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Abstract
Analyzing the chip formation process bymeans of the finite element method (FEM) is an established procedure to understand the
cutting process. For a realistic simulation, different input models are required, among which the material model is crucial. To
determine the underlying material model parameters, inverse methods have found an increasing acceptance within the last
decade. The calculated model parameters exhibit good validity within the domain of investigation, but suffer from their non-
uniqueness. To overcome the drawback of the non-uniqueness, the literature suggests either to enlarge the domain of experi-
mental investigations or to use more process observables as validation parameters. This paper presents a novel approach merging
both suggestions: a fully automatized procedure in conjunction with the use of multiple process observables is utilized to
investigate the non-uniqueness of material model parameters for the domain of cutting simulations. The underlying approach
is two-fold: Firstly, the accuracy of the evaluated process observables from FE simulations is enhanced by establishing an
automatized routine. Secondly, the number of process observables that are considered in the inverse approach is increased.
For this purpose, the cutting force, cutting normal force, chip temperature, chip thickness, and chip radius are taken into account.
It was shown that multiple parameter sets of the material model can result in almost identical simulation results in terms of the
simulated process observables and the local material loads.
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1 Introduction

The use of simulation techniques, such as the finite element
method (FEM), to model the machining process enables the
prediction of difficult-to-measure process quantities, such as
stresses, strains, and temperature fields [1, 2]. The knowledge
about these quantities plays a pivotal role to improve the pro-
cess understanding and the identification of the acting mech-
anisms. Machining simulations offer the possibility to en-
hance the process design by overcoming classical, empirical

“trial-and-error” approaches [3, 4]. In metal cutting, the back-
bone of such a simulation is the chip formation process. To
model the chip formation process bymeans of FE simulations,
different parameters and input models are required. Among
them, the material and friction models are essential for the
reliability and accuracy of simulated results [5–7].

In the state of the art, the determination of material model
parameters is conducted by two different approaches:

& By direct determination of the model parameters from
conventional tests (e.g., tensile tests) and non-
conventional material tests (e.g., split Hopkinson pressure
bar (SHPB) tests), or

& By inverse techniques.

For direct tests, the thermo-mechanical loads are limited,
wherefore the occurring loads are far away from those of the
cutting process [4, 8] and extrapolation into the regime of metal
cutting becomes necessary [9–12]. This extrapolation into the
regime of metal cutting conditions can cause inaccuracies of the
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simulated results [13]. To overcome this issue, Venuvinod and
Jin suggested to use the cutting process itself as a material test
[14], since a process can be represented best by itself in terms of
the occurring loads. For this inverse parameter determination,
the model parameters are iteratively modified until the simula-
tions of the process are in agreement with the experimental
measurements. Therefore, different process observables are
assessed to evaluate the deviation between simulations and ex-
periments, such as the process forces or the chip form.

The inverse parameter determination has found increased
application within the last decade. Özel and Altan presented
one of the first approaches for the inverse parameter determi-
nation from the cutting process [15]. To calibrate the material
model parameters for AISI P20 mold steel, flow stress data
from strain and strain rate tests were used as starting point to
model the chip formation process, followed by an iterative
fitting of the parameters. To evaluate the match between ex-
perimental and simulative data, only the cutting force was
considered. However, Bäker reported that it is not sufficient
to consider just the cutting force, since the cutting force is less
sensitive to an accurate material model than other integral
process observables [16]. Further studies on the inverse pa-
rameter determination for metal cutting simulations were pre-
sented by Shrot and Bäker [17–20]. The authors developed a
procedure that bases on the Levenberg-Marquardt algorithm,
which was utilized for the inverse determination of the
Johnson-Cook (JC) material model parameters A and B.
Their results showed that it was possible to re-identify the
material model parameters within a relatively small number
of iterations. However, it remains uncertain if the procedure is
applicable for the inverse determination of all JC material
model parameters. Klocke et al. presented a method for the
inverse parameter determination of the JC parametersC andm
[21, 22]. Therefore, lower and upper values of the parameters
were guessed and their results were interpolated in order to
find the best fit with the experimental results. Later, Klocke
et al. presented a pure iterative procedure for the inverse de-
termination of material and friction parameters of Inconel 718
Direct Aged [23]. Albeit, their procedure is dependent on the
experience of the user, wherefore the robustness remains ques-
tionable. Zhang et al. developed a novel procedure for the
inverse determination by taking cutting forces and deforma-
tion fields into account, which were measured bymeans of the
digital image correlation (DIC) [24]. Due to technical limita-
tion of the utilized DIC system, only low cutting speeds of up
to vc ≤ 0.1 mm/min were considered. Further, the effect of
strain rate hardening and thermal softening was neglected,
which are two important effects that influence the material
behavior in the cutting process. Besides the outlined draw-
backs of the inverse parameter determination, Arrazola et al.
[3] and Shrot and Bäker [25] reported that an absolute solution
of the parameter set in not necessarily given, because many
combinations of parameters can result for the investigated

domain in the same simulation results, which means that the
material model parameters are not unique [2].

To reduce the computational effort and to increase the ro-
bustness of the solution, optimization algorithms were applied
to the inverse problem. In the field of sheet metal forming,
Chaparro et al. utilized a genetic and a gradient-based algo-
rithm for the inverse determination of material model param-
eters [26]. The authors showed that it was possible to fit the
numerical with experimental data by using optimization algo-
rithms. For machining simulations, Özel and Karpat used the
Particle SwarmOptimization to determine JC parameters [27].
As experimental data basis, the authors utilized SHPB tests,
which required extrapolation into the domain of metal cutting.

To improve the inverse parameter determination, the au-
thors of this paper developed a novel approach by using the
Downhill simplex algorithm (DSA). In previous papers, this
optimization algorithm was examined regarding its potentials
for the inverse problem [28], its applicability for experimental
results [29], and its influencing factors [30]. However, the
results of these studies resulted in non-unique parameter sets
for the domain of investigation. Further, the evaluation of the
simulations required a manual comparison between the simu-
lations and the experimentally derived chip form, which was
characterized by high efforts and limited accuracies [30].
Different approaches for this inverse re-identification were
used, all suggesting that the parameters sets are not unique.
However, the simulated process observables deviated just
slightly. For the developed procedure, two drawbacks were
eminent: the effort to evaluate the simulations and the accura-
cy of the manually determined simulation results. For the it-
erative procedure, the effort to evaluate the chip formation
simulations can easily sum up to multiple days. When analyz-
ing the results from FE simulations, the determined results and
their accuracy depend on simulation-inherent parameters,
such as the mesh size as well as on the user, who analyzes
the simulations. Some relevant simulation results that can be
used for the comparison between simulations and experiment
can only be extracted with high efforts, such as the chip radius.

The novelty of this paper is two-fold: in the first part, an
approach for an automatized inverse determination of material
model parameters from coupled Eulerian-Lagrangian (CEL)
FE chip formation simulations is developed. Further, the num-
ber of process observables to assess the deviations between
experiments and simulations is increased. To extract informa-
tion on the chip form from CEL simulations, a method to
reconstruct the chip contour was developed and validated.

In the second part, the automatized evaluation of chip for-
mation simulations is employed in an optimization-based in-
verse parameter determination. The non-uniqueness is evalu-
ated in terms of the considered process observables as well as
the local thermo-mechanical material loads.

The paper is organized as follows: in the following chapter,
the CEL model of orthogonal cutting is presented. Thereafter,
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the theoretical background of the two-fluid interface problem
is outlined and applied to orthogonal cutting simulations.
Further, a methodology to extract process observables from
the FE simulations is developed. The automatized analysis is
integrated in an inverse parameter determination procedure.
Inverse re-identification approaches are conducted and the
calculated parameter sets are evaluated. Thereafter, the results
are discussed. At the end of the paper, a summary will be
given and an outlook will be drawn.

2 Coupled Eulerian-Lagrangian model
of orthogonal cutting

To model the chip formation process, a CEL model of orthog-
onal cutting was developed within the commercial simulation
software Abaqus 6.14-6. Orthogonal cutting was chosen as
cutting process since it can be considered as the most elemen-
tary process and allows to consider the process as two-dimen-
sional. The CEL formulation was firstly applied by Klocke
et al. [31] and Ducobu et al. [32] to the field of machining.
In the CEL model, the tool was discretized by using the
Lagrangian formulation. For the Lagrangian tool, 8-node ther-
mally coupled elements of type C3D8RT were utilized. The
workpiece material on the other side was modeled by the
Eulerian formulation so that the material can freely flow
through the mesh. Therefore, 8-node thermally coupled linear
Eulerian elements with reduced integration and hourglass con-
trol (C3D8RT) were used. Additionally, an area for the for-
mation of the chip and an area of the machined material were
discretized by the Eulerian formulation. Thereby, the chip was
not restricted in its form, but only in its length, which in turn
was limited by the size of the modeled domain. Within the
Eulerian and the Lagrangian domain, the minimal mesh size

was 5 μm. For the simulations, the explicit formulation was
utilized, which is favorable for non-linear dynamic problems
such as the metal cutting process [3]. The setup of the CEL
model that was used is illustrated in Fig. 1. It resembles a
model used in a previous study by the authors [28].

An initial inflow of the material was used to model the
cutting speed vc. The inflowing material exited the Euler do-
main either in form of the chip or as machinedmaterial. For all
conducted simulations, a cutting length of lc = 3.33 mm was
utilized. This cutting length showed to be sufficient to reach
the steady state in the simulations. To reduce the computation-
al time of the simulations, a mass scaling factor of 1000 was
applied. The simulations were conducted on a virtual machine
with 16 CPU of type Intel® Xeon® CPU E5-2698v4 with 2.2
GHz. For each simulation, 4 CPU were used. Therefore, a
simulated cutting time of tc = 0.002 s required approximately
2 h and 20 min of computational time. Further details on the
used material parameters, material properties, and boundary
conditions are given in [28].

The JC material model was utilized to model the material
behavior of AISI 1045 [33]. The JC model is one of the most
widely usedmaterial models to describe the constitutive work-
piece material behavior in metal cutting simulations, Eq. (1).
AISI 1045 was chosen as material of investigation, since this
material tends to form a continuous chip over a wide range of
cutting conditions. Therefore, a damage model to simulate
chip segmentation was not considered within this study.

σfl ¼ Aþ B⋅ϵnð Þ � 1þ C⋅ln
ϵ̇

ϵ̇0

 ! !
⋅ 1−

T−T0

Tm−T0

� �m� �
ð1Þ

In the JC model, the effects of strain hardening, strain rate
hardening, and thermal softening are considered by the three
separate terms in the brackets. The variables A, B, C, n, and m
are the model parameters, which are assumed to be constant,

Tool
(Lagrange-
formulation)

Initial 
workpiece 

Euler-
domain

Fig. 1 Setup of the coupled
Eulerian-Lagrangian FE model of
orthogonal cutting [28].
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Tm is the material’s melting temperature, and the symbols ϵ̇0
and T0 denote reference values. In the present paper it is aimed
to evaluate the developed methodology for the inverse param-
eter determination. Therefore, the routine is applied to the
inverse re-identification of material model parameters. The
material model parameters to be inversely re-identified were
taken from the literature [22] since they are unknown a priori
when using experimental data (Table 1). This allows an eval-
uation of the determined parameter sets in comparison to the
target parameter set and, therefore, an assessment regarding
the uniqueness of material model parameters. Since numerical
errors, such as rounding errors, can occur in FE simulations,
non-uniqueness is assumed in this paper if the evaluated re-
sults differ by less than 1%.

3 Two-fluid interface problem

The determination of the chip form from CEL simulations is a
two-phase problem, where the interface of the two phases
needs to be determined. In order to calculate the chip form,
established methods from the field of fluid mechanics are
transferred to the given task. In CEL cutting simulations, the
two-phase flow is given by material that flows in the void of
the Euler domain. The method aims to decrease the evaluation
time and to increase the accuracy of the results. Simplified, the
problem of two immiscible fluids in a mesh can be sketched in
a fixed coordinate system, where some cells are fully filled
with one fluid (Fig. 2a, blue region) and others with a different
fluid (Fig. 2a, gray region). The cells filled with both fluids
define the two-fluid interface. The volume-of-fluid (VOF)
method is a widespread technique to analyze interfaces in

two-phase flows [34]. Within this study, the concept of the
VOF is applied to determine the chip form.

For the reconstruction of the two-fluid interface, volume-
tracking methods were applied, which differ by the features of
the interface reconstruction algorithm and by the time integra-
tion of the volume fraction advection equation. Rider and
Kothe [35] proposed a piecewise linear interface calculation
(PLIC) method and a multi-dimensional unsplit time integra-
tion scheme, in which material volume fluxes are computed
by using a set of simple geometrical tasks.

Within the CEL simulation in Abaqus, the concept of the
Eulerian volume fraction (EVF) is used to describe the fraction
volume of a cell occupied by a fluid. In this concept, the EVF is
equal to one in the case that the cell is filled with the fluid and
zero if the cell does not contain the fluid or a different fluid.
Cells that contain a portion of the fluid in its volume have an
EVF proportional to the share of the fluid and are called mixed
cells. For these cells, the border between the two fluids can be
approximated by polygons. This can be done with the piece-
wise linear interface calculation (PLIC) [35]. The algorithm
bases on a second-order geometric solution of a volume evolu-
tion equation. The method uses local discrete material volume
and velocity data to track the surface of a topology. In a single
cell of a two-dimensional regime, the geometric function for the
interface is assumed to be a straight line. For the application to
CEL-chip formation simulations, the assumption of a straight
line instead of a function of higher order appeared to be reason-
able, as long as the mesh size is small. The assumption of the
straight line will be evaluated in section 4.1.

Afterwards, the resulting polygon can be defined. The ver-
tices of the polygon of a mixed cell (xv, yv) are those lying
inside the fluid (points 1 and 2) and the intersection points of
the cell and the straight line (points 3 and 4) (Fig. 2b). The n-
sided polygon in a Cartesian x/y-geometry surrounds the fluid
in each cell, whereby the matrix of the enclosed area A is
calculated according to:

A ¼ 1

2
⋅∑n

v¼1 xv⋅yvþ1−xvþ1⋅yv
� �

: ð2Þ

Based on the given equations, the linear interface has to be
reconstructed for every mixed cell of the mesh. The line con-
stant ρ can be calculated by volume conservation, and the
normal n is calculated from volume fraction gradients. The
value of ρ is limited in such a way that the volume of the
polygon is equal to the volume of the fluid within the cell.
This relationship can be described in the 2D case by:

Aρ

Ac
−EVF ¼ 0; ð3Þ

where Ac is the total cell area and Aρ the area of the polygon.
An established method to calculate the normal vector for

general meshes is the extension of Youngs’ second method

Table 1 Johnson-Cook material model parameters for AISI 1045 [29]

A / MPa B / MPa n / – m / – C / – ϵ0 / s
−1 T0 / °C Tm / °C

546 487 0.25 0.631 0.027 0.002 20 1500

Fluid A Fluid B

4

32

1

n

(a) (b)

Fig. 2 a Sketch of a two-fluid configuration. b Four-sided polygon form
when an interface line truncates a cell
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[36] that was developed by Kothe et al. [37]. In the algorithm,
the finite-difference approximations to determine the volume
fraction gradient ∇f are utilized. This procedure is derived
from the work of Barth [38], who developed the linear and
quadratic reconstruction of discrete data on unstructured
meshes based on least square algorithms. For this approach,

volume fraction Taylor series expansions f TSi are formed from
each reference cell volume fraction fi at xi to each neighbor cell
fk at xk. The sum f TSi − f k

� �
2 over all n direct neighbors is

minimized. The result is the volume fraction gradient ∇fi, Eq.
(4) to Eq. (10).

ATA x ¼ ATb ð4Þ
where

A ¼
ωk xk−xið Þ ωk yk−yið Þ

⋮ ⋮
ωn xn−xið Þ ωn xn−xið Þ

0
@

1
A ð5Þ

b ¼
ωk f k− f ið Þ

⋮
ωn f n− f ið Þ

0
@

1
A ð6Þ

ωk ¼ 1

xk−xij j2 ð7Þ

X ¼ ∇x f i
∇y f i

� �
ð8Þ

The normal vector is computed as:

n ¼
∇x f i
∇ f ij j
∇y f i
∇ f ij j

0
BB@

1
CCA; ð9Þ

where

∇ f ij j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∇x f ið Þ2 þ ∇y f i

� �2q
ð10Þ

4 Reconstruction of the chip geometry
from CEL-cutting simulations

The EVF values and the position of the elements are extracted
from the simulations to apply the theory of the two-fluid in-
terface problem and to reconstruct the chip form. The centroid
position of the elements was calculated in the region of the
CEL model, where the chip forms and only those elements
with 0 < EVF < 1 were considered. To determine the normal
vector n of each mixed-cell element, the PLIC method in
conjunction with Youngs’ least square method was utilized.
Thereby, the results from each cell were linkedwith the results
from its neighbor cells.

The information on the EVF values, total element area, and
normal vectors were used to iteratively solve Eq. (3). For the
iterative procedure, the Wijgaarden-Dekker-Brent method
[39], also known as Brent’s method, was used. Brent’s meth-
od combines parts of the bisection method, secant method,
and inverse quadratic interpolation. The advantage of using
Brent’s method is that the algorithm converges for functions
computable within a fixed interval [40]. Here, the interval is
defined by the lower and upper boundaries ρmin, ρmax. These
boundaries are estimated based on the position of the cell
vertices and their normal direction (Fig. 3). As convergence
criterion, a remaining error in Eq. (3) of 0.01 % was defined.

After the algorithm runs through all of the mixed cells, the
geometry of the chip can be reconstructed (Fig. 4).

4.1 Determination of chip form parameters

To determine the chip form parameters, the simulated length
must be limited in such a way that the chip does not hit the
surface of the workpiece and curls up. This would affect the
chip radius. The two chip form parameters that are evaluated
within this study are the chip thickness h and the chip radius
rc. The reconstruction provides the circumference of the chip
with an outer radius rout at the tool side and an inner radius rin
at the free chip surface. The calculation neglects a certain
distance in the x-direction within the Euler domain to avoid
the influence of the chip curl. Based on the calculation of the
centroid coordinates, the value of the chip radius can be de-
termined using the equation of a circle. The results of the
calculated radii are averaged in the inner and outer chip radius
rc. A least squares approach is employed to calculate the cen-
troid of the circumferences. The generalized matrix to com-
pute the coordinates of the chip centroid (Ox,Oy) is given in
Eq. (11), where Pi are the determined points on the outer
circumference of the chip.

P1x−P2x P1y−P2y

⋮ ⋮
Pn−1x−Pnx Pn−1y−Pny

2
4

3
5 Ox

Oy

� �
¼ 1

2

P2
1x
−P2

2x
þ P2

1y
−P2

2y

⋮
P2
n−1x−P

2
nx þ P2

n−1y−P
2
ny

2
64

3
75 ð11Þ

Using the least squares approach leads to a numerical res-
idue, which is also given to evaluate the results. The numerical

Centroid 
( )Re-

constructed
cell

Fig. 3 Schematic representation of the entities in the cell reconstruction
routine
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residue describes the deviation of the numerical determined
results from a perfect fit.

Finally, the chip thickness h’ is calculated as the difference
between the outer and the inner chip radius, Eq. (12).

h0 ¼ rout−rin ð12Þ

4.2 Validation and evaluation of the determined chip
form parameters

To evaluate the automatized determination of the chip form
parameters from FE chip formation simulations, the results
from the algorithm were compared with the manual measured
ones from the simulated chip form and to each other by the
resulting residue. The chip radius was not considered, since it
is impossible to measure it accurately by hand.

When using the automated approach, the residue was in
every case lower than Rmax < 5 × 10−5 mm. This is smaller
than the smallest mesh size within the Euler domain (lmesh,min

= 0.005mm). This suggests a reasonable good agreement with
the underlying data points. It also confirms that linear ele-
ments are sufficient to reconstruct the borderline.

The comparison of the manually and the automatically de-
termined chip thicknesses is shown in Fig. 5 for different
cutting speeds and undeformed chip thicknesses. The results
emphasize that the values of the automatic procedure and of
their manually determined counterparts are in a close agree-
ment. This can be attributed to the small mesh size enabling a
high resolution of the chip contour. However, the standard
deviations of the manual measurements were higher.

5 Extraction of process observables
from FE-chip formation simulations

Besides the chip form, other process observables, such as the
cutting force, cutting normal force, or thermal measurements,
were used to validate cutting simulations. When evaluating
the cutting force components from cutting simulations, the
forces are usually averaged within the region of steady state.

To have single values representing the mechanical reaction
forces in each coordinate direction and to establish a consis-
tent procedure to evaluate the force signals, a data filter was
applied to the automatized evaluation of FE chip formation
simulations. The filter function bases on the temporal averages
and its differences [41]. Therefore, the simulated signals of the
cutting force and cutting normal force are firstly passed
through a Wiener filter to reduce undesired noise and elimi-
nate outliers that would cumber the definition of equilibrium
[42]. Afterwards, a moving average with a step size of 5% of
the total signal length is applied. The resulting list of averages
is tested for the minimal discrepancy to its neighbors. If the
resulting discrepancy is lower than the tolerated one, which
was set to 5%, the function is considered to be in the steady
state. Additionally, the end of the signal is cut off, since it can
include undesired residues. An example of the force evolution
is shown in Fig. 6.

As a further process observable, the chip temperature was
taken into account in the inverse re-determination, since it was
possible to measure the chip temperature experimentally [29].
For the proper evaluation of the chip temperature, the measur-
ing position as well as the diameter of the measuring spot was
taken into account (Fig. 7). The tool-sided chip temperature
was averaged within a spot of 25 μm diameter.
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6 Downhill simplex algorithm for inverse
material model parameter determination

The developed procedure to analyze the results from FE chip
formation simulations was utilized in an inverse determination
of material model parameters. Therefore, an initial parameter
set from the literature was used [22] (Table 1). With this pa-
rameter set, the chip formation process was simulated and the
process observables were extracted from the simulations as
target values for the inverse parameter determination.

To evaluate the deviation between the iterative simulation
results xsim and the target values xtarget of the considered pro-
cess observables, the observables are weighted in a single
objective function:

ξ ¼ ∑n
i ωi⋅j xtarget−xsimxtarget

j; ð13Þ

where ωi are weighting factors that weight the individual pro-
cess observables. Their values were set based on established
empirical values to ωFc ¼ 0:30, ωFcN ¼ 0:15, ωh

0 ¼ 0:20,

ωrc ¼ 0:20, and ωT = 0.15.
The optimization was performed with the Downhill sim-

plex algorithm (DSA) [28–30]. The DSA, also known as
Nelder-Mead simplex algorithm [43], is an unconstrained di-
rect search method for multi-dimensional optimization [44].
For the optimization in an n-dimensional search space, the
algorithm compares n + 1 vertices and replaces the worst ver-
tex in terms of the evaluation function ξ. Five different oper-
ators are applied within the algorithm that modify the simplex
spanned by the vertices. The operators are reflection, expan-
sion, internal and external contraction, and shrinkage. The
parameters of the operators that influence the step size of the
algorithmwere set to ρDSA = 1 (reflection), ϵDSA = 0.5 (expan-
sion), κDSA = 0.5 (internal and external contraction), and
σDSA = 0.5 (shrinkage) [28, 30].

The initial simplex for the conduction of the algorithm was
randomly generated and the boundaries of the to-be-
determined JC parameters were limited to physical meaning-
ful ranges (Table 2). The same initial simplexes were used as
in [30] to study if multiple process observables lead to a re-
producible (i.e., “unique”) identification of material model
parameters for the domain of investigation.

Three conditions were defined as termination criteria for
the optimization:

(i) Error criterion: the error value, Eq. (13), undercuts a value
of ξ ≤ 1% for all cutting conditions.

(ii) Convergence criterion I: the individual parameters of
two consecutive sets deviate by less than 1%.

(iii) Convergence criterion II: the improvement in the error
function value is less than Δξ ≤ 0.1% for two consecu-
tive iterations.

The initial JC parameter set (“target parameter set”) was
used to simulate the orthogonal cutting process for different
cutting conditions (Table 3). Multiple cutting conditions were
used for the inverse re-identification since it was expected to
enhance the reliability of the model parameters due to the
increased domain of investigation and the increased spectrum
of occurring thermo-mechanical loads [16, 20, 25].
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Fig. 7 Determination of the tool-sided chip temperature within a pre-
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Table 2 Underlying parameter sets used for the initial simplexes of the
Downhill simplex algorithm

Vertex A / MPa B / MPa n / – m / – C / –

Initial simplex 1 1 350 400 0.150 0.150 0.017

2 700 550 0.350 0.750 0.040

3 400 525 0.330 0.550 0.150

4 435 420 0.500 0.400 0.035

5 625 375 0.175 0.800 0.020

6 490 415 0.700 0.330 0.100

Initial simplex 2 1 328 409 0.648 0.258 0.116

2 548 544 0.283 0.359 0.010

3 514 605 0.164 0.556 0.063

4 344 558 0.211 0.105 0.112

5 493 667 0.770 0.400 0.140

6 689 711 0.501 0.844 0.067

Initial simplex 3 1 409 519 0.582 0.103 0.091

2 505 648 0.544 0.766 0.120

3 500 679 0.866 0.648 0.084

4 661 585 0.664 0.286 0.057

5 427 608 0.449 0.404 0.019

6 312 658 0.869 0.528 0.014

Upper bound 300 350 0.100 0.100 0.005

Lower bound 700 750 0.900 0.850 0.150
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Figure 8 shows the results of the DSA starting with simplex
1, where the resulting error values ξ for the three cutting con-
ditions are plotted over the iterationsN. The diagram shows an
exponentially decreasing error value. The optimization termi-
nated after 82 iterations due to convergence criterion I (less
than 1 % change in the parameters for consecutive iterations).
For the conducted approach, the lowest error values were ob-
tained at iteration 43, wherefore the average error value for the
three cutting conditions was ξaver = 1.1%. The error values of
the individual cutting conditions were ξ50 = 1.66%, ξ100 =
0.98%, and ξ150 = 0.80%. Besides the good fit, the obtained
parameters deviated distinctively from the target parameters.
For the domain of investigation, this does not support the
hypothesis of a unique material model parameter set nor that
using multiple cutting conditions foster unique parameter sets.

Analyzing the evolution of the error values reveals that the
algorithm gets stuck in a local minimum. The global minimum
is given by the target parameter set. The determination of a
local minimum can mainly be attributed to two influencing
factors: to the DSA, which is a local optimization algorithm,
and to the existence of multiple local minima.

For the initial simplex 2, the results are shown in Fig. 9. It
shows lower error values from the beginning. It seems that this
set of random parameters better describes the three different
cutting conditions. The approach was terminated after 92 iter-
ations, due to convergence criterion II. The lowest error values
were calculated for iteration 80, with an average error value of
ξaver = 1.6%. The individual error values of the three

investigated cutting condition were ξ50 = 1.43%, ξ100 =
1.23%, and ξ150 = 2.12%.

Again, the target parameter set was not obtained. By using
two different initial simplexes, two different parameter sets
were determined, which both produced low error values.

Figure 10 provides the evolution of the DSA for the initial
simplex 3. The inverse identification was terminated after 92
iterations, due to the second termination criteria (convergence
criterion I). In this case, the lowest parameter set was deter-
mined by iteration 91. For the calculated parameter set, the
average error value was ξaver = 0.99%. The error values of the
underlying cutting conditions were ξ50 = 1.11%, ξ100 = 0.66%,
and ξ150 = 1.18%.

The parameter set deviated from the target parameter set as
well as from the determined parameter sets of the other two

Table 3 Cutting conditions for the inverse parameter re-identification

Cutting speed vc / m/min 50 100 150

Undeformed chip thickness h / mm 0.05
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Fig. 8 Development of the error value for the investigated cutting
conditions using the initial simplex 1
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Fig. 9 Development of the error value for the investigated cutting
conditions using the initial simplex 2

Determined parameter set

Number of iteration / -

rorrE
eulav

/ %

0
10
20
30
40
50
60

0 10 20 30 40 50 60 70 80 90

Legend

Fig. 10 Development of the error value for the investigated cutting
conditions using the initial simplex 3
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approaches. For the domain of investigation, the non-
uniqueness of the JC material model parameters results in
multiple local minima.

7 Discussion

In the iterative procedure of this study, the deviation of a
process observable from its target value was assessed by
means of the merged error value ξ, Eq. (13). To evaluate the
accuracy of the developed method, the relative errors of the
individual process observables in comparison to their target
values are given in Table 4 for the cutting condition vc = 100
m/min, and h = 0.05 mm. The highest deviations occurred in
parameter set 3, wherefore the cutting normal force deviated
by 1.2% from its target value. Numerical inaccuracies can
only be held accustomed for minor differences in the order
of a tenth of a percent. The chip form parameter showed the
largest deviations. The chip radius deviated at most by 3.8%
from its target value. The approaches revealed that the chip
radius rc is very sensitive to the material model parameters.
Even slight changes in the material model parameters have a
significant effect on the chip radius.

The investigations suggested that the model parameter sets
were not unique—at least in the considered domain of cutting
conditions and for the considered process observables. In all
cases, the error value was smaller than 2% suggesting the
existence of multiple suitable local minima. To assess the
accuracy of the determined parameter sets, the calculated ma-
terial model parameters and the target parameter set are sum-
marized in Table 5. The largest deviations occurred in the
material model parameters A, C, and m. For these parameters,
the differences can be larger than 100%. This results in a
drastically different material behavior—respectively flow
stress—with regard to the thermo-mechanical loads. There
are multiple parameter sets, which may serve equally good
to model the material behavior for the specific loads for the
investigated domain.

Figure 11 shows the resulting flow stresses separately list-
ing the three influences on the flow stress that are considered

by the JC model (strain hardening, strain rate hardening, and
thermal softening). In the first term of the JC material model,
the flow stress is calculated for different strains, whereas the

Table 4 Relative deviations of the process observables in comparison
to their target values

Set 1 Set 2 Set 3

Rel. cutting force Fc / % 99.0 100.1 100.0

Rel. cutting normal force FcN / % 100.5 99.9 101.2

Rel. chip thickness h / % 101.3 97.8 97.6

Rel. chip radius rc / % 98.4 96.2 101.9

Rel. chip temperature T / % 99.5 100.9 100.8

Cutting condition: vc = 100 m/min, h = 0.05 mm

Table 5 Determined parameter sets for the conducted approaches

A / MPa B / MPa C / – n / – m / –

Target set 546 487 0.027 0.250 0.631

Set 1 649 427 0.016 0.244 0.748

Set 2 321 417 0.071 0.254 0.580

Set 3 683 583 0.062 0.389 0.289
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Fig. 11 Comparison of the material behavior for the three different terms
of the Johnson-Cook material model representing the strain hardening,
strain rate hardening, and thermal softening for the target parameter set
and the determined parameter sets
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effect of strain rate hardening and thermal softening is consid-
ered by a hardening factor K

ϵ̇
and a softening factor KT. The

curves show that for the identified parameter sets, the effect of
strain hardening, strain rate hardening, and thermal softening
are modeled differently. Among the three determined param-
eter sets, parameter set 2 resulted in the lowest flow stress for
increasing strains. This is mainly attributed to the low value of
parameter A, which defines the initial flow stress. On the con-
trary, parameter set 2 resulted in the highest strain rate hard-
ening factor, since parameter C was higher than for the other
parameter sets. Parameter set 3 on the other side resulted in the
highest flow stress for increasing strains and in the lowest
thermal softening factor KT.

The differences in the magnitudes emphasize that the three
effects can compensate each other within the investigated re-
gime of machining conditions. Thereby, increased strain or
strain rate hardening can be compensated by a higher thermal
softening effect and vice versa. This observation can be con-
sidered as a drawback of the JC model for machining simula-
tions, due to its uncoupled nature [45]. Material models with a
coupled term, which takes the mutual influence of the effects
into account, could solve this drawback. However, the recip-
rocal compensation of the three effects is expected to be re-
duced by considering experimental results from different do-
mains, such as from quasi-static, dynamic material tests (e.g.,
SHPB tests), and cutting tests. From conventional material
tests, different parameters can be determined directly by
means of a curve fitting routine. This procedure would further
reduce the number of parameters to be inversely calculated.

The inverse determination based on the minimization of the
error value function ξ, Eq. (13). To compare the simulated
results of the determined parameter sets regarding the occurring

loads, Fig. 12, Fig. 13, and Fig. 14 show the results of the chip
formation simulations for the same cutting conditions.
Figure 12 shows the results regarding the local temperature
field, Fig. 13 the plastic strains, and Fig. 14 the equivalent
stresses. The comparison of simulated local temperatures, Fig.
12, revealed small deviations in terms of the absolute tempera-
ture and the expansion of the temperature fields for the different
material model parameter sets. Thereby, the deviations between
parameter set 1 and the target parameter set as well as between
parameter set 2 and parameter set 3 were almost not identifi-
able. In comparison with the temperature field of the target
parameter set, parameter set 2 and parameter set 3 resulted in
a spatially more pronounced temperature profile.

The simulated chip form tended to deviate between the
approaches, especially at the beginning of the chip formation.
This is due to the individual differences regarding the three
considered hardening and softening effects within the non-
steady state of the machining process. The differences of the
chip form became smaller for longer cutting times and the
more the system gets into the steady state.

As further material load, the plastic strain ϵ affects the
flow stress. The comparison of the volume-averaged plas-
tic strain, Fig. 13, revealed just slight differences. For the
target parameter set and parameter set 1, the deviations
regarding the plastic strain are not identifiable. Both, the
magnitude and the local position of the volume-averaged
plastic strain match each other. On the other side, small
variations can be seen for the results of parameter set 2
and parameter set 3, which again are very similar. Based
on the absolute differences regarding the material model
parameters, the deviations regarding the local plastic
strains ϵ are only small. This contributes to the assumption

500 0 250 

Temperature / 

Target parameter set

Parameter set 2 Parameter set 3

Parameter set 1

, 
Fig. 12 Comparison of the different material model parameter sets
regarding the simulated local temperatures

1.5 0 0.75 

Volume-averaged plastic strain / 
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, 
Fig. 13 Comparison of the different material model parameter sets
regarding the simulated local strains
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that the considered effects of the JC model compensate
each other for the investigated cutting conditions.

Figure 14 shows the equivalent stress σeq in and around the
shear zone. In contrast to the comparisons of the temperature
and the strain fields, the images from the simulations in Fig. 14
zoom into the cutting zone in order to enable a comparison of
the local, highly resolved stress fields for the different parameter
sets. As before, the equivalent stresses did not differ noticeable
between the target parameter set and parameter set 1. On the
other hand, small deviations can be identified for parameter set
2 and parameter set 3, which are expected to cause the differ-
ences in the considered process observables. A better agree-
ment regarding the local stress fields is presumed for smaller
error values.

The comparison of the simulation results showed that the
different material parameter sets can all accurately model the
locally resolved material loads. This emphasizes that unique-
ness of material model parameters is no requirement to model
the chip formation process within the domain of investigation
of this study.

8 Summary, conclusion, and outlook

Within this paper, a novel approach to automatize the evalu-
ation of chip formation simulations was developed. The meth-
odology covers the determination of the chip form parameters
chip thickness and chip radius from CEL chip formation sim-
ulations. The calculation of the chip form parameters proved a
high accuracy. Additional procedures to average the force
signal within the steady state and to compute local tempera-
ture information were established and integrated into an in-
verse procedure to determine material model parameters.

In the second part of the paper, the uniqueness of material
model parameters for machining simulations was investigated.
For this, an inverse re-identification by means of an optimiza-
tion algorithm (Downhill simplex) was used on the automatized
analysis of simulation results. In combination, they enable an
automatic, inverse calibration of material model parameters
from FE-cutting simulations. It was shown that different param-
eter sets can result in almost identical temperature, strain, and
stress profiles. Based on the numerical results of this paper, the
hypothesis of a unique set of JC material model parameters for
the domain of cutting conditions cannot be supported. This was
reinforced by the evaluated material loads.

The relevant findings are:

& The identification is sensitive to the initial parameter set
(simplex) but manages to converge to an accurate solution
in all considered cases.

& In spite of considering five process observables, the iden-
tification remains non-unique. This was attributed to the
search space, which exhibits multiple local minima.

& The differences in the sets affect all effects modeled by the
JC material model: strain hardening, strain rate hardening,
and thermal softening and thus may compensate each
other.

& The uniqueness of material model parameters is no re-
quirement to model the chip formation process within
the domain of investigation of this study.

& The non-uniqueness of the JC material model may be
considered as an inherent drawback.

Based on the results of this study, the need for further
research activities was identified. Firstly, the proposed meth-
odology needs to be applied to other material models than the
JC model in order to investigate the generic nature of the
methodology. In this study, the JC material model was chosen
due its wide applicability to model the material behavior under
metal cutting conditions. However, in the state of the art, lim-
itations for the JC model were identified, which led to the
development of new material models [46]. Secondly, the au-
tomatized evaluation of the chip form was limited to the con-
tinuous chip formation under the assumption of an isotropic
material. However, materials that tend to the formation of
continuous chips represent only a fraction of the machined
materials in industry. To extend the methodology of the in-
verse parameter determination to materials that tend to seg-
mented chip formation, the automatized evaluation needs to
be enhanced and the inverse routine needs to be expanded to
take the parameters of a damage model into account. For an-
isotropic materials, a separate calibration of the material mod-
el parameters for each phase will be necessary [47]. In future
studies, the methodology will be applied to experimental data
in order to determine the material models and to evaluate the
accuracy of a material model to describe the material behavior

1200 0 600 

Equivalent stress  / 

Target parameter set

Parameter set 2 Parameter set 3

Parameter set 1

, 
Fig. 14 Comparison of the different material model parameter sets
regarding the simulated local equivalent stresses
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under metal cutting conditions for more complex machining
operations such as turning or drilling.
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