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Abstract
The improvement of industrial grinding processes is driven by the objective to reduce process time and costs while
maintaining required workpiece quality characteristics. One of several limiting factors is grinding burn. Usually applied
techniques for workpiece burn are conducted often only for selected parts and can be time consuming. This study presents
a new approach for grinding burn detection realized for each ground part under near-production conditions. Based on the
in-process measurement of acoustic emission, spindle electric current, and power signals, time-frequency transforms are
conducted to derive almost 900 statistical features as an input for machine learning algorithms. Using genetic programming,
an optimized combination between feature selector and classifier is determined to detect grinding burn. The application
of the approach results in a high classification accuracy of about 99% for the binary problem and more than 98% for the
multi-class detection case, respectively.

Keywords Grinding burn · Machine learning · Process monitoring · Acoustic emission · Time-frequency transform

1 Introduction

In industrial manufacturing, grinding often is a final produc-
tion step that must fulfill high demands on precision and
surface integrity. On the other hand, the economic produc-
tivity of the grinding process has to be ensured by maintai-
ning maximal tool life and shorten the process time. Fur-
thermore, the consideration of the manufacturing process
environmental impact gains more importance, leading into
aims to reduce the usage of resources. In general, these
three aspects contradict, as increasing the production speed
results in a higher wear of the grinding tool, a higher energy
input per time, and the amount of scrap parts increases.

As almost all of the introduced energy is converted
into heat, the high temperatures can cause undesirable
effects onthe surface integrity. These microstructural changes
comprise phase transformation, residual stresses, and
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reduced fatigue strength. According to Wegener [1], these
workpiece damages are referred to as grinding burn,
regardless of their extent, visibility, and depth. Therefore,
it is necessary to identify possible deteriorations of the
surface integrity to guarantee the quality of the machined
components.

There are several methods for the detection of grinding
burn on the machined workpiece, categorized by He et al.
[2] in beforehand prediction and post-mortem detection
methods. The latter include time-intensive procedures
like metallographic or residual stress testing. Following
Wegener [1], in industrial applications, predominantly nital
etching and Barkhausen noise analysis (BNA) are applied.
In contrast, beforehand methods include the modeling
of forces, temperatures, and power. Additionally, process
monitoring approaches are applied to realize an in situ
detection of thermal damages.

In research areas, acoustic emission (AE) signals are
quite common for condition monitoring of grinding proces-
ses [3–5]. Multiple studies investigate effects like chatter
vibrations [6], spindle damage [7], wheel wear monitoring
[8], and the detection of grinding burn.

In the following, an approach for the in situ detection of
grinding burn using machine learning is proposed. There-
fore, an experimental procedure to generate controlled
grinding burn is developed and a comprehensive dataset is
ground using high material removal rates. After applying
various time-frequency transforms and extracting statistical
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features, the final feature matrix comprises 391 experiments
and 878 features. Based on this feature matrix, the combi-
nation of feature selection and machine learning methods
is optimized to ensure maximal classification accuracy for
both binary and multi-class prediction. In addition, the se-
lected and most relevant features are studied to evaluate the
benefits of the different sensor types and signal processing
methods.

2 State of the art

In recent years many researchers studied machine learning
approaches for grinding burn detection. Even though they
all pursued the same objective, each of them contributed
with different procedures and techniques. The distinctive
characteristics can be found in the sensor system, signal
processing methods, feature engineering and feature selec-
tion/extraction techniques, and the applied classifier, as
visualized in Table 1.

In the very early stages, Eda et al. [9] already studied the
behavior between AE signals and corresponding grinding
burn with different degrees. A general rise in AE amplitude
was found with the progress of grinding burn. Further-
more, the fast Fourier transform (FFT) was used to conclude
that the characteristic frequency band in the AE spectrum
lies between 100 and 300 kHz. Saxler [10] and Webster
et al. [23] confirmed the findings and highlighted the impor-
tance of the AE root mean square feature (RMS). Fur-
ther statistical features were studied by Wang et al. [11],
who concluded that the band power, kurtosis, skewness,
and autoregressive coefficients of the AE signal show good
correlations to the occurrence of grinding burn. Kwak and
Ha [12] and de Aguiar et al. [13] implemented a multi-
sensor method by including the tool power signal into the
data acquisition. Neto et al. [14] also applied a multi-sensor
method with AE and vibration signals. All of them used an
artificial neural network (ANN) for the two-class classifica-
tion problem and performed with a classification accuracy
from 95 to 98.3%. The presented works so far either use
time-domain or frequency-domain methods for grinding
burn detection. However, these approaches are limited since
they don’t include methods that consider both domains at
the same time.

On the assumption that purely time-domain or frequency-
domain methods suffer under lack of robustness, Liu et al.
[15] used theWavelet Packet Transform (WPT) to create AE
signal features. Distinguishing from other works, they pro-
voked grinding burn by laser irradiation and demonstrated
that the spectral density distribution of the AE magnitudes
was shifted from lower to higher frequencies when heat
was induced [15]. Chen et al. [16] used a similar experi-
mental setup but applied the short-time Fourier transform

(STFT); nonetheless, they made similar observations.
Griffin and Chen [6] studied grinding burn and grind-
ing chatter with AE, power, vibration, and force signals
whereby grinding burn was generated by adjusting pro-
cess parameters. The observations of Griffin and Chen [6]
that the characteristic frequency bands might reach over
500kHz coincides to some extent with the results of Liu
et al. [15] but it should be considered that both use same typ-
ical aerospace workpiece material consisting of iron-nickel
alloy. Their characteristic frequency bands may differ from
those emitted by other materials such as steels utilized in the
automotive industry, for example. They used the indepen-
dent component analysis (ICA) for automatic feature selec-
tion and combined it with a tree-based genetic programming
algorithm [6]. In a later study, Griffin [17] even obtained
better results by using the classification and regression tree
algorithm which promises 99 to 100% classification accu-
racy. Lajmert [18] introduced the Hilbert Huang transform
(HHT) as a signal processing method to quantify grinding
burn for machined hardened steel workpieces. In further
work, Lajmert et al. [19] used AE, vibration, and force
sensors focusing on automatic feature selection methods.
They created many statistical features after applying HHT,
reduced the number of features with principal component
analysis (PCA), and established a minimum set of relevant
features with decision tree algorithms Yang et al. [19]. Since
the empirical mode decomposition (EMD) suffers under the
mode-mixing phenomenon, Yang et al. [20] published the
ensemble empirical mode decomposition (EEMD) method
promising more robustness and better results. Similar to
other works, a frequency shift to higher frequency bands
was observed in the range of 150 to 450kHz [20]. Further-
more, Yang et al. [20] proposed, unlike Liu et al. [15], that
the frequency range of 150 to 450kHz correlates with grind-
ing burn, even though they also used laser irradiation to
generate grinding burn. The main difference is that Yang
et al. [20] used the middle carbon steel ASIS 1045 in his
experiments, instead of the iron-nickel-based alloy. Hence,
the prominent frequency bands for grinding burn might
depend on the workpiece material; Guo et al. [21] applied
the EEMD as well as the WPT for signal processing and
used a two-stage feature selection algorithm to determine
the most meaningful features. A stacked sparse autoen-
coder network (SSAE) was deployed to classify between
burn and no burn and performed with 97.5% classification
accuracy Guo et al. [21]. Another method for frequency
mode decomposition is provided by the variational mode
decomposition (VMD) and, in terms of grinding burn detec-
tion, first introduced by Gao et al. [22]. This method was
motivated from the assumption that grinding burn is associ-
ated with the frequency distribution of the AE signal. Four
degrees of grinding burn (no burn, slight burn, medium burn,
and severe burn) were generated on the metallic workpiece
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surface by laser irradiation with four different temperature
ranges [22].

In the presented works about grinding burn detection,
many different methods have been proposed. Purely time-
domain and frequency-domain methods were used in the
very early stages to determine relevant features and charac-
teristic frequency bands for grinding burn detection. Espe-
cially in the last decade, time-frequency-domain methods
became more popular since they contain more information
and enable non-stationary signal analysis. However, after
signal transformation, automatic feature selection algo-
rithms are just rarely used for optimal feature subset selec-
tion. Furthermore, it was noticed that different workpiece
materials exhibit considerably different properties for their
frequency content during machining. The presented works
show very good classification accuracies; however, most
of them do not differentiate between different degrees of
grinding burn and use a small database with few to no pro-
cess variation. In addition, all of the described works either
use a grinding wheel with alumina oxide grains or induced
workpiece burn through laser irradiation.

Distinguishing from other works, this paper uses a metal-
bonded grinding wheel with cBN grains and produces four
different burn states by an emulated wear progress. Further-
more, the proposed approach applies modern signal trans-
formation methods on multiple sensor signals. Next, the ge-
nerated statistical features are reduced by the use of feature
selection methods that automatically identify the most
suitable features. Finally, the multi-sensor approach and the
abundant amount of experimental data under varying pro-
cess conditions enable multi-class prediction, which is
capable to classify between different degrees of grinding
burn.

3 Theoretical methods

The theoretical foundations of this study are introduced
in the following. Thereon, the problem-specific application
and implementation are presented in Section 4.5.

3.1 Signal processing

The most popular transformation techniques are introduced
briefly in the following which are taken into account as a
preprocessing step for ML. Table 2 shows a comparative
overview of the Fourier, Wavelet, and Hilbert transform
covering the major differing aspects with significant
importance for this work.

The FFT transforms any time-domain signal x(t) into the
frequency-domain by convolution with periodic sinusoidal
functions. Due to this assumption of periodicity, the FFT
looses the time content and therefore is not suited for non-
stationary signals. This limitation gave rise to the STFT

which implies, according to Isermann [25], a window function
which captures the frequencies over the time by shifting
a time constant τ . However, due to the time frequency
uncertainty principle, the STFT is not able to provide an
exact time-frequency representation of the signal [14].

To overcome this drawback, the wavelet transform was
developed, which uses a group of mother wavelets Ψ (t)

showing sharp and oscillating behavior. The choice of
wavelets is typically done according to the similarity to the
original signal [25]. Once a mother wavelet is chosen, it can
be time-scaled (adjusting the frequency resolution) by the
factor a and time-shifted (adjusting the time resolution) by
τ . Dilatation and translation of a mother wavelet �(t) leads
to Eq. 1. [25].

Ψ ′(t, a, τ ) = 1√
a

Ψ

(
t − τ

a

)
(1)

Hence, the wavelet transform provides an independent
modulation of time and frequency resolution [15]. The
continuous wavelet transform (CWT) of the signal x(t) is
then described as follows [25]:

WCWT (a, τ ) = 1√
a

∫ ∞

−∞
x(t) Ψ

(
t − τ

a

)
dτ (2)

The wavelet theory can practically be used in combination
with high-pass and low-pass filters to decompose a signal
into different frequency bands. The wavelet packet trans-
form (WPT) decomposes the signal into scaling (approxi-
mations) and wavelet (details) coefficients by convolution
of the signal. Thus, the high-pass and low-pass filter impulse
responses lead to a symmetric tree-structured filter bank
[14].

The Hilbert transform (HT), introduced by Hahn [26],
handles nonstationary and nonlinear narrow-band signals
and is defined as

H(x(t)) = H(t) = 1

π
P

∞∑
−∞

x(t ′)
t − t ′

dt ′ (3)

where P describes the Cauchy principle value [27]. The
HT describes a 90◦ phase shift of x(t), forming a complex
conjugate pair of x(t) and H(t) which can then describe an
analytical signal Z(t) such that

Z(t) = x(t) + i H(t) = A(t) eiΦ(t) (4)

where A(t) describes the instantaneous amplitude and
Φ(t) the instantaneous phase [27, 28]. The instantaneous
frequency can then be derived as follows.

Ω(t) = dΦ(t)

dt
(5)
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Table 2 Comparative overview of Fourier, Wavelet and Hilbert transform, according to [24]

Fourier Wavelet Hilbert

Algorithms FFT STFT DWT WPT (E)EMD VMD

Nonstationary No Yes Yes Yes Yes Yes

Nonlinear No No No No Yes Yes

Frequency Convolution Convolution Differentiation

Time-Frequency Resolution Global uncertainty Regional uncertainty Local certainty

For the effectiveness of the HT, however, some limitations
on the analyzed data x(t) are required, e.g. it needs to be a
narrow-band signal [27]. This is because the instantaneous
frequency function is a scalar frequency value over time and
is thus not able to describe more than one oscillatory mode
at any given time [27]. For this reason, Huang et al. [27]
introduced the empirical mode decomposition (EMD), which
decomposes a wide-band signal into its narrow-band fre-
quency components called intrinsic mode functions (IMF’s).
After that, the HT is applied to the decomposed compo-
nents and then reconstructed. The combination is known as
the Hilbert Huang transform (HHT). As an improvement
to the EMD Wu and Huang [29] published the ensemble
empirical mode decomposition (EEMD) as a truly noise-
assisted data analysis method. This method builds an ensem-
ble of white noise-added signal and takes the average as the
final result to overcome the mode mixing problem which
turned out as a major drawback of the EMD. As a very
recent approach to decompose a signal into frequency
bands, the variational mode decomposition (VMD) was pro-
posed by Zosso and Dragomiretskiy [30]. The VMD des-
cribes an entirely non-recursive decomposition technique
which extracts the modes concurrently. In contrast to the
EMD or EEMD, it is mathematically well founded as a con-
straint variational problem, which assumes each mode to be
mostly compact around its center frequency [30].

3.2 Feature engineering and data preprocessing

High-frequent sensor data typically have a low density of in-
formation, no matter if it is present in time- or frequency-
domain. One way to compress the information density
is provided by feature engineering, whereby statistical
features are computed to represent the data as a col-
lection of scalar values without loosing much informa-
tion. After applying the signal transformation methods
previously introduced, features based on time, frequency,
and time-frequency information are calculated. Accord-
ing to Grimmett [31], the features usually include the
central moments from statistics: mean, standard deviation (std),
skewness (skew), and kurtosis (kurt). Especially for AE
signals, additional features as the root mean square

(rms), the median (med), the peak values (p2rm and
p2p) and the spectral entropy (spen) could be con-
sidered [10, 22, 23, 32]. An overview of the fea-
tures with their corresponding equations used for fault
detection and diagnosis was listed by de Aguiar et al.
[13], Sharma and Parey [33], Teti et al. [34], and
Guo et al. [21].

In this work, the abovementioned features are used to
build the feature matrix F = (fi,j ) ∈ R

m×n with m

experimental observations and n features. The absolute
values |fi,j | strongly depend on the selected unit of the
features. These different scales and also the varying sign
effect that for example using a distance-based classifier the
higher feature values would outweigh the lower ones. As
a consequence, standardization or z-score normalization is
conducted to preprocess the data [35], whereby the feature
matrix F is scaled column by column. Following Guyon et al.
[36], this step typically results in a better performance of the
machine learning method applied afterwards.

3.3 Feature selection

Not all constructed features are necessarily useful for the
classification task, since there might be also redundant or
even irrelevant features. Bolón-Canedo et al. [37] describe
the process of feature selection as a problem of finding the
most informative and compact subset of features. The main
difference to feature extraction methods like the principal
component analysis (PCA) is that no new features are
calculated and only a subset of the full feature matrix
containing the most relevant dimensions is selected [37].
According to Bolón-Canedo et al. [37] and Pilnenskiy and
Smetannikov [38], feature selection methods are divided
into filter, wrapper, and embedded methods.

Filter methods mainly base on univariate or multi-
variate statistical tests. In this work, the Fisher’s exact
test (SelectPercentile) and the family wise error
(SelectFwe) implemented in the Python package
scikit-learn [39] are applied. Wrapper methods con-
sider a classification algorithm as a black-box to evalu-
ate the performance of the selected feature subset iter-
atively. One of the most common wrapper methods

2285Int J Adv Manuf Technol (2021) 115:2281–2297



is recursive feature elimination (RFE, implemented in
scikit-learn [39]), whereby the number of selected
features is reduced recursively using the feature importance
of the internal tree-based method.

Following Bolón-Canedo et al. [37], filter methods
usually are computationally less expensive and have a good
generalization ability. In contrast, wrapper methods give
better classification results but also tend to overfit and have
high computational costs [37]. Due to their strong depen-
dency of the applied classifier and their high computational
costs [37], embedded methods are not used in this work.

3.4 Classification

Supervised learning is a subtask of machine learning,
where an algorithm learns a function that maps a given
dataset to a target, the so-called label. In the training
step, the applied method learns the key characteristics of
the dataset to determine the target value. Afterwards, the
algorithm could predict the label of a new observation
due to its ability of generalization [40]. Within supervised
learning, one typically distinguishes between regression
and classification tasks. In regression tasks, the label is a
continuous value, whereas in classification, an object from
a finite categorical set is predicted [40].

There is a broad range of machine learning algorithms;
however, this study focuses on classification methods sui-
table for the detection of grinding burn. In state of the art,
mainly neural network approaches are applied. To impro-
ve the classification performance, this study assesses a
distance- and a kernel-based classifier as well as different
ensemble methods based on decision trees.

3.4.1 Distance-basedmethods

The most common distance-based classification method
is the k-nearest neighbor (kNN) algorithm, implemented
also in scikit-learn [39]. Using this method, all
training tuples represent a point in n-dimensional space.
The label of a new datapoint is predicted from the class
label of the k-nearest neighbors. To determine the distances,
any metric measure can be applied; predominantly, the
euclidean distance ‖.‖2 is selected. According to [35],
the optimal number of neighbors k has to be determined
experimentally. This choice might have crucial impact on
the overall classification performance (see Section 3.4.4).
Furthermore, the kNN algorithm is often assigned to lazy
algorithms as no real learning is involved [40].

3.4.2 Kernel-basedmethods

The kernel-based machine learning methods transform
the dataset in a higher dimensional space using kernel
functions. Due to this so-called kernel-trick, one expects

that the data becomes linearly separable and classification
is possible. The support vector machine (SVM) is the
kernel method used most frequently, whereby a separating
hyperplane that maximizes the margin between two classes
is calculated [40]. For SVM, most commonly linear
or radial basis function (RBF) kernels are applied,
whereby the choice of the hyperparameters C and γ is
critical to the classification performance. In this study,
again the Python implementation SVC from the Package
scikit-learn [39] is used.

3.4.3 Tree-based ensemble methods

In general, only one learning algorithm is applied to
solve a given problem. Using ensemble methods, a set of
machine learning algorithms mainly of an identical type is
trained for the same problem. According to Zhou [41], this
combination makes the generalization ability often much
stronger than applying a single method.

In many applications, a decision tree, a non-parametric
supervised machine learning method, is selected as base
learner. In classification tasks, a decision tree learns to
predict the label by adapting binary splitting rules inferred
from the given dataset. At each node, the best split to
minimize the so-called impurity function (gini or entropy)
is searched [40]. Finally, the split with the highest informa-
tion content is selected and the procedure is repeated
iteratively. At each leaf node of the decision tree, a predic-
tion for the unknown class label is given [40]. However,
decision trees tend to overfit and selecting the split with
minimal impurity in each step does not necessarily result in
the global optimum [40]. To overcome these disadvantages,
ensemble methods combine multiple decision trees by
bagging, boosting, or stacking.

For bagging, the original dataset is randomly resam-
pled with replacement to obtain a new dataset (called
bag) for each base learner. Each model is trained inde-
pendently in parallel and the predictions are averaged
over all base learners [41, 42]. The most common rep-
resentatives for bagging are random forests, where mul-
tiple decision trees are combined to decrease the vari-
ance and improve the overall classification performance.
In extremely randomized trees, an improvement of ran-
dom forests, the computation of the splits is further
randomized, which results in a slightly lower computa-
tional time [43]. Both RandomForestClassifier and
ExtraTreesClassifier are provided by the Python
package scikit-learn [39].

Boosting mainly differs in the learning procedure, as
it takes place in a sequential way. Each observation is
assigned a weight, whereby after the base learner is trained,
the weights of the misclassified data are increased. Thus,
the further training process focuses on them. The final

2286 Int J Adv Manuf Technol (2021) 115:2281–2297



prediction is computed by a weighted average over all
previous learners [41].

3.4.4 Hyperparameter search

Each machine learning method has a various number of
hyperparameters, e.g. the number of neighbors for the k-
nearest neighbors algorithm. These model parameters are
not known a priori, but their choice affects the performance
significantly. There are four common approaches to
optimize the hyperparameters and select the optimal model:
Grid search, random search, Bayesian optimization, and
evolutionary algorithm (EA).

According to Le et al. [44], the advantages of EA over
the other approaches arise in the lower computational power
needed, the flexibility in building multi-level tasks, and the
large search space of methods and hyperparameters. The
tree-based pipeline optimization tool (TPOT), developed by
Le et al. [44], uses genetic programming to determine an
optimal pipeline and is also implemented in Python. In this
work, the term pipeline comprises the combination of one
feature selection method and one classification algorithm.
In the optimization process, a wide variety of different
pipelines and their hyperparameters are evaluated with the
objective to maximize the final classification performance.

3.4.5 Metric and scoring

The quality of the prediction given by the machine learning
algorithms is quantified by the use of metrics. In general,
the applied metric or metrics should be selected specific to
the problem. In grinding burn classification, so far, mainly
the accuracy is evaluated, which describes the number of
right classified samples over the total number of samples
presented. To ensure comparability to other works, in this
study also the accuracy is used. Additionally, the balanced
accuracy is calculated, which describes the average of the
recall in each class and is suited for imbalanced datasets.
Both of the metrics can be evaluated during training and
testing of the pipeline. In this work, cross-validation (CV)
is used during the training process to avoid overfitting;
hence, the CV-score contains an average performance of all
cross-validation folds.

4Material andmethod

4.1 Experimental setup

The grinding experiments are conducted on an external
cylindrical grinding machine. For all experiments, the same
multi-layered metallic bonded cBN grinding wheel with
a metallic wheel hub is used featuring a grit size of 150

to 180μm and a concentration of 150% (manufacturer’s
designation B181-C150-M-3V1-V15). The maximal tool
diameter ds measures 373.9mm and the grinding wheel
width bs of the straight profile is 7mm, featuring an
inclination of 15◦ to compensate the tilt of the tool spindle
holder. In this study, C45E (ISO EN 10269) is used as
workpiece material. This quenched and tempered steel has
a carbon content of 0.45% and a low content of phosphor
and sulfur. It is hardened inductively to about 740 HV1
up to a hardening depth of approximately 2mm. The initial
diameter of the prepared workpieces dw measures 28mm.

The workpiece is radially and axially clamped between
a jaw chuck and a grinding mandrel. The grinding wheel
speed vs varies from 80 to 100m/s and the workpiece rotates
synchronously with nw = 250 min−1. A single experiment
comprises one plunge grinding process with a constant
radial infeed velocity vf r , wherein radial direction 1 mm
of the workpiece material is removed. In all experiments,
a mineral oil–based cutting fluid of type Wisura AKS 12
is deployed with a constant volume flow of 75 l/min. The
applied process parameters are summarized in Table 3.

For the development of a robust classification algorithm,
the process parameters of the recurring plunge grinding
experiments have to be varied. The specific material
removal rate

Q′
w = π · dw · vf r (6)

describes the amount of material, which is removed per unit
width of the grinding wheel within a certain time interval
[45]. Another measure to compare different sets of process
parameters is the quotient of the equivalent chip size hcu

and the geometrical contact length lg , which is defined
according to Klocke [45] as follows:

hcu

lg
= π · dw · vf r/vs√

fr · deq

(7)

Thereby, fr describes the depth of cut during one workpiece
revolution, vw the circumferential velocity of the workpiece,
and deq the equivalent diameter.

Table 3 Process parameters for the external cylindrical plunge
grinding experiments

Parameter Symbol Unit Value

Radial infeed velocity vf r mm/min 20–50

Grinding wheel speed vs m/s 80–100

Workpiece speed nw min−1 250

Radial depth of cut ae mm 1.0

Workpiece diameter dw mm 28.0

Wheel diameter ds mm 373.09

Grinding wheel width bs mm 7.0
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Fig. 1 Numbered workpiece after performing the 14 plunge grinding
experiments according to Table 4

As visualized in Fig. 1, each workpiece comprises 14
grinding positions. The corresponding process parameters
are listed in Table 4. For the first four sets of process
parameters, the radial infeed velocity is increased step-wise.
This effects that the specific material removal rate Q′

w and
the dimensionless value hcu/ lg both increase. For the last
two positions 1+2 the grinding wheel speed vs is decreased,
but keeping the quotient hcu/ lg on the same level, the radial
infeed velocity is also decreased.

4.2 Signal acquisition

To obtain a signal-based grinding burn detection method,
the grinding machine is equipped with several system
monitoring components. As visualized in Fig. 2, two diffe-
rent AE sensors with different positions are used for signal
acquisition. In addition, the current and the power signal are
recorded.

The AE sensors capture acoustic waves which can be
described as transient waves that propagate through a solid
material [46]. According to Chen et al. [16], AE sensors are
easy to mount, even on rotating parts, at relatively low cost.
Since the grinding zone is the critical region, the sensor is
typically placed as close as possible to the grinding zone
[47]. For this purpose, one rotating AE sensor (Marposs,
type M), in the following called AE-S, is mounted at the
tool spindle center and rotates with the grinding wheel. The
position at the spindle center provides a constant distance
independently of the grinding position and close to the
grinding source. Another AE sensor (Kistler, type 8152B)
is placed on the tailstock to capture the waves which
originate from the workpiece and is abbreviated with AE-T.
Since the distance from this sensor to the grinding source
depends on the grinding position, it has been proven first

Table 4 Variation of the process parameters for the 14 plunge grinding
positions within one workpiece

Position 12–14 9–11 6–8 3–5 1+2

vf r in mm/min 20 30 40 50 30

vs in m/s 100 100 100 100 80

Q′
w in mm3/mm s 27.2 40.5 54.5 68.1 40.5

hcu/ lg in mm/mm 0.195 0.239 0.276 0.309 0.299

Fig. 2 Experimental setup and application of the sensors

that the varying distance has no significant impact on the
signal characteristics. Both AE signals are preprocessed
by the Kistler piezotron coupler of type 5125B, which
provides built-in functionalities such as signal amplification
and different low-pass and high-pass filters designed as
plug-in modules. The amplification is set to 10dB and a
band-pass filter of 100 to 500kHz is deployed. The data
acquisition system is realized with a National Instruments
CompactDAQ-system and organized in LabView. The
digitizer works with a sampling rate of 2MHz for each
AE-signal.

For the measurement of the tool spindle current, Chauvin
Arnoux current clamps of type MN39 are installed on each
electrical wire to acquire the 3-phase current components
(Iu, Iv , Iw). The current components are then digitized
with a sampling rate of 100kHz. In the next step, RMS
transformation is applied in LabView to convert them into
the equivalent direct current Irms .

Irms =
√

I 2u + I 2v + I 2w

3
(8)

The electrical tool spindle power Pel is measured with a
sampling rate of 80kHz using the true power meter Artis
MU-3 system.

4.3 Controlled generation of grinding burn

In this study, a touch dressing procedure is applied to the
metal-bonded wheel to generate blunt grains and provoke
controlled grinding burn. For the dressing process, a CVD-
diamond profile roller is used rotating in opposite to the
grinding wheel. In each dressing cycle, the infeed aed is
about 3μm and divided into three single runs with 1μm.
To check, whether the grinding wheel has already contact
with the dresser, the signal of the AE-sensor mounted on the
grinding wheel spindle is used. All dressing parameters are
summarized in Table 5.
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Table 5 Dressing parameters for the touch dressing procedure of the
metal bonded cBN grinding wheel using a CVD-diamond profile roller

Parameter Symbol Unit Value

Tool speed vs m/s 100

Dresser rotational speed nd 1/min 10,432

Dressing depth aed μm 1.0

Axial feed velocity vf a mm/min 100

Dresser diameter dd mm 80.01

Dresser tip radius rd mm 0.15

Dressing overlap ratio Ud − 0.885

To emulate the wear of the grinding wheel, the following
procedure is proposed. The unused grinding wheel is
mounted on the tool spindle. In a pretreatment step prior
the actual experiment, a complete workpiece is ground
with a low infeed velocity (vf r = 5mm/min) in order
to achieve a quasi-stationary wear state of the tool, due
to the removal of loosely bound grains with a high grain
protrusion. Afterwards, the reference set with no touch
dressing is ground, which includes six workpieces. Next,
the first touch dressing cycle is performed and about 3μm
are removed from the grains bonded on the grinding wheel.
Then, three workpieces are machined to see the impacts of
the first touch dressing cycle. This procedure is repeated
until all stages of grinding burn including rehardening are
reached. Based on experience, this state is achieved after a
total amount of 15 to 18 touch dressing strokes.

4.4 Detection of grinding burn using nital etching

As introduced, in industrial application, predominantly nital
etching and Barkhausen noise analysis (BNA) are applied
[1]. According to Wegener and Baumgart [1] and He et al.
[2], the latter is non-destructive and fast, but requires a
complex calibration process due to the strong dependency
on local material differences. Apart from BNA, nital etching
capitalizes the discoloration of steels with thermal damage
after a chemical reaction. The test procedure requires a
difficult handling of the workpieces and the interpretation
of the discoloration is very subjective [1, 2]. Besides these
disadvantages, nital etching is the most reliable detection

method in industry standardized in ISO 14104: Surface
temper etch inspection after grinding [48].

Accordingly, nital etching is used in this study following
the type 2 etching procedure from ISO14104 [48] recom-
mended for low-alloy steels. It has been found out that the
cleaning and drying procedure before each acid is important
to obtain well-interpretable results. Finally, the class code
from ISO 14104 [48] is used to classify the different stages
of discoloration. The four classes range from no grinding
burn (class A), over light and heavy tempering (classes B +
D) to rehardening (class E). In this study, no additional clas-
sification has been carried out with regard to the percentage
of surface area affected. A visualization is given in Fig. 3.

4.5 Implementation

The implementation of a method for the detection of grin-
ding burn proposed in this study requires multiple substeps.
In the following, the implementation is divided into two
separate procedures.

The first procedure comprises the steps from the grinding
process to the final prediction and is visualized in Fig. 4.
The data acquisition is started, when the implemented CNC-
Trigger is activated few seconds before the grinding wheel
comes into contact with the workpiece. All of the analog
signals are first amplified and filtered before a conversion
into a digital signal is carried out and the raw data is saved
on local hard drive using LabView. Applying a MATLAB
script, the four sensor signals are imported and cut to the
relevant time period during grinding (grinding detection and
time reduction). Thus, all signals have a unique length of
0.5 s independent from the actual process time. Next, the
signal components outside the frequency band of 100 to
500kHz are dampened (digital filtering). Afterwards, the
preprocessed signals are used to apply the time-frequency
transforms introduced in Section 3.1 including PSD, STFT,
WPT, EEMD, and VMD. Based on both time and frequency
information, the statistical features listed in Section 3.2
are calculated. Finally, one feature vector contains all
relevant information of the performed experiment and is
stored in the aggregated feature matrix. In this work, all
workpieces are tested on grinding burn using the nital
etching procedure introduced previously so each feature

a b c d

Fig. 3 The four classes of grinding burn according to ISO 14104. a No burn (class A), b light burn (class B), c severe burn (class D), and d
rehardening (class E)
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Fig. 4 Procedure to calculate statistical features and obtain a corresponding grinding burn label for one grinding experiment by capturing and
processing signals from different sensors

vector gets its corresponding label. If a pretrained machine
learning pipeline is available, a prediction on the grinding
burn class can be provided to the user.

To obtain a trained machine learning pipeline, the
procedure described above is repeated several times cove-
ring multiple wear states of the grinding wheel and as a
consequence all of the four grinding burn classes (following
Section 4.3). Hence, a high-dimensional feature matrix
and the corresponding class labels obtained through nital
etching are collected. In the second procedure visualized in
Fig. 5, the machine learning part is implemented in Python
based on the feature matrix.

First, a subset of the feature matrix is selected, which
comprises either all features or a sensor-specific selection.
For datasets holding a strong class imbalance, a resampling
strategy is recommended to improve the training process.
After resampling or in most cases directly after the
selection of the sensor subset, the experiments of the
feature matrix are divided into a training and a testing
dataset (ratio 0.85/0.15). As a last preprocessing step,
the feature matrix subset is standardized according to
Section 3.2. Using only the training dataset, multiple
feature selection and classification methods are preselected
and their corresponding hyperparameter bounds are set
according to Sections 3.3 and 3.4. As introduced in
Section 3.4.4, genetic programming is applied to select the
best combination of feature selector and classifier with the
optimal set of hyperparameters. In this study, the objective
of the hyperparameter optimization is to maximize the mean

classification accuracy averaged over ten cross-validation
folds. Thus, an initial population with 100 pipelines is
selected, trained, and evaluated using the stated metric.
A new generation is built by copying (crossover-rate of
0.2) or adapting (mutation rate of 0.8) the best pipelines
of the previous generation. The algorithm converges if
the best CV-score of five consecutive generations is not
improved or if the maximal number of 50 generations is
reached. Using the best pipeline from the hyperparameter
optimization, different test scores are calculated on the
previously separated test dataset. In addition, a robustness
analysis covering 100 randomly generated splits of the
train- and test-dataset is performed. Finally, the procedure is
repeated for each sensor subset.

5 Results and discussion

So far, an approach to find a well-performing combination
between feature selection and classification algorithm for
the in situ detection of grinding burn has been introduced.
In the following, the results are presented and discussed.

5.1 Dataset

In this study, the feature matrix comprises in total 391
experiments with 878 features, respectively. After nital
etching, each experiment is matched with a corresponding
grinding burn class. The distribution of the experimental
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Fig. 6 Distribution of the experimental observations with respect to
the four classes of grinding burn and the train/test split

observations over the four classes is visualized in Fig. 6,
whereby the classes with light burn (B) and rehardening
(E) contain more experimental datapoints than the classes
with no burn (A) and severe burn (D). As introduced in
Section 4.5, the feature matrix is randomly separated into
a training and a testing dataset ensuring that both contain
observations of all four classes.

To estimate the impact of each sensor on the final
classification result, the steps presented in Fig. 5 are
performed for each sensor subset separately resulting in
four feature matrices Fi . Hence, the dataset FAE−T contains
only features extracted from the signals of the AE sensor
mounted on the tailstock. The subsets FAE−S and FIrms

comprise the features of the AE sensor in the spindle
center and the features based on the current measurement,
respectively. From the power signal, only one feature is
extracted; thus, it is added to the FIrms subset. Finally, the
fourth dataset Fall = F includes all of the 878 features.

5.2 Two-class prediction

In two-class prediction, the machine learning algorithm is
trained to differentiate experiments with grinding burn from
those without. Therefore, the labels are changed to burn
and no burn, whereas burn comprises the classes B, D, E
and no burn only class A. Consequently, the observations
with grinding burn are over-represented compared to
the no burn experiments. To improve the classification
ability, a resampling method is applied to equalize the
class distribution. The best final performance is achieved
using synthetic minority oversampling technique (SMOTE)
introduced by Chawla et al. [49]. As a consequence, the
training dataset size increased to 390 and the testing dataset
to 69, respectively. The distribution of the labels considering
the two-class problem is visualized in Fig. 7.

Fig. 7 Distribution of the experimental observations with respect to
the two classes of grinding burn and the train/test split (SMOTE
resampling is used for the no burn class)

Using the procedure of Fig. 5, an optimized pipeline
containing a feature selection and a machine learning
algorithm is obtained for each feature matrix Fi . The final
pipelines and their mean cross-validation and testing score
are summarized in Table 6. In addition, Fig. 8 displays
a confusion matrix for each of the four feature matrices,
calculated with a fixed random state. Furthermore, these
pipelines are analyzed using 100 random splits of the initial
dataset. The resulting boxplots presented in Fig. 9 show the
statistical deviations of the cross-validation scores during
training on the left and the test accuracy on the right side.

For each sensor subset, the classification algorithm
predicts the occurrence of grinding burn with a very high
performance of over 94%, considering both the accuracy
and the balanced accuracy. Furthermore, a high accordance
of the cross-validation score and the testing score is
evident, which suggests no over- or underfitting happens.
Additionally, the standard deviation of the CV-score is very
low and symmetrically distributed, which indicates a low
impact of the train/test split. In general, a high level of
generalization capability is established for the classification
of grinding burn.

Going further into detail, the complete feature matrix
containing the features from all sensors performs best with
a mean accuracy of over 99% applying an kNN-classifier
on 87 selected features. The great performance of the clas-
sification algorithm is slightly reduced using only features
from one individual sensor. For the FAE−S dataset, a RFE
(using a decision tree as estimator) is combined with a
SVM (using a RBF-kernel), which results in a decrease
of the mean accuracy by less than 1%. Using FAE−T

and FIrms , the performance is reduced to 95 to 97%.
Consequently, a reliable classification of grinding burn is
possible using only features from one of the three sensor
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Table 6 Two-class prediction results of the optimized machine learning pipelines for the feature matrices Fi evaluated using the mean (balanced)
accuracy during training (CV-score) and testing (Test-score)

Accuracy Balanced accuracy No. selected

Dataset CV-score Test-score CV-score Test-score Selected pipeline features

Fall 0.9901 0.9904 0.9900 0.9908 SelectPercentile, KNeighborsClassifier 132

FAE−T 0.9627 0.9658 0.9635 0.9675 SelectPercentile, SVM 39

FAE−S 0.9799 0.9820 0.9809 0.9829 RFE, SVM 110

FIrms 0.9567 0.9591 0.9424 0.9449 SelectPercentile, ExtraTreesClassifier 73

Fig. 8 Confusion matrices evaluated on the test dataset for the sensor-
specific subsets considering the two-class problem for a fixed random
state

Fig. 9 Boxplots analyzing 100 random states for the sensor-specific
feature subsets evaluated on the training (using CV) and testing dataset
considering the two-class prediction

subsets. In addition, the multi-sensor approach performs
even better than comparable methods from state of the art.

A deeper analysis of the wrong classified observations
has shown that one experiment is classified wrong in
each test run independently from the selected split. This
indicates that this experiment is effected by an error in the
grinding process, data acquisition, signal processing, feature
extraction, or in the labeling of the etched workpiece.
Removing this observation from the feature matrix would
increase the overall performance towards 100%.

5.3 Multi-class prediction

For multi-class prediction, the classification algorithm is
trained to distinguish between the four classes of grinding
burn according to ISO14104 [48]. As visualized in Fig. 6,
the class imbalance of the multi-class task is very low
compared to the two-class problem. Consequently, no
resampling method is applied.

The final pipelines with their scores are listed in Table 7
and the confusion matrix for a fixed random state is shown
in Fig. 10. Furthermore, the boxplots in Fig. 11 visualize the
statistical deviation of the training and testing accuracy.

Analyzing the complete feature matrix Fall , the obtained
pipeline consists of a kNN classifier and gives a high
accuracy of about 98%. The low standard deviation and also
the good agreement of the accuracy and the balanced one
indicate a robust algorithm. In contrast to the two classes
of grinding burn, the performance of the sensor subsets in
multi-class prediction drops significantly. Focusing on the
dataset of the AE-sensor in the spindle center, the RFE
feature selector chooses 140 features using an extra trees
classifier as estimator. The applied kNN algorithm predicts
the four classes with about only 92%. Using different
random states for the train/test split, the standard deviation
increases to over 3%, especially considering the evaluation
on the testing subset. Consequently, a robust classification
result using only this sensor can not be expected. These
results are also valid for the extra trees classifier applied
on FIrms , where grinding burn is predicted with a mean
accuracy of 88%. For both of them, a high accordance
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Table 7 Multi-class prediction results of the optimized machine learning pipelines for the feature matrices Fi evaluated using the mean (balanced)
accuracy during training (CV-score) and testing (Test-score)

Accuracy Balanced accuracy No. selected

Dataset CV-score Test-score CV-score Test-score Selected pipeline features

Fall 0.9747 0.9863 0.9811 0.9870 SelectPercentile, KNeighborsClassifier 87

FAE−T 0.7645 0.7660 0.8100 0.7123 SelectFwe, SVM 126

FAE−S 0.9166 0.9262 0.9351 0.9126 RFE, KNeighborsClassifier 140

FIrms 0.8732 0.8817 0.8875 0.8834 SelectPercentile, ExtraTreesClassifier 70

between the CV-score and the testing score as well as
between the accuracy and the balanced accuracy is in
evidence. Considering the confusion matrix, the wrong
classified experiments are mainly shifted by one class. This
could be effected by minimal deviations in certain feature
values.

In contrast, the features of FAE−T only achieve a classifi-
cation accuracy lower than 80%, whereby the balanced
accuracy is marginally better. The standard deviation of both
metrics is very high; thus, the prediction on this dataset is
not reliable. It can be assumed that the low information con-
tent of the AE-sensor on the tailstock is related to the sensor
location on the workpiece tailstock. The transmission qual-
ity of the acoustic emission is somehow reduced due to the
several mechanical transfer elements located between the
source of AE creation and the signal detection. In addi-
tion, eigenfrequencies or structural vibration could influ-
ence the generalization ability of the AE sensor. Further-
more, the classes B, D, and E in the confusion matrix

Fig. 10 Confusion matrices evaluated on the test dataset for the
sensor-specific subsets considering the multi-class problem for a fixed
random state

become somehow indistinct, especially the decision bound-
ary between the classes D and E is not built correctly. For
the above reasons, the dataset obtained from AE sensor on
the tailstock is not suitable for the multi-class prediction.

Again, two experimental observations are classified
wrong in most of the test runs independently from the
selected split. Hence, the classification performance could
be slightly improved by removing these observations. As
expected, the overall performance for all datasets of the
multi-class prediction is inferior to the results obtained from
the two-class task. So, a reliable multi-class prediction is
only possible using all of the four signals in a multi-sensor
approach.

5.4 Feature analysis

Finally, the selected and most important features for the
classification results are analyzed. Therefore, the number
of selected features is shown in Tables 6 and 7 for each
pipeline. At first, the number of selected features from each
sensor for the Fall dataset is examined building the average
again over 100 random states. As depicted in Fig. 12b, for
multi-class prediction, features of all sensors are selected
almost equally often. This indicates again that all sensors
are relevant for the classification and no sensor can be
omitted. In contrast, for two-class prediction (see Fig. 12a),

Fig. 11 Boxplots analyzing 100 different random states for the sensor-
specific subsets evaluated on the test and training (using CV) dataset
considering the multi-class problem
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predominatly features from the AE sensor in spindle center
are selected. In addition, the single power feature is selected
for each random state. Hence, these results confirm the
evaluation of the sensor-specific subsets as one sensor
would be enough to differ between burn and no burn as
well as multiple sensors are needed to classify multiple burn
states.

In Fig. 13, the selected features are visualized with regard
to the applied signal transformation methods, where TD
represents the time-domain. The amount of features in each
category is widely varying, e.g. the PSD comprises 585
features and the STFT only 9. To overcome this inequality
during feature analysis, the number of selected features is
related to the number of features in the specific category
(green bars in Fig. 13). From all of the six time-frequency
representations, features are selected, so each category
contributes to the classification task.

Going further into detail, the selected features for the
subset FAE−T are analyzed. Although for the multi-class
prediction features from all signal processing methods are
picked, the STFT and WPT features are chosen most fre-
quently related to the total number of features in the specific
category. In two-class prediction, only features from WPT,
PSD, and EEMD are selected. For both problems, many
features are chosen from PSD-domain, whereby no charac-
teristic frequency band is identified within 100 to 500kHz.
Hence, the AE signal contains many relevant information in
frequency-domain, but for multi-class prediction, the clas-
sifier is not able to learn the characteristics of grinding
burn.

Next, the feature matrix FAE−S is analyzed. Among
the selected 140 features during multi-class prediction,
more than 70% of the STFT, time-domain, WPT, and
EEMD features are chosen from each category. In contrast,
two-class prediction focuses mainly on EEMD and VMD
features. These differences in feature selection might come

a b

Fig. 12 Selected features for the Fall-dataset (brown: related to the
total number of selected features, green: related to the total number of
features in the specific category)

Fig. 13 Selected signal transformation methods for the multi-class
prediction (brown: related to the total number of selected features,
green: related to the total number of features in the specific category)

due to the different estimator inside the RFE-method.
Although features from all frequencies are selected, two
main frequency bands from 180 to 220kHz and from 100
to 140kHz are identified. This indicates that more than one
characteristic frequency band correlates with the creation of
grinding burn.

Assessing the Irms-dataset, the feature selector mainly
relies on the time-domain information. In addition, for
multi-class prediction, the WPT features and, for two-class
prediction, the STFT features are selected frequently. Going
further into detail, the selected Irms-frequency features for
multi-class prediction are mainly located below 4kHz as
well as between 16 and 20kHz and at about 32kHz. Besides
the analysis of the feature selection, the most important
features during classification can be evaluated for tree-based
machine learning methods. Due to the known information
content of each split, the mean decrease in impurity (MDI)
can be interpreted as feature importance [42]. Following
Rebala et al. [40], the more a feature contributes to decrease
the impurity, the more important the feature is for the overall
classification. In Fig. 14, the MDI values of the 10 most
contributing features during classification using an extra
trees classifier are visualized.

The abovementioned frequency clusters and also the
importance of the time-domain features are confirmed by
the MDI values. In contrast to feature selection, none of
the WPT features is listed under the top ten MDI values.
This indicates that for the Irms , the feature selector and
the classifier are not perfectly aligned to each other and
more features can be omitted. Furthermore, the formation
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Fig. 14 Feature importance (MDI) of extra trees classifier on Irms
dataset for mulit-class prediction

of frequency clusters might point out that a shift of these
feature values leads to another level of workpiece damage.

It can be concluded that all of the sensors and
signal transformation methods are necessary to achieve
the high classification accuracy for the detection of
grinding burn. Nonetheless, the calculation time of the
signal transformation methods strongly varies from few
milliseconds for PSD to many minutes for VMD. Therefore,
it should be analyzed in future work if the classification
result deteriorates when the time-consuming features from
VMD and EEMD are omitted.

6 Conclusion

A new method for the in-process detection of grinding
burn using machine learning is presented. First, an experi-
mental procedure to generate controlled grinding burn using
touch dressing with a low dressing depth is proposed, which
enables the systematic creation of the four classes of
grinding burn (according to ISO14104 [48]). The touch
dressing procedure allows to approximately emulate the
wear progress of the abrasive grains in a controlled
manner. Due to the broad variation of the radial infeed
velocity and the grinding wheel speed, a classification
method can be derived, which is independent from the
selected process parameters and also valid for high
specific material removal rates. For each experiment,
different time-frequency transforms are applied to acoustic
emission, spindle electric current, and spindle power
signals to calculate statistical features. Optimized pipelines,
consisting of a feature selection and a classification method,
are created for the sensor-specific feature subsets using

genetic programming for hyperparameter optimization. The
results show a high classification accuracy for both two-
class and multi-class prediction, whereby the applied multi-
sensor approach gives better results than taking only
features from one sensor. This work outperforms state
of the art approaches by obtaining a mean classification
accuracy of 98.6% for multi-class prediction and 99%
for two-class prediction, respectively. Moreover, the post-
mortem detection of grinding burn using nital etching can
be replaced by the in situ method presented in this work.
As a consequence in industrial manufacturing, all of the
produced parts can be checked and the costly inspection
process is replaced by an intelligent algorithm with a high
accuracy.

In future work, the robustness of the proposed method
can be improved further, whereby the experiments could
be extended to different grain sizes, bond types, and also
workpiece materials. Furthermore, the training of the ML
algorithm is based on the results of the nital test, so the sub-
jectivity in the class labels cannot be avoided. Therefore, in
the future, other post-mortem detection methods like hard-
ness testing can be applied on some selected workpieces to
improve the quality of the labels and as a consequence the
robustness of the algorithm. In this work, the hyperparam-
eter optimization using genetic programming requires for
each pipeline approximately 240 CPU hours parallelized on
six cores. To improve the computation time without loosing
classification performance, the use of GPUs or more effi-
cient methods for hyperparameter optimization are needed
in the future. In addition, new machine learning algorithms
and feature selection methods can be explored further to
strive for an error-free detection of grinding burn.
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