Skip to main content
Log in

Precision polishing of the mandrel for X-ray grazing incidence mirrors

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Based on chemical-mechanical polishing, a precision polishing method is proposed to accommodate the polishing of the paraboloid surface of the specified mandrel for grazing incidence X-ray mirrors. The influencing factors in the polishing are analyzed to confirm the method complies with the Preston equation and Hertz contact theory. Therefore, the common material removal model based on these two theories is adopted. The effects of processing parameters, such as the force F between the mandrel and the polishing lap, the rotational speed n of the mandrel, and the axial speed va of the polishing lap, on the material removal rate are simulated, respectively. A polishing setup is established to carry out experimental polishing to verify the optimum processing parameters obtained by simulations and previous polishing tests. Besides, the effect of abrasive particle size on the roughness is also verified. The roughness of the polished mandrel is measured at different positions, and the optimum roughness reaches Ra 0.659 nm. The polishing approach can significantly reduce the surface roughness of the replication mandrel, satisfying the low energy band focusing requirement of grazing incidence X-ray mirrors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this manuscript.

References

  1. Gorenstein P (2010) Focusing X-ray optics for astronomy. X-Ray Opt Instrum 2010:1–19. https://doi.org/10.1155/2010/109740

    Article  Google Scholar 

  2. Gilli R, Comastri A, Hasinger G (2007) The synthesis of the cosmic X-ray background in the Chandra and XMM-Newton era. Astron Astrophys 463(1):79–96. https://doi.org/10.1051/0004-6361:20066334

    Article  Google Scholar 

  3. Keith CG, Zaven A, Takashi O (2012) The Neutron star Interior Composition Explorer (NICER): an explorer mission of opportunity for soft x-ray timing spectroscopy. Proc SPIE 8443:844313. https://doi.org/10.1117/12.926396

    Article  Google Scholar 

  4. Jason WM, Munther AH, Luke MBW, Jennifer EV, Samuel RP, Sean RS, Wayne HY, Zaven A, Paul SR, Kent SW, Ronald JL, Keith CG (2015) SEXTANT-station explorer for X-ray timing and navigation technology. Proc. AIAA 0865:1–0865.16. https://doi.org/10.2514/6.2015-0865

    Article  Google Scholar 

  5. Xiong K, Wei CL, Liu LD (2015) Performance enhancement of X-ray pulsar navigation using autonomous optical sensor. Acta Astronaut 128:473–484. https://doi.org/10.1016/j.actaastro.2016.08.007

    Article  Google Scholar 

  6. Kazuhisa M, Hideyo K, Inoue H, Richard LK (2004) Astro-E2 mission. Proc SPIE 5488:177–186. https://doi.org/10.1117/12.562697

    Article  Google Scholar 

  7. Gorenstein P (2012) Grazing incidence telescopes for x-ray astronomy. Opt Eng 51:011010. https://doi.org/10.1117/1.OE.51.1.011010

    Article  Google Scholar 

  8. Weisskopf MC, Aldcroft TL, Bautz M, Cameron RA, Dewey D, Drake JJ, Grant CE, Marshall HL, Murray SS (2003) An overview of the performance of the Chandra X-ray observatory. Exp Astron 16:1–68. https://doi.org/10.1023/B:EXPA.0000038953.49421.54

    Article  Google Scholar 

  9. Soong Y, Serlemitsos P, Okajima T, Hahne D (2011) ASTRO-H soft X-ray telescope (SXT). Proc SPIE 8147:814702. https://doi.org/10.1117/12.894305

    Article  Google Scholar 

  10. Charles JH, An HJ, Kenneth LB et al (2010) The Nuclear Spectroscopic Telescope Array (NuSTAR): optics overview and current status. Proc SPIE 7732:77320T. https://doi.org/10.1117/12.857654

    Article  Google Scholar 

  11. Philippe G, Daniel C, Kees K, Philippe K, Stramaccioni D, Bernd A, Oberto C, Richard W (1994) X-ray multi-mirror (XMM) telescope. Proc. SPIE 2279. https://doi.org/10.1117/12.193178

  12. Friedrich P, Bräuninger H, Budau B et al (2008) Design and development of the eROSITA X-ray mirrors. Proc SPIE 7011:70112T. https://doi.org/10.1117/12.788948

    Article  Google Scholar 

  13. Wilhelm E, Wolfgang H, Axel M, Georg W, Alexander I, Heinz S (2004) Fabrication of segmented Wolter type 1 mandrels for the Constellation-X mirror development program. Proc SPIE 5168:157–167. https://doi.org/10.1117/12.507733

    Article  Google Scholar 

  14. Gubarev M, Ramsey B, Engelhaupt D, Arnold W (2008) Technology development for nickel X-ray optics enhancement. Proc SPIE 701133. https://doi.org/10.1117/12.789190

  15. Chambure DD, Laine R, Katwijk KV (1999) Lessons learned from the development of the XMM optics. Proc. SPIE 3737 https://doi.org/10.1117/12.360007

  16. Kong FX (2018) Research on manufacturing of ultra-precision mandrel and replication process of Wolter-I extreme ultraviolet optical collecting mirror. Dissertation, Harbin Institute of Technology

  17. Zuo FC, Mei ZW, Deng LL, Shi YQ, He YB, Li LS, Zhou H, Xie J, Zhang HL, Sun Y (2020) Development and in-orbit performance evaluation of multi-layered nested grazing incidence optics. Acta Phys Sin 69:030702-1–030702-9. https://doi.org/10.7498/aps.69.20191446

    Article  Google Scholar 

  18. Walker DD, Brooks D, King A, Freeman R, Morton R, McCavana G, Kim SW (2003) The ‘Precessions’ tooling for polishing and figuring flat, spherical and aspheric surfaces. Opti Expr 11:958–964. https://doi.org/10.1364/oe.11.000958

    Article  Google Scholar 

  19. Schinhaerl M, Smith G, Stamp R, Rascher R, Smith L, Pitschte E, Sperber P, Geiss A (2008) Mathematical modeling of influence functions in computer-controlled polishing: Part I. Appl Math Model 32:2888–2906. https://doi.org/10.1016/j.apm.2007.10.013

    Article  Google Scholar 

  20. Li YM, Deng LL, Yang J, Tian XY, Zuo FC, Shen K, Xie J (2020) Manufacturing technology and application development of electroformed nickel Wolter-I optical system. Aero Contr and Appli 46:8–16. https://doi.org/10.3969/j.issn.1674-1579.2020.02.002

    Article  Google Scholar 

  21. Sun T, Kong FX, Geng YQ, Han QQ (2017) Precision turning of optical mandrel with high steepness axisymmetric aspheric surface using arc-edged diamond cutter. Int J Adv Manuf Technol 93:4243–4252. https://doi.org/10.1007/s00170-017-0872-2

    Article  Google Scholar 

  22. Dervis V (2011) Advanced manufacturing techniques for X-ray and VHE gamma-ray astronomical mirrors. Dissertation, Dottorato di Ricerca - Astronomia ed Astrofisica Como

  23. Chon KS, Namba Y, Yoon KH (2006) Precision machining of electroless nickel mandrel and fabrication of replicated mirrors for a soft x-ray microscope. JSME Int J Ser C 49:56–62. https://doi.org/10.1299/jsmec.49.56

    Article  Google Scholar 

  24. Robert AJ, Wiktor JR (1990) Rapid optical fabrication with CCOS. Proc SPIE 1333. https://doi.org/10.1117/12.22787

  25. Jerrold Z (1999) Computer-controlled optical surfacing for off-axis aspheric mirrors. Proc. SPIE 1236. https://doi.org/10.1117/12.19182

  26. West S, Martin H, Nagel R, Young R, Davison W, Trebisky T, DeRigne S, Hille B (1994) Practical design and performance of the stressed-lap polishing tool. Appl Opt 33:8094–8100. https://doi.org/10.1364/AO.33.008094

    Article  Google Scholar 

  27. Kim DW, Burge JH, Davis JM, Martin HM, Tuell MT, Graves LR, West SC (2016) New and improved technology for manufacture of GMT primary mirror segments. Proc SPIE 9912:99120P. https://doi.org/10.1117/12.2231911

    Article  Google Scholar 

  28. Wang CJ, Wang ZZ, Wang QJ, Ke XL, Zhong B, Guo YB, Xu Q (2017) Improved semirigid bonnet tool for high-efficiency polishing on large aspheric optics. Int J Adv Manuf Technol 88:1607–1617. https://doi.org/10.1007/s00170-016-8901-0

    Article  Google Scholar 

  29. Zhang J (2012) Bonnet polishing high-slope aspheric surface. Proc SPIE 8416:841612. https://doi.org/10.1117/12.978165

    Article  Google Scholar 

  30. Jiang T, Liu JD, Pi J, Xu ZL, Shen ZH (2018) Simulation and experimental study on the concave influence function in high efficiency bonnet polishing for large aperture optics. Int J Adv Manuf Technol 97:2431–2437. https://doi.org/10.1007/s00170-018-2068-9

    Article  Google Scholar 

  31. Oliver WF, Hedser H B (1999) Fluid jet polishing: removal process analysis. Proc. SPIE 3739. https://doi.org/10.1117/12.360189

  32. Chen FJ, Miao XL, Tang Y, Yin SH (2017) A review on recent advances in machining methods based on abrasive jet polishing (AJP). Int J Adv Manuf Technol 90:785–799. https://doi.org/10.1007/s00170-016-9405-7

    Article  Google Scholar 

  33. Fang H (2006) Optimization of the material removal in fluid jet polishing. Opt Eng 45:053401. https://doi.org/10.1117/1.2203650

    Article  Google Scholar 

  34. Fang H, Guo PJ, Yu JC (2006) Research on the mathematical model of fluid jet polishing. Proc SPIE 6149:61490J. https://doi.org/10.1117/12.674206

    Article  Google Scholar 

  35. Daniel CH (2011) History of magnetorheological finishing. Proc SPIE 8016:80160N. https://doi.org/10.1117/12.882557

    Article  Google Scholar 

  36. Donald G, William IK, Paul D, Stephen JH (1999) Magnetorheological finishing (MRF) in commercial precision optics manufacturing. Proc. SPIE 3782. https://doi.org/10.1117/12.369174

  37. Wang Y, Yin S, Hu T (2018) Ultra-precision finishing of optical mold by magnetorheological polishing using a cylindrical permanent magnet. Int J Adv Manuf Technol 97:3583–3594. https://doi.org/10.1007/s00170-018-2199-z

    Article  Google Scholar 

  38. Stephen DJ, Donald G, Yuling H et al (1995) Magnetorheological finishing: a deterministic process for optics manufacturing. Proc. SPIE 2576. https://doi.org/10.1117/12.215617

  39. Arnold T, Böhm G, Fechner R, Meister J, Nickel A, Frost F, Hänsel T, Schindler A (2010) Ultra-precision surface finishing by ion beam and plasma jet techniques—status and outlook. Nucl Instrum Methods Physics Res 616:147–156. https://doi.org/10.1016/j.nima.2009.11.013

    Article  Google Scholar 

  40. Yang B, Xie XH, Zhou L, Hu H (2017) Design of a large five-axis ultra-precision ion beam figuring machine: structure optimization and dynamic performance analysis. Int J Adv Manuf Technol 92:3413–3424. https://doi.org/10.1007/s00170-017-0347-5

    Article  Google Scholar 

  41. Mauro G, Oberto C, Paolo C, Francesco M (2001) Ion beam figuring of nickel mandrels for x-ray replication optics. Proc. SPIE 4145. https://doi.org/10.1117/12.411654

  42. Kong FX, Sun T, Geng YQ (2019) A precision polishing method for Wolter-I type optical mandrel. Int J Adv Manuf Technol 101:1293–1302. https://doi.org/10.1007/s00170-018-2982-x

    Article  Google Scholar 

  43. Erin B, Keith CG, Zaven A et al (2012) Development of full shell foil x-ray mirrors Proc. SPIE 8450:845052. https://doi.org/10.1117/12.926152

    Article  Google Scholar 

  44. Wolter H (1952) Spiegelsysteme streifenden Einfalls als abbildende Optiken für Röntgenstrahlen. Ann Phys 10:94–114. https://doi.org/10.1002/andp.19524450108

    Article  MATH  Google Scholar 

  45. Singh KP (2011) Grazing incidence optics for X-ray astronomy: X-ray optics. J Opt 40:88–95. https://doi.org/10.1007/s12596-011-0040-2

    Article  Google Scholar 

  46. Lars T, Elias B, Vadim B et al (2013) The development of the μROSI X-ray telescope. Proc SPIE 8859:885905. https://doi.org/10.1117/12.2023973

    Article  Google Scholar 

  47. Gufran SK, Mikhail G, William A, Brian R (2009) Development of a computer-controlled polishing process for x-ray optics. Proc SPIE 7437:743710. https://doi.org/10.1117/12.837360

    Article  Google Scholar 

  48. Luo JF, Domfeld DA (2011) Material removal mechanism in chemical mechanical polishing: theory and modeling. IEEE Trans Semicond Manuf 14:112–133. https://doi.org/10.1109/66.920723

    Article  Google Scholar 

  49. Runnels SR, Eyman LM (1994) Tribology analysis of chemical mechanical polishing. J Electrochem Soc 141:1698–1701. https://doi.org/10.1149/1.2054985

    Article  Google Scholar 

  50. Borst CL, Thakurta DG, Gill WN, Gutmann RJ (2002) Surface kinetics model for SiLK chemical mechanical polishing. J Electrochem Soc 149:118–127. https://doi.org/10.1149/1.1431576

    Article  Google Scholar 

  51. Zhao YW, Chang L, Kim SH (2003) A mathematical model for chemical mechanical polishing based on formation and removal of weakly bonded molecular species. Wear 254:332–339. https://doi.org/10.1016/S0043-1648(03)00015-2

    Article  Google Scholar 

  52. Preston FW (1927) The Theory and Design of Plate Glass Polishing Machines. J Soc Glas Technol 11:214–256

    Google Scholar 

  53. Wang D, Lee J, Holland K, Bibby T, Beaudoin S, Cale T (1997) Von Mises Stress in Chemical-Mechanical Polishing Processes. J Electrochem Soc 144:1121–1127. https://doi.org/10.1149/1.1837542

    Article  Google Scholar 

  54. Lei H, Luo J (2004) CMP of hard disk substrate using a colloidal SiO2 slurry: preliminary experimental investigation. Wear 257:461–470. https://doi.org/10.1016/j.wear.2004.01.017

    Article  Google Scholar 

  55. Johnson KL (1987) Contact mechanics. Cambridge university press

  56. Shiou F, Ciou H (2008) Ultra-precision surface finish of the hardened stainless mold steel using vibration-assisted ball polishing process. Int J Mach Tools Manuf 48:721–732. https://doi.org/10.1016/j.ijmachtools.2008.01.001

    Article  Google Scholar 

Download references

Funding

This study was supported by the National Key R&D Program of China (Grant No.: 2017YFB0503300).

Author information

Authors and Affiliations

Authors

Contributions

Zhiwu Mei, Renke Kang, and Jun Xie contributed to the conception of the study; Hao Hu, Loulou Deng, and Yueming Li designed the polishing setup and performed the polishing experiment; Fuchang Zuo and Liansheng Li contributed significantly to modeling, simulation, and manuscript preparation; Fuchang Zuo and Yueming Li performed the roughness measurement and analysis of the polishing mandrel and wrote the manuscript; Yongqiang Shi and Jianwu Chen helped perform the analysis with constructive discussions.

Corresponding author

Correspondence to Fuchang Zuo.

Ethics declarations

Ethical approval

Not applicable

Consent to participate

Not applicable

Consent to publish

The authors have reached an agreement to publish this article.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zuo, F., Li, L., Mei, Z. et al. Precision polishing of the mandrel for X-ray grazing incidence mirrors. Int J Adv Manuf Technol 118, 43–53 (2022). https://doi.org/10.1007/s00170-021-07185-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-021-07185-1

Keywords

Navigation