters

Appendix C: Kinematic equations
for the 3-FIR filter case (blending pulses)

s′(t) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

αF

24T 3
1
t4 0 ≤ t < Tb

2αF

T 3
1

(
− 1

24 t
4 + 1

4T1t
3 − 3

8T
2
1 t2

)
+ αF

2 t − αFT1
8

2
Tb ≤ t < T‘

F (1−3α)

24T 3
1

(−t4 + 4Tbt
3 − 6T 2

b t2 + 4T 3
b t − T 4

b

) + αF

24T 3
1
(−8b1t3 + 18T 2

1 + 12T 2
b + . . .

. . . − 36T1Tb + 24Tb)t
2 + (

8T 2
b − 12T 3

1

)
t + 3T 4

1 − 18T 4
b + 24T1T 3

b − 16T b3b1 T1 ≤ t < T1 + Tb

(34)

v′(t) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

αF

6T 3
1
t3 0 ≤ t < Tb

2αF

T 3
1

(
− 1

6 t
3 + 3

4T1t
2 − 3

4T
2
1 t

)
+ αF

2 Tb ≤ t < T1

F(1−3α)

6T 3
1

(
t3 − 3Tbt

2 + 3T 2
b t + T 3

b

) + αF

T 3
1

(
1
2T

3
1 − 1

3T
3
b − ( 32T

2
1 − 3T1Tb + T 2

b

)
t + . . .

. . . + b1t
2 − 2Tbb1t) T1 ≤ t < T1 + Tb

(35)
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a′(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

αF

T 3
1

t 0 ≤ t < Tb

2αF

T 3
1

(
− 1

2 t
2 + 3

2T1t − 3
4T

2
1

)
Tb ≤ t < T1

2αF

T 3
1

(
3
2T

2
1 − 3

2T1Tb + 1
2T

2
b − Tbb1 + b1

)
− F(1−3α)

T 3
1

(
1
2T

2
b −

(
Tbt − 1

2 t
2
))

T1 ≤ t < T1 + Tb

(36)

j ′(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

αF

T 3
1

t 0 ≤ t < Tb

αF

T 3
1

(
−t + 3

2T1

)
Tb ≤ t < T1

F(1−3α)

T 3
1

(t − Tb) + 2αF

T 3
1

(
3
2T1 − Tb

)
T1 ≤ t < T1 + Tb

(37)

where b1 = 3
2T1 − Tb.

The maximum TCP error occurs at t = Td

2 = 3
2T1 for the

3 first-order FIR filter cases; the interpolated axis velocity
and displacement are defined as Eqs. 38 and 39 respectively:

v′ = F

48 T1
3

(
36 T1T

2
b − 54 T 2

1 Tb − 3 T 3
1 α + 8 T 3

b α

+27 T 3
1 − 8 T 3

b − 36 T1 T 2
b α + 54 T 2

1 Tb α
)
(38)

s′ = − F

384T 3
1

(96 T1 T 3
b + 216 T 3

1 Tb + 3 T 4
1 α + 16 T 4

b α

−81 T 4
1 − −16 T 4

b − 216 T 2
1 T 2

b + ...
... + 216 T 2

1 T 2
b α − 96 T1 T 3

b α − 216 T 3
1 Tb α)

(39)

Using Eq. 14, Eq. 38 and Eq. 39 can be expressed in
terms of F and α as:

v′ = F

48

(
−8α4 − 4α3 + 6α2 + 29α + 1

)
(40)

s′ = F

384
T1

(
−16α5 − 16α4 + 8α3 + 16α2 + 85α + 1

)

(41)

Solving Eq. 27 with Eq. 39 results in the maxi-
mum TCP error for the 3-FIR filter case as follows:

εT CP =
√
2

384

√
F 2 T1

2 (cos θT CP + 1)
(−16α5 − 16α4 + 8α3 + 16α2 + 85α + 1

)2 (42)
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