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Abstract
In order to manufacture functional parts using filament deposition modelling (FDM), an understanding of the machine’s capa-
bilities is necessary. Eliciting this understanding poses a significant challenge due to a lack of knowledge relating manufacturing
process parameters to mechanical properties of the manufactured part. Prior work has proposed that this could be overcome
through the creation of capability profiles for FDM machines. However, such an approach has yet to be implemented and
incorporated into the overall design process. Correspondingly, the aim of this paper is two-fold and includes the creation of a
comprehensive capability profile for FDM and the implementation of the profile and evaluation of its utility within a generative
design methodology. To provide the foundations for the capability profile, this paper first reports an experimental testing
programme to characterise the influence of five manufacturing parameters on a part’s ultimate tensile strength (UTS) and tensile
modulus (E). This characterisation is used to train an artificial neural network (ANN). This ANN forms the basis of a capability
profile that is shown to be able to represent the mechanical properties with RMSEP of 1.95MPa for UTS and 0.82 GPa for E. To
validate the capability profile, it is incorporated into a generative design methodology enabling its application to the design and
manufacture of functional parts. The resulting methodology is used to create two load bearing components where it is shown to be
able to generate parts with satisfactory performance in only a couple of iterations. The novelty of the reported work lies in
demonstrating the practical application of capability profiles in the FDM design process and how, when combined with gener-
ative approaches, they can make effective design decisions in place of the user.
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1 Introduction

Additive manufacturing (AM) technologies afford a wide
range of benefits over traditional manufacturing techniques.
These include facilitating increased design freedoms [1], re-
ducing manufacturing costs [2, 3] and minimising both part

weight and waste during production [4]. These benefits are
enabled in part by the large range of manufacturing parame-
ters that can be individually controlled when generating
manufacturing tool paths. A number of these parameters are
shown in Fig. 1.

Of the technologies available, the most widely used in the
consumer market is filament deposition modelling (FDM),
accounting for 69% of 3D printing technologies [6]. In
addition to the general benefits afforded by AM, FDM can
also enable the affordable manufacture of parts in homes and
communities, and in doing so can eliminate the need for
supply chains [7].

These design freedoms, however, are not without their pit-
falls. A key issue associated with them is a product of the
FDM design space being very large and, at present, insuffi-
ciently understood [8]. As a result, the manufacture of parts
with predictable mechanical properties is at best very difficult
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(for someone familiar with FDM and a specific printer) and at
worst impossible for someone without this knowledge of
FDM and its particularities.

It was previously proposed that this could be addressed
through the generation and implementation of capability pro-
files for FDM [9]. Through their use, the manufacture of parts
with reliable properties could be enabled.

Correspondingly, the aims of this paper are to create a
comprehensive capability profile for FDM and apply it within
a generative design methodology to validate its utility and to
deduce whether it can enable the creation of functional com-
ponents. In meeting this aim, it provides three key contribu-
tions. First, it presents mechanical testing of 3D-printed spec-
imens and identifies trends between manufacturing parame-
ters and mechanical properties (contribution 1). Second, it
uses this empirical data to train an artificial neural network
which is subsequently used as a capability profile (contribu-
tion 2). Third, to demonstrate the utility of the capability pro-
file, it is implemented within a generative designmethodology
which is used in the design and manufacture of two load
bearing components (contribution 3).

The remainder of this paper is structured as follows. First,
an overview of FDM manufacturing parameters is given and
the impact they have on the mechanical properties of printed
parts is outlined. Second, how capability profiles could be
used to address this is presented and, based upon this, key
manufacturing parameters are identified for inclusion within
the capability profile. Third, a mechanical testing program is
undertaken to provide empirical data to train a neural network
and subsequently underpin the capability profile. Fourth, the
creation of the capability profile is presented. The capability
profile’s use within a generative design methodology is then
demonstrated. Finally, the practical use of both the methodol-
ogy and the incorporated capability profile is shown. The

discussion section considers the learnings and limitations of
the overall approach and the results and processes employed at
each stage.

2 Background

To contextualise the work carried in this paper, this section
will consider three areas: material testing for FDM, capability
profiling and generative design in the context of additive
manufacturing. In doing this, it will clarify the four research
gaps that the paper will address.

2.1 Material testing for FDM

A number of extant studies in literature have sought to eluci-
date the impacts that different manufacturing parameters have
upon the mechanical properties of 3D-printed parts. The di-
rectives for a number of relationships have been elicited and
can be summarised as follows:

1. It has generally been shown that smaller layer heights
increase part strength [10–15] but some studies demon-
strate the contrary with positive correlations [16]. Chacón
et al. found both negative and positive correlations depen-
dent upon build orientation [17].

2. Studies of part build orientation have revealed that parts
are anisotropic and are found to be weakest in the direc-
tion of build (Z-direction) [10, 11, 13, 16–19].

3. Parts are shown to be strongest when the raster angle is in
the direction of the applied load and increased raster width
increases part strength [11, 13, 18–20] and a negative air
gap between rasters is found to increase part strength [11,
18, 19].

Fig. 1 Manufacturing parameters
that can be varied with the FDM
process (adapted from [5])
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4. An increased infill percentage is found to increase part
strength [16] as is also observedwhen increasing the num-
ber of solid shells [13, 18].

5. Extrusion temperature is shown to significantly impact
the mechanical properties of the printed parts with distinct
optimum extrusion temperature ranges existing for differ-
ent materials [16, 21, 22].

6. When the same printer and manufacturing parameters are
used, mechanical properties of parts are found to vary
significantly with material type [10, 11] and colour [21].
Identical parts manufacturedwith the samemanufacturing
parameters, same material and on the same material are
shown to have variability in UTS of up to 26% [23].

Whilst the directives for a number of relationships have
been deduced in existing literature, these take place with a
wide variety of printers, polymers, slicing software and pro-
cess parameters. As a result, generalising trends from these
results is very difficult [8] and, consequentially, these existing
test results cannot be used as a basis for a capability profile.
This forms the basis of the first research gap that this paper
seeks to address by undertaking comprehensive testing on a
single printer with a consistent material to permit the genera-
tion a usable capability profile.

2.2 Capability profiling

Capability profiles relate the impact that machining or
manufacturing parameters have on part properties by account-
ing for changes to a manufacturing resource over time. They
can be considered to be time-sensitive images of a
manufacturing resource, representing the capabilities that a
specific machine tool will be able to provide at a specific time
on a specific product [24]. By combining this with informa-
tion about a part’s geometry and stock material, a part’s char-
acteristics can be described. This can take place at levels rang-
ing from the geometry of an element to the chemical integra-
tion at the atomic scale [25].

In traditional manufacturing processes, capability profiles
have been used to provide tool health data models [26], opti-
mise the generation of process plans [24] and to predict per-
formance of cutting, grinding and turning [25, 27].

With respect to the use of capability profiles for FDM, a
framework for their incorporation in the design for additive
manufacture process is presented in existing literature by the
authors [9]. Within this, the parameters that would need to be
included within a capability profile are extrusion temperature,
material type, variability, raster angle, infill pattern, raster
width, infill percentage, top/bottom layers, solid shells, layer
height and build orientation.

A number of existing studies have sought to create predic-
tive models for FDM printing based upon empirical data.
Group method of data handling was used by Onwubolu

et al. to generate a model using layer thickness, part orienta-
tion, raster width and air gap [11]. This, however, used only
two levels for each parameter meaning only linear relation-
ships could be deduced. An analytical model was used by
Croccolo et al. to predict tensile strength based upon build
orientation and number of solid shells [18]. A wide range of
machine learning techniques have been used in AM [28].
Artificial neural networks (ANNs) were used by Sood et al.
[12] to predict compressive strength based upon layer thick-
ness, build orientation, raster angle, raster width and air gap.
ANNs were also used byGarzon-Hernandes et al. who present
a two-stage thermal sintering method for predicting the me-
chanical performance of ABS samples [15]. Zhang et al. ap-
plied ANNs to predict mechanical properties based upon three
process parameters with additional thermal data from the
printing process [29].

These existing studies have been validated via their ability
to predict the values of the data used to train them, and whilst
they have shown good correlation, they have not been used to
generate actual parts. They also omit a number of parameters
that are considered to be necessary in a capability profile for
FDM. As such, to build on previous related work, this ad-
dresses two further research gaps—to incorporate parameters
not included in the capability profiles presented in previous
work and to validate the performance of the generated capa-
bility profile in the creation of a functional component.

2.3 Generative design in the context of additive
manufacturing

Generative design is a subset of assisted creation which refers
to a wide range of tools that exist to assist humans in creative
tasks [30] and can enable people to be ‘more creative more of
the time’ [31].

Generative design itself is about designing not only the
object but a process to generate objects [32]. A number of
commercial design packages providing generative design ca-
pability exist, including the generative design environment
within Autodesk’s Fusion 360 [33]. An alternative is
Paramate–a generative/parametric design service [34] that
parameterises design processes for products that can be instan-
tiated to individual requirements.

In the context of additive manufacturing, generative ap-
proaches are able to leverage the individually controllable
manufacturing parameters to create parts with bespoke prop-
erties. Extant AM-specific generative approaches include
methods for topological optimisation [35], part design based
upon required motion profiles [36], optimising manufacturing
parameters for balance [37] or moment of inertia [38]. None,
however, have sought to enable the generation of dimensions
and manufacturing parameters of load-bearing components
for specific functional requirements. Correspondingly, the fi-
nal research gap that this paper seeks to address is to
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implement the capability profile in a generative design ap-
proach that can create parts to withstand specific loads.

2.4 Summary

The reviewed literature has highlighted research gaps shaping
the need to (i) conduct comprehensive testing on a single
printer, (ii) incorporate parameters previously omitted from
extant capability profiles for FDM, (iii) validate the behaviour
of a capability profile by applying it in the creation of func-
tional components and (iv) implement the capability profile
within a generative design approach. These gaps shape the
aim of the paper: to create a comprehensive capability profile
for FDM and apply it within a generative design methodology
to validate its utility and to deduce whether it can enable the
creation of functional components.

3 Research methodology

As stated in Section 1, the aim of this paper is to research,
create and implement a capability profile for FDM. An over-
view of the research methodology developed to achieve this is
depicted in Fig. 2 and summarised in the following
paragraphs.

First, based upon the results in literature, it is necessary to
identify the parameters that will be included in the capability
profile. The selection of parameters is based upon those found
to significantly impact a part’s mechanical performance (as
per Section 2.1) and generally need to be manually selected
by a user when creating manufacturing tool paths.

Having selected the parameters to include, a Taguchi de-
sign of experiments approach is used to determine parameter
levels and define the 21 sets of parameter combinations to be
tested.

Tensile testing is then carried out on the selected sample
sets in accordance with ASTM standard D638. Testing is car-
ried out on 120 specimens using an Instron 8872 and video
gauge measuring equipment. The validity of the data is con-
firmed by ascertaining whether trends in the experimental data
are congruent with those from literature.

The generated experimental data is then used to train a
multi-layer perceptron neural network in IBM SPSS 24.
Verification of the suitability of this as a capability profile is
carried out by comparing predicted to actual loads for the data
generated in the experimental testing.

This capability profile is then implemented within a gener-
ative design methodology and implemented in Rhino 6’s
Grasshopper environment. This permits the performance and
functionality of the capability profile to be validated through
the design of two functional components and in doing so it
permits validation of the method employed to generate it.

The paper will reflect on all elements of the paper including
the experimental method followed, the suitability of neural
networks and the utility of capability profiles in design sup-
port tools.

4 Experimental testing

This section outlines the experimental testing procedure and
results. As shown in Section 2.1, a range of manufacturing

 

1. Iden�fy manfuacturing parameters to include in capa�lity profile
• Carried out via a review of exis�ng literature
• Five manufacturing parameters iden�fied for inclusion in capability profile

2. Design experimental tes�ng program
• Designed via means of Taguchi method.  Orthogonal array used to define experimental runs.
• 21 sample sets are defined with 6 repeats each.

3. Carry out tes�ng and validate tensile tes�ng data
• Tensile tes�ng carried out in accordance with ASTM D638.
• Load applied and measured with Instron 8872 test machine and extension measured with a video gauge.

4. Use experimental results to create NN based capability profile
• Mul�-layer perceptron neural network trained in IBM SPSS 24
• Suitability of NN assessed by comparing predicted to actual data

5. Implement capability profile in genera�ve design approach and use to manufacture func�onal 
components
• Methodolgy is implemented within Rhino 6's Grasshopper environment
• Two design use cases used to demonstrate the func�on of the capabilty profile and design methodology

Fig. 2 Methodology followed in
paper
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parameters directly impact mechanical performance of FDM
parts. Experimental characterisation of these in existing liter-
ature has taken place with a wide range of printers, materials
and settings. This therefore presents a research gap which can
be addressed by undertaking comprehensive testing for a wide
range of parameters on a single printer with consistent mate-
rial. The testing results also permit the formation of a capabil-
ity profile for FDM.

4.1 Design of experiment

The parameters selected and the reasoning (according to
reviewed literature in Section 2.1) for their inclusion within
the capability profile are

& Layer height—as the impact of this parameter on mechan-
ical properties was inconclusive.

& Build orientation—because of the demonstrated part
anisotropy.

& Infill percentage—shown to significantly impact mechan-
ical properties.

& Top/bottom layers—as it enables custom distribution of
material through a part to achieve bespoke properties.

& Solid shells—same reasoning as for top/bottom layers.

In addition to these reasons, the chosen parameters frequently
need to be selected by the user when generating tool paths.

All parameters were tested at three levels to permit eluci-
dation of any non-linear relationships. The selected levels are
shown in Table 1. These levels were chosen in such a way as
to account for interdependencies between the parameters. For
example, layer height must be a factor of all increments of top/
bottom layer thickness.

In addition to those shown in Table 1, additional print
parameters were kept consistent with those in Ultimaker
Cura’s ‘normal’ print profile. These consisted of a nozzle
width of 0.4 mm, a grid infill pattern, general print speed of
60 mm/s, reduced print speed of 30 mm/s for walls, travel
speed of 120 mm/s, build plate temperature of 60 °C and
extruder temperature of 200 °C.

The Taguchi method permits robust and repeatable explora-
tion of a solution space without needing to undertake a full-

factorial experimental regime [39]. Because of this, it was used
to define the parameter combinations used in experimental test-
ing. A Taguchi orthogonal array for five variables at three levels
is used to define the experimental runs to be undertaken [40].
This is shown in Table 2. The selected Taguchi array defines
experimental runs 1–18. It was initially thought that these would
be used as training data, with three further runs (19–21) included
to be used for validation. However, as neural networks were used
later for generating the capability profile all of the experimental
data was pooled together and training, test and holdout data were
selected when creating the neural network.

The necessary number of repeat tests for each parameter set
is five as defined by the ASTM test standard [41]. Samples
were manufactured in batches of six to allow for a single
sample to be disregarded in the case of manufacturing defects
or testing errors.

4.2 Tensile test method

The experimental test set-up consisted of a tensile test ma-
chine, video gauge and test lamp for illuminating the test
specimen. These are all shown in Fig. 3.

The tensile tests were carried out on a 25 kN Instron 8872
test machine in accordance with ASTM D638 [41]. Testing
was carried out across multiple days over the course of ap-
proximately a week. Depending on the test days, the machines
were fitted with either 5 kN or 10 kN load cells. All tests were
carried out with break loads within the recommended ranges
for the load cells. Specimens were extended at a rate of 1 mm/
min until failure. Instron’s Wave Matrix software was used to
execute the testing and export values of applied load.

Extension was measured using an iMetrum video gauge
and software. This was used to track the distance between a
set of points at either end of the reduced section of the test
specimen. The tracking points are shown in Fig. 4 for a spec-
imen mid-test. The iMetrum software receives the load output
from the Instron machine in real time and combines themwith
measured extension to provide load, extension values from the
tests. These values were analysed in Excel and MATLAB.
Test videos were also exported. Two stills from these are
shown in Fig. 4 demonstrating a test specimen pre- (Fig. 4a)
and post-test (Fig. 4b), respectively.

The test specimen used is adapted from the ASTM standard
specimen types. This was necessary to accommodate the de-
fined values of the independent variables and to be of large
enough size such that enough increments of solid shells and
top/bottom layers (as shown in Table 1) whilst also being
short enough to permit it to be printed reliably in the upright
Z orientation. Accordingly, specimen thickness was increased
from 3.2 to 4 mm, width increased from 6 to 8 mm and spec-
imen overall reduced from 183 to 140 mm. The specimen’s
major dimensions are shown in Fig. 5.

Table 1 Manufacturing parameters and levels

Parameter Level 1 Level 2 Level 3

Layer height (mm) 0.1 0.2 0.3

Build orientation X Y Z

Infill percentage (%) 20 60 100

Top/bottom layers (mm) 0.6 1.2 1.8

Solid shells (mm) 0.4 1.2 2
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5 Results

Results of the tests are shown in Table 3. These show the
measured parameters of cross-sectional area, break load and
extension in mm.

Three calculated parameters are also shown. UTS is calcu-
lated as the max load divided by the cross-sectional area.
Strain at UTS is calculated as extension divided by gauge
length expressed as a percentage.

Tensile modulus (E) was determined from the slope of the
linear portion of the stress-strain curve.

Figure 6a and b show the stress-strain graphs for parameter
sets 1 and 14, respectively. They demonstrate the typical
curves obtained and also the consistency of results.

5.1 Identification of trends

From the experimental testing results, trends could be eluci-
dated with respect to the impact each parameter had on the
UTS and tensile modulus, respectively. These were deduced
by calculating the normalised effect of each variable in accor-
dance with the Taguchi method [39]. In accordance with the
Taguchi method, the trends are represented as vectors between
data points.

Table 2 Taguchi orthogonal
array demonstrating parameter
combinations for experimental
testing. Levels correspond to
those defined in Table 1

Levels

Sample Layer height Infill percentage Top/bottom layers Solid shells Build orientation

1 1 1 1 1 1

2 1 2 2 2 2

3 1 3 3 3 3

4 2 1 1 2 2

5 2 2 2 3 3

6 2 3 3 1 1

7 3 1 2 1 3

8 3 2 3 2 1

9 3 3 1 3 2

10 1 1 3 3 2

11 1 2 1 1 3

12 1 3 2 2 1

13 2 1 2 3 1

14 2 2 3 1 2

15 2 3 1 2 3

16 3 1 3 2 3

17 3 2 1 3 1

18 3 3 2 1 2

19 2 2 2 2 2

20 1 1 2 3 1

21 3 3 2 1 3

Fig. 3 Experimental set-up for tensile testing
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Figure 7a shows the effect that the manufacturing parame-
ters have on UTS. Increasing infill percentage, top/bottom
layers and solid shells are all shown to increase UTS. Of these,
the effect of infill percentage is highest with a 15 MPa differ-
ence between levels 1 and 3. Increasing layer height can be
seen to have a negative effect on UTS. Build orientation (a
categoric variable) is shown to impact UTS with specimens
printed in the Y-direction (3MPa) stronger than those in the X-
direction and significantly stronger than those in the Z-direc-
tion (10 MPa).

Figure 7b demonstrates the effect that manufacturing pa-
rameters have on tensile modulus. The relationships are sim-
ilar to those for UTS, with infill percentage, top/bottom layers

and solid shells all exhibiting positive relationships with ten-
sile modulus and layer height a negative one. Tensile modulus
is shown to be highest for specimens printed in the Y-direction
and lowest in the Z-direction.

The directives of these relationships can be seen to be
consistent with those in literature (as stated in Section 2.1)
with positive correlations observed between infill percent-
age and solid shells with UTS and negative correlations
with layer height. Part strength is also shown to be
weakest in the Z-direction as also demonstrated in
literature.

Agreement between experimental test results and those in
literature supports their validity.

Fig. 4 Stills from video gauge
footage—a points used for
extension tracking, b specimen
post-test demonstrating failure in
reduced section

Fig. 5 Test specimen with key dimensions
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6 Capability profiling

This section details the process of generating a capability pro-
file from the experimental data.

6.1 Method

Artificial neural networks (ANNs) were selected as a method for
generating a predictive model. The advantages of predictive

Table 3 Test results from experimental testing. Ultimate tensile strength and tensile modulus are abbreviated to UTS and E, respectively

Measured parameters Calculated parameters

Sample Cross-sectional area (mm2) Max load (kN) Extension (mm) UTS (MPa) % Strain at UTS E (GPa)

n Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD

1 6 32.09 0.01 0.64 0.01 1.16 0.17 19.83 0.44 1.75 0.27 1.35 0.05

2 6 33.23 0.01 1.24 0.02 1.56 0.23 37.39 0.67 2.23 0.29 2.54 0.09

3 6 32.71 0.26 1.35 0.02 1.33 0.23 41.31 0.53 2.04 0.30 3.28 0.14

4 6 33.48 0.28 0.89 0.04 1.18 0.13 26.74 1.35 1.90 0.25 1.95 0.06

5 6 33.42 0.44 1.11 0.05 1.05 0.11 33.30 1.26 1.70 0.13 2.65 0.25

6 6 32.04 0.42 1.55 0.09 1.01 0.05 48.39 3.11 1.67 0.08 3.20 0.03

7 4 32.14 0.15 0.25 0.01 0.61 0.02 7.88 0.22 1.00 0.03 0.91 0.01

8 6 30.80 0.39 1.22 0.07 0.89 0.07 39.72 2.31 1.48 0.09 3.05 0.09

9 6 33.37 0.09 1.39 0.03 1.03 0.05 41.55 1.14 1.82 0.09 2.95 0.16

10 4 32.17 0.18 1.66 0.03 1.36 0.66 51.54 1.07 2.37 1.17 3.46 0.20

11 5 31.79 0.35 0.63 0.31 0.66 0.32 23.53 0.26 1.34 0.06 2.33 0.03

12 5 30.38 0.93 1.32 0.06 0.86 0.43 43.49 0.83 1.93 0.13 3.02 0.09

13 6 31.30 0.23 1.12 0.09 0.97 0.16 35.86 2.88 1.73 0.26 2.54 0.08

14 6 33.88 0.04 0.92 0.02 1.14 0.06 27.22 0.68 1.97 0.11 2.08 0.06

15 6 33.52 0.15 1.00 0.01 0.93 0.11 29.83 0.47 1.71 0.15 2.46 0.09

16 5 33.43 0.15 0.51 0.06 0.69 0.13 15.26 1.85 1.28 0.26 1.77 0.06

17 6 30.13 0.23 0.69 0.12 0.63 0.14 22.78 3.90 1.17 0.26 2.30 0.03

18 6 33.25 0.25 1.43 0.03 1.13 0.04 43.06 0.72 1.99 0.08 3.08 0.06

19 5 32.93 0.22 2.03 0.05 1.06 0.01 61.61 2.15 1.91 0.18 4.12 0.28

20 6 29.62 0.36 2.97 0.04 1.28 0.09 100.24 1.05 2.28 0.19 6.40 0.21

21 6 33.13 0.14 1.49 0.05 0.62 0.04 44.89 1.39 1.11 0.09 4.25 0.37

Fig. 6 Stress-strain curves from material testing—a parameter set 1, b variable set 14
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modelling through the use of neural networks include their ability
to detect all possible interactions between independent variables
and their implicit ability to detect complex non-linear relation-
ships. This is achieved through a black-box and as such a draw-
back of this exists in there being limited ability for identification
of possible causal relationships [42]. The use of this technique
was deemed suitable for the sample size of (120) due to previous
applications ofANNs in FDMproperty prediction and for similar
sample sizes (144) [29].

IBMSPSS 24was used to generate a predictivemodel via use
of a multi-layer perceptron neural network. The data was auto-
partitioned with 60% of the data used for training, 20% for test
and 20% hold-out categories. All 21 sets of data were pooled
together yielding a total of 120 samples. Stopping criteria for the
network was set at 1000 steps passing without improvement in
performance with a minimum relative change in training error of
0.0001. The loss function was calculated by backpropagation as
sum of squares error from the scaled conjugate gradient method.
Batch training was used to generate the neural network as it is
generally preferred method of training as it directly minimises
total error and is most suitable for ‘smaller’ datasets [43].

A single hidden layer was used in the neural networks as
this ‘can approximate any function that contains a continuous
mapping from one finite space to another’ [44]. The activation
function of this hidden layer was hyperbolic tangent. The
number of nodes within this neural network was decided upon
automatically by the SPSS software. Automatic architecture
selection in SPSS computes the ‘best’ number of units in the
hidden layer. Maximum and minimum values for neurons in
the hidden layer were bounded by 50 and 1, respectively.

6.2 Results

Using the settings outlined in the previous section, four neural
networks were generated as potential capability profiles for
FDM. Their performance was assessed and that which was best

able to predictmechanical properties of UTS and tensilemodulus
was selected for use in the capability profile. The feedforward
architecture of the network is shown in Fig. 8 and respective
synapse weights are shown in Table 5. The predictive power of
this is demonstrated by Fig. 9 with respect to predictive vs. actual
values. The graphs demonstrate acceptable predictive power
across the ranges of values for UTS and E. Route mean square
error of prediction (RMSEP) for all data is calculated as
1.95 MPa for UTS and 0.82 GPa for E—both within acceptable
bounds for predicting 3D-printed part behaviours. Relative pre-
dictive errors are shown in Table 4 for training, test and holdout
data for both UTS and E and are also within acceptable bounds.

7 Integrating the capability profile
in a generative design methodology

Whilst the predictive ability of the capability profile has been
demonstrated, to validate its usability, it will be applied in the
design of two load bearing components viameans of a generative
methodology that can enable design support. It is achieved by
enabling the generation of functional components without the
designer needing requisite knowledge of the FDM process or
static mechanics. As it is beyond the scope of this paper to de-
scribe themethodology in depth, what follows is a brief overview
with particular attention given to the role the capability profile
plays within it. Two instantiations of the methodology are then
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Figure 7 Graphs demonstrating
the normalised impact of each
variable on a ultimate tensile
strength (UTS) and b tensile
modulus (E)

Table 4 Relative predictive error of UTS and E for training, test and
holdout data

Training Test Holdout

UTS E UTS E UTS E

0.8% 1.3% 4.0% 3.7% 1.2% 2.4%
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presented to illustrate its use, for a more detailed overview of the
methodology and its workings see [45].

7.1 Methodology overview

The design methodology fuses design activities from both
physical and virtual domains. Via simulation in the virtual

domain, a design of a satisfactory part is generated. The part
is then manufactured and is physically tested to either validate
its behaviour or identify functional shortcomings. If the part is
hitherto unsatisfactory, the test results are incorporated into
the next round of simulation to permit the generation of an
improved part. This iterative process is continued until a sat-
isfactory part is produced. The process is summarised in Fig.

Fig. 8 Feedforward architecture
of ANN underpinning capability
profile (synapse weights are
shown in Table 5)

(a)

R² = 0.9828

0

1

2

3

4

5

6

7

0 2 4 6

Pr
ed

ic
te

d 
E 

(G
Pa

)

Actual E (GPa)

R² = 0.989

0

20

40

60

80

100

120

0 20 40 60 80 100

Pr
ed

ic
te

d 
U

TS
 (M

Pa
)

Actual UTS (MPa)

(b)

Fig. 9 ANN-predicted values vs actual values for a ultimate tensile strength (UTS) and b tensile modulus (E)
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10 which is colour coded in accordance with the process that
each activity is carried out. It leverages quick iteration in the
virtual domain with accurate testing in the physical to enable
the generation of functional components. The methodology is
explained by first defining the solution space and then how it
is explored to find a design solution.

7.1.1 Defining the solution space

Part behaviour is determined via simulation which corre-
sponds to stage 3 in Fig. 10. The three key elements that
enable this to happen are a capability profile, a functional
model and a structural parametric model. Their respective
roles are shown in the form of an agent-based representation
in Fig. 11 and can be elaborated upon as follows.

The capability profile interrelates manufacturing parame-
ters with a part’s mechanical properties. This is achieved by
re-representing the ANN (detailed in Fig. 8 and Table 5)
which enables the conversion of input manufacturing param-
eters to UTS and tensile modulus.

The capability profile underpins a functional model. This is
able to deduce emergent functional behaviour of the part (such
as load bearing capacity) through coupling its mechanical
properties with shape properties (e.g. area and secondmoment
of area) geometry. This is achieved by calculating the predict-
ed load a part is able to sustain via classical analysis tech-
niques. This approach is similar to that used by Umetani
et al. to identify weak elements in prints in order to optimise

build orientation [46]. A structural parametric model then con-
verts these geometries and outputs the design in a CAD trac-
table format. Finally, this can then be combined with
manufacturing parameters to allow the creation of a
manufacturing instruction.

7.1.2 Exploration of the solution space

The design parameters (as shown in Fig. 12) define the solu-
tion space in which a satisfactory design can be generated.
Particle swarm optimisation (PSO) is used to navigate this
solution space and generate a design solution. PSO was se-
lected as it was shown in previous work to outperform evolu-
tionary algorithms and simulated annealing in the context of
manufacturing parameter selection for FDM by producing
better and less varied results [5]. This optimisation process is
directed by a fitness function that seeks to sustain a given load
whilst minimising material usage and ensuring that a manu-
facturable part is generated.

7.1.3 Implementation

The methodology is implemented within Rhinoceros 6’s
Grasshopper [47] add-on. An example implementation is
shown in Fig. 12. A designer using this methodology needs
to input their load requirement and physical testing results
(shown as user input parameters in Fig. 12).

The solution space is defined by the capability profile and
functional modelling (comprising load calculation and shape
analysis in Fig. 12).

Fig. 10 Overview of iterative design process. Acronyms are defined as
particle swarm optimisation (PSO), standard Triangle language file type
(STL) and filament deposition modelling (FDM)

Fig. 11 Agent-based representation of how part behaviour is simulated
within the design methodology, demonstrating how the capability profile
fits within it.
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Grasshopper’s silvereye PSO solver is used to explore the
solution space and find a solution. It iterates through the de-
sign parameters of height and width (at load bearing cross-
section), build orientation, layer height, infill percentage, top/
bottom layers and solid shells (shown as design parameters in
Fig. 12) to find the best design solution.

7.2 Applying the methodology to design tasks

Two design tasks were carried out with the design methodol-
ogy. These were a tensile specimen and an S-hook which were

both designed to withstand a pre-determined load. The setup
of each design problem in Grasshopper took between 1 and 2
h. Each particle swarm optimisation lasted roughly 1 min.
Whilst seemingly simple design tasks, they embody a number
of the complexities that arise when considering design for
AM. The design freedoms afforded enable, for example,
maximisation of strength with minimum material usage.
However, when trying to increase the strength of parts, it is
unclear if this is best achieved by increasing the cross-
sectional area, amending the manufacturing parameters or a
mixture of both. The methodology above, underpinned by the

Table 5 Synapse values from ANN - Build orientation is abbreviated to BO

Predictor Hidden layer Output layer

H(1:1) H(1:2) H(1:3) H(1:4) H(1:5) H(1:6) H(1:7) UTS EM

Input layer Bias 1.628 0.668 − 1.70 1.83 1.543 0.256 0.166

BO1 .062 − .031 − .74 .758 2.03 − .132 .203

BO2 .979 0.663 − .994 .22 .37 .16 − .25

BO3 .257 1.317 − 1.05 1.13 − .56 − .48 .20

LH − .79 − .157 − 1.24 1.19 1.87 − .49 − .19

Infill 2.63 0.21 − .06 0.66 − .90 .51 .14

TB_Layers − .497 2.24 .86 1.01 − 2.31 .31 − .06

Solid shells .62 1.24 .71 − .71 − .85 .25 − .19

Hidden layer Bias .19 .12

H(1:1) .78 1.22

H(1:2) .94 1.17

H(1:3) .99 1.32

H(1:4) − 1.28 − 1.2

H(1:5) 1.39 1.34

H(1:6) 0.40 − .49

H(1:7) − .03 .16

Fig. 12 Implementation of functional model of generative design methodology within Grasshopper demonstrating solution space definition

2962 Int J Adv Manuf Technol (2021) 113:2951–2968



capability profile generated in this paper, can be used to make
these decisions in place of the user.

The generated tensile specimen is shown in Fig. 13a andwas
to be designed to have a break load of 1.5 kN. The specimen’s
dimensions and manufacturing parameter inputs are shown in
Fig. 13b. Its predicted break load was calculated bymultiplying
the predicted UTS generated by the capability profile with its
cross-sectional area. Three tensile specimens were generated
iteratively with different manufacturing parameters and cross-
sectional areas. These were tested to break with an Instron
8872. The input parameters for these specimens along with
their predicted and actual performance are shown in Table 6.
Three iterations were required in order to meet the part’s func-
tional requirement of sustain a 1.5 kN load.

The bending use case was an S-hook, had a target break load
of 150 N. It was selected as a commonly manufactured, func-
tional 3D-printed component [48]. Its key dimensions are shown
in Fig. 14a and functional testing is depicted in Fig. 14b. The
parameters varied during the iteration are shown in Table 6.

The part’s functional model predicted its break load, which
was calculated by deducing bending stress (σ) through use of
Euler-Bernoulli beam theory [49] as shown in Eq. 1

σ ¼ My
I

ð1Þ

where M is the applied moment, y the distance from the neu-
tral axis, I is the second moment of area. Second moment of
area of the hook is calculated through the summation of sec-
ond moment of area of the infill and solid shells which are
shown as the white and grey areas in Fig. 13b, respectively.

Two iterations were required to meet the part’s functional
requirement. These are shown in Table 6.

The performance of the capability profile can be seen to
overestimate the mechanical performance of the parts with the
ratio of actual to predicted load between 0.51 and 0.63 for the
tensile specimen and of 0.86 for the S-hook. In spite of these
over predictions, these examples have demonstrated that the
methodology can enable the generation of functional parts
with pre-requisite knowledge of neither FDM nor static me-
chanics through the combination of activities from virtual and
physical design domains.

The observed over-predictions in the functional modelling
approach could be attributed to a number of different ele-
ments. These along with potential remedies will be detailed
in Section 8.2.

8 Discussion and further work

This paper has presented the generation of a capability profile
and its subsequent implementation within a generative design

methodology has demonstrated that it can enable the creation
of functional load-bearing components. As such, the research
aim of the paper has been met.

To consider the implications of this, the following discus-
sion section will appraise the experimental method for devel-
oping the capability profile, how its performance could be
improved, the benefits of coupling physical and virtual
methods within design processes, and more widely consider
the generalisability of both capability profiles for FDM and
the presented design methodology. In doing this, it provides
recommendations as to how future implementations of similar
approaches for FDM could be improved.

8.1 Experimental method for developing the
capability profile

The experimental testing was carried out in accordance with
the relevant ASTM standard but with the test sample used
featuring an amended cross-section in order to accommodate
a range of values for the manufacturing parameters that were
varied. The need to do this highlights a necessary research
gap. Current testing standards seek to enable the elucidation
of the mechanical properties of materials. However, in addi-
tive manufacturing, as many parameters directly influence
these properties, referring to the mechanical properties of ma-
terials becomes a red herring as it constitutes only a small
piece of the puzzle regarding the mechanical properties of
AM parts. It is therefore necessary that testing standards spe-
cific to additive manufacturing techniques are developed.
These would need to contain a range of specimen sizes that
would permit enough variation of different manufacturing pa-
rameters in order to measure the effect that these have on
mechanical properties. The development of such test stan-
dards represents a step for further work, to be undertaken in

Table 6 Results of generated parts. Iteration is abbreviated to It

Tensile specimen S-hook

Parameters It. 1 It. 2 It. 3 It. 1 It. 2

Build orientation X X Y X X

Height (mm) 11.1 5.3 13.3 4 4

Width (mm) 2.3 7.2 4 14 15

Infill (%) 80 59 68 79 81

Solid shells (#) 7 3 2 2 4

TB layers (#) 7 8 5 6 6

Layer height (mm) 0.22 0.17 0.3 0.3 0.3

Predicted load (kN) 1.50 2.25 2.9 0.15 0.174

Actual load (kN) 0.94 1.15 1.61 0.13 0.15

Ratio of actual/predicted 0.63 0.51 0.56 0.867 0.863
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collaboration with other stakeholders such as researchers and
manufacturers in the 3D printing community.

8.2 The performance of the capability profile

The predicted vs. actual values of the capability profile for
both UTS and E showed good correlation in Section 6.2.
But discrepancies in the form of over-estimation were ob-
served when the capability profile was applied via the gener-
ative methodology in actual design tasks. This could be due to
a number of factors, such as the generation of parts outside of
the training data range of the ANN, overfitting or inaccuracies
in the functional modelling approach.

A key limitation in the use of ANNs to form the capability
profile is that they cannot predict reliably if extrapolating be-
yond the training data used in its generation [50]. When using

the generated capability profile therefore, input manufacturing
parameters should not greatly exceed those used in its gener-
ation. In the tensile use case, the target load is 1.5 kN which is
towards the upper bounds of the training data and therefore
predictive range of the generated ANN. This is a limitation
which must be considered during the capability profile’s im-
plementation so as to mitigate against inaccurate predictions.
On reflection, better performance could perhaps be enabled by
either generating parts with lower load bearing capacities, or
expanding the capability profile with higher load specimens.

Whilst the sample size used for this study was similar to
others in literature that use ANNs as predictive models for
additive manufacture, in the wider context of machine learn-
ing, the sample size is relatively small. This coupled with the
repeat tests necessary for each sample gives rise to the risk of
overfitting occurring in the ANN, which could account for the

Fig. 13 Tensile use case a sample-generated test specimen, b tensile test specimen cross-section with input parameters

Fig. 14 Bending use case a S-
hook annotated with key
dimensions, b functional testing
of S-hook
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discrepancies between the components’ actual and predicted
behaviours. This can be mitigated in future work by using
larger data sets and techniques such as regularisation and
cross-validation when using ANNs.

The functional modelling approach could also account for
discrepancies between predicted and actual behaviours of the
parts generated. This modelling defines to what extent the PSO
is able to converge on a solution. For the bending use case due
to the incorporation of second moment of area providing addi-
tional bounds to the solution space, convergence towards a
specific shape is observed with consistencies across iterations.
For the tensile use case, however, as second moment of area is
not included, there are no specific constraints on where material
is added resulting in less consistent results suggesting the PSO
could be finding local rather than global maxima. Both of these
examples were idealised in that they described parts under pure
tension or bending. In reality, parts need to stand a combination
of loading (e.g. tension, bending torsion and shear); as such,
future functional modelling would need to incorporate a com-
bination of these to facilitate a better bounded solution space to
aid in the prediction of part performance.

Evaluating the performance of the capability profile also
requires us to consider whether the five parameters selected
were the right ones to include. The results of experimental
data shown in Figure 7 (Section 5.1) demonstrate considerable
impact of the selected parameters on both UTS and tensile
modulus. This indicates that they are the right parameters to
include as they significantly impact mechanical properties and
therefore part function. It may be that additional parameters
(such as print speed or extruder temperature) need to be incor-
porated and as such this is a considered item of further work.

In addition, whilst these parameters are predicted by the
capability profile, additional consideration is necessary to de-
termine if an individual manufacturing resource is able to
guarantee the value of the five parameters used. This requires
an addition of an extra step to the methodology in the form of
analysis of the as sliced geometry in the form of the G-code
toolpath. A comparison of the as sliced geometry with the
intended geometry and manufacturing parameters would per-
mit elucidation if the delta between these is significant and if
so, re-calculation of predicted performance could be carried
out before manufacture.

8.3 The benefits of physical and virtual design
coupling

The presented design methodology demonstrated the benefits
of coupling digital and physical design activities. Virtual ac-
tivities via means of generative approaches allow rapid explo-
ration of the FDM solution space and the generation of de-
signs optimised for 3D printing. Both use cases shown in
Section 7.2 demonstrate the exploration of a 7-dimensional
design space in minutes, an undertaking which could not be

carried out in the physical domain. On the other hand, the
physical domain allows real world validation of theoretical
part performance which, as highlighted in Section 2.1, is nec-
essary as the FDM process is at present insufficiently under-
stood to allow this to be reliably predicted. The two elements
work together synergistically to enable the generation of func-
tional parts. This coupling of virtual and physical domains
makes the methodology relevant as from a design perspective,
hybrid virtual-physical methodologies such as these are essen-
tial in enabling the manufacture of functional 3D-printed
parts. Moreover, 3D printing permits the rapid manufacture
of parts meaning that this necessary physical validation is an
expedient and affordable process.

An additional benefit observed from this physical virtual
coupling is the reduction in skill level that a user requires in
order to create a functional part. It enables automation of ele-
ments of the design for FDM process and subsequently re-
duces design difficulty. Extant design tools in this space in-
clude Autodesk’s Design Automation [51]. Future work is to
characterise this and understand the specific manner in which
this is enabled by the presented generative methodology. This
will be undertaken using an extant methodology for assessing
process difficulty from literature [52].

8.4 Generalisability

The generalisability of the work presented considers two ele-
ments, that of using ANNs as capability profiles and of the
design methodology on the whole.

The extensive experimental testing presented in this paper
is not a practical approach for everyone to follow in order to
create individual capability profiles for their own printers. But
there are ways this could be worked around to make the use of
capability profiles more straightforward. More general capa-
bility profiles could be tailored to an individual manufacturing
resource via physical benchmarking processes. Further work
would then look at how a capability profile for one printer
could be translated to another. Once a capability profile was
mapped and validated (as proposed in Section 8.2) for some
arbitrary printer A, work could look at how many test results
from printer B are required to satisfactorily adapt the capabil-
ity profile of printer A to permit the formation of a capability
profile for printer B.

With respect to the overall methodology, the incorporated
element of physical testing presents a number of opportunities
for design learning following Confucius’ three methods of
acquiring wisdom: experience, imitation and reflection [53].

Initial use of the design methodology (as demonstrated in
this paper) will require users to directly engage in virtual-
physical iterations in order to arrive at a suitable part.
However, as identical parts are manufactured by different users,
process knowledge grows and lessons learned from the differ-
ent design cycles are able to inform the decisions taken for the
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next design of the same part. In this way, if a different user
wished to make the same part, through imitation (i.e. use of
existing knowledge), their design experience can be quicker
and easier. This accumulated design knowledge can also be
applied to different design tasks. Elements of that which is
learned in the design of part A can be applied to parts B and
C. This can be viewed as learning by reflection as knowledge is
transferred across domains to permit the design or different
parts. This is the global learning undertaken across all designs
using the design methodology. The ascertained knowledge can
be pooled to make evermore effective models of the FDM
process and refine the dynamic models themselves.

This enables something conceptually similar to
Communities of Practice, of which the purpose is to ‘develop
members’ capabilities, to build and exchange knowledge’
[54]. In the context of design for additive manufacturing, the
global design learning afforded by the wider implementation
of the design methodology enables a community of practice,
with users learning from each other’s design experiences.

A longer-term goal for further work is therefore to apply
the methodology more widely to enable the Confucian learn-
ing modes of imitation and, ultimately, reflection. This could
be carried out by implementing the design methodology with-
in a design library such as Thingiverse [55].

An additional avenue for further work involves the incor-
poration of build time into the capability model. The applica-
tion of the methodology featured an optimisation of mechan-
ical performance against material usage. Build time would
also be valuable to include as it is significantly impacted by
a number of manufacturing parameters [56] and also impacts
design and manufacturing decisions, particularly when
prototyping [57]. This could be achieved by first following a
similar methodology as presented by Hallman et al. to carry
out a sensitivity analysis as to which parameters most signif-
icantly impact build time [56]. This could then be coupled
with methodology for capability profile generation presented
in this paper incorporating any additional parameters that
would be necessary to create an ANN that would be able to
predict both mechanical properties and build time. An appro-
priate objective function would then need to be implemented
to account for the relative magnitudes of a designer’s
manufacturing restrictions in terms of material use or build
time. This would likely require inclusion of print speed which
as well as impacting build time would also effect

9 Conclusion

The paper is concerned with creating a capability profile that
can be used as part of a generative design process in order to
enable leveraging of FDM affordances with respect to indi-
vidually controlling manufacturing parameters to create parts
with bespoke properties.

The literature review highlighted the need to (i) conduct
comprehensive testing on a single printer, (ii) incorporate pa-
rameters previously omitted from extant capability profiles for
FDM, (iii) validate the behaviour of a capability profile by
applying it to the creation of functional components and (iv)
implement the capability profile within a generative design
approach. These needs defined the research gaps and the ap-
proach that would be followed in generating and applying a
formal model to capture the capabilities of FDM machines.

To generate capability profiles, a comprehensive set of me-
chanical tests was undertaken on parts made on a single print-
er. A Taguchi approach was applied in accordance with
ASTM standards and featured 120 samples and five parame-
ters consisting of layer height, build orientation, solid shells,
top/bottom layers and infill percentage each varied at three
levels each. The experimental data was validated with respect
to existing literature.

The experimental data was used to train anArtificial Neural
Network (ANN) forming the basis of a capability profile for
FDMwith route mean square error of prediction (RMSEP) for
all data of 1.95 MPa for UTS and 0.82 GPa for
E. These values which are well within the acceptable range
for many popular uses of FDM generated parts.

To validate the performance and utility of the capability
profile, it was incorporated within a generative design ap-
proach that iteratively fuses activities from both physical and
virtual domains. In the design of two functional parts, it was
shown to over-predict part performance with the ratio of actual
to predicted performance of parts between 0.6 and 0.8.
However when coupled with physical validation of parts, it
enabled the generation of parts to meet functional require-
ments in 2–3 design iterations—more quickly and reliably
than a manual approach.

Possible causes of predictive discrepancies of the capability
profile include the selection of use cases towards the edge of
the ANN’s predictive ability and potential sub-optimal
bounding of the solution space through the functional
modelling approach employed. Further work will involve
refinement in both of these areas as well as investigating the
incorporation of build time into the overall approach. The
benefits of fusing virtual and physical design domains are also
presented reinforcing the validity of the generative
methodology. The generalisability of the presented approach
is also considered with respect to its longer-term vision and
application within design repositories in order to create a
community of practice.

Code availability Not applicable.

Funding The work reported in this paper has been undertaken as part of
the ProtoTwin project (improving the product development process
through integrated revision control and twinning of digital-physical
models during prototyping). The work was conducted at the University

2966 Int J Adv Manuf Technol (2021) 113:2951–2968



of Bristol in the Design and Manufacturing Futures Lab (http://www.
dmf-lab.co.uk) and is funded by the Engineering and Physical Sciences
Research Council (EPSRC), Grant reference EP/R032696/1.

Data availability Data are openly available at the University of Bristol
data repository, data.bris, at https:/ /doi.org/10.5523/bris.
128vc9hwe7zgm29csj8a84oca2

Declarations

Conflict of interest The authors declare that they have no conflict of
interest.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, pro-
vide a link to the Creative Commons licence, and indicate if changes were
made. The images or other third party material in this article are included
in the article's Creative Commons licence, unless indicated otherwise in a
credit line to the material. If material is not included in the article's
Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this
licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Attaran M (2017) The rise of 3-D printing: the advantages of addi-
tive manufacturing over traditional manufacturing. Bus Horiz
60(5):677–688

2. Knofius N, van der Heijden MC, Zijm WHM (2019) Moving to
additive manufacturing for spare parts supply. Comput Ind 113:
103134

3. Berman B (2012) 3-D printing: the new industrial revolution. Bus
Horiz 55(2):155–162

4. Foresight (2015) The future of manufacturing: a new era of oppor-
tunity and challenge for the UK

5. Goudswaard M, Nassehi A, Hicks B (2019) Towards the
democratisation of design : the implementation of metaheuristic
search strategies to enable the auto-assignment of manufacturing
parameters for FDM. In: Proceedings of the International
Conference on Flexible Automation and Inte l l igent
Manufacturing, vol 00

6. Holst A. Worldwide most used 3D printing technologies, as of
July 2018, Statista, 2018. [Online]. Available: https://www.
statista.com/statistics/756690/worldwide-most-used-3d-printing-
technologies/. Accessed: 02-Jul-2019

7. Gebler M, Schoot Uiterkamp AJM, Visser C (2014) A global sus-
tainability perspective on 3D printing technologies. Energy Policy
74(C):158–167

8. Popescu D, Zapciu A, Amza C, Baciu F, Marinescu R (2018) FDM
process parameters influence over the mechanical properties of
polymer specimens: a review. Polym Test 69(April):157–166

9. Goudswaard M, Hicks B, Nassehi A (2020) Towards the
democratisation of design: a generalised capability model for
FDM. Int J Agil Syst Manag 13(1)

10. Tymrak BM, Kreiger M, Pearce JM (2014) Mechanical properties
of components fabricated with open-source 3-D printers under re-
alistic environmental conditions. Mater Des 58:242–246

11. Onwubolu GC, Rayegani F (2014) Characterization and optimiza-
tion of mechanical properties of ABS parts manufactured by the
fused deposition modelling process. Int J Manuf Eng 2014:1–13

12. Sood AK, Ohdar RK, Mahapatra SS (2012) Experimental investi-
gation and empirical modelling of FDM process for compressive
strength improvement. J Adv Res 3(1):81–90

13. Lanzotti A, Grasso M, Staiano G, Martorelli M (2015) The impact
of process parameters on mechanical properties of parts fabricated
in PLA with an open-source 3-D printer. Rapid Prototyp J 21(5):
604–617

14. Zhao Y, Chen Y, Zhou Y (2019) Novel mechanical models of
tensile strength and elastic property of FDM AM PLA materials:
experimental and theoretical analyses. Mater Des 181:108089

15. Garzon-Hernandez S, Garcia-Gonzalez D, Jérusalem A, Arias A
(2020) Design of FDM 3D printed polymers: an experimental-
modelling methodology for the prediction of mechanical properties.
Mater Des 188:108414

16. Alafaghani A, Qattawi A, Alrawi B, Guzman A (2017)
Experimental optimization of fused deposition modelling process-
ing parameters: a design-for-manufacturing approach. Procedia
Manuf 10:791–803

17. Chacón JM, Caminero MA, García-Plaza E, Núñez PJ (2017)
Additive manufacturing of PLA structures using fused deposition
modelling: effect of process parameters on mechanical properties
and their optimal selection. Mater Des 124:143–157

18. Croccolo D, De Agostinis M, Olmi G (2013) Experimental charac-
terization and analytical modelling of the mechanical behaviour of
fused deposition processed parts made of ABS-M30. Comput
Mater Sci 79:506–518

19. Sood AK, Ohdar RK, Mahapatra SS (2010) Parametric appraisal of
mechanical property of fused deposition modelling processed parts.
Mater Des 31(1):287–295

20. Casavola C, Cazzato A, Moramarco V, Pappalettere C (2016)
Orthotropic mechanical properties of fused deposition modelling
parts described by classical laminate theory.Mater Des 90:453–458

21. Wittbrodt B, Pearce JM (2015) The effects of PLA color onmaterial
properties of 3-D printed components. Addit Manuf 8:110–116

22. Zhang J, Wang XZ, Yu WW, Deng YH (2017) Numerical investi-
gation of the influence of process conditions on the temperature
variation in fused deposition modeling. Mater Des 130(March):
59–68

23. Goudswaard M, Hicks B, Nassehi A (2018) Towards the
democratisation of design : exploration of variability in the process
of filament deposition modelling in desktop additive manufacture.
Proc. Conf. Transdisciplnary Eng.

24. Newman ST, Nassehi A (2009) Machine tool capability profile for
intelligent process planning. CIRP AnnManuf Technol 58(1):421–
424

25. Klocke F, Brinksmeier E, Weinert K (2005) Capability profile of
hard cutting and grinding processes. CIRP Ann Manuf Technol
54(2):22–45

26. Vichare P, Nassehi A, Thompson J, Newman ST, Wood F, Kumar
S (2015) Machine tool capability profiles for representing machine
tool health. Robot Comput Integr Manuf 34:70–78

27. Bartarya G, Choudhury SK (2012) State of the art in hard turning.
Int J Mach Tools Manuf 53(1):1–14

28. Meng L, McWilliams B, Jarosinski W, Park HY, Jung YG, Lee J,
Zhang J (2020) Machine learning in additive manufacturing: a re-
view. Jom 72(6):2363–2377

29. Zhang J, Wang P, Gao RX (2019) Deep learning-based tensile
strength prediction in fused deposition modeling. Comput Ind
107:11–21

30. Pieters R, Winiger S (2016) On the Democratisation & Escalation
of Creativity, Medium.com. [Online]. Available: https://
mediumcom/@creativeai/creativeai-9d4b2346faf3. Accessed: 06-
Dec-2017

2967Int J Adv Manuf Technol (2021) 113:2951–2968

http://www.dmf-lab.co.uk/
http://www.dmf-lab.co.uk/
https://doi.org/10.5523/bris.128vc9hwe7zgm29csj8a84oca2
https://doi.org/10.5523/bris.128vc9hwe7zgm29csj8a84oca2
http://creativecommons.org/licenses/by/4.0/
https://www.statista.com/statistics/756690/worldwide-most-used-3d-printing-technologies/
https://www.statista.com/statistics/756690/worldwide-most-used-3d-printing-technologies/
https://www.statista.com/statistics/756690/worldwide-most-used-3d-printing-technologies/
http://medium.com
https://www.mediumcom/@creativeai/creativeai-9d4b2346faf3
https://www.mediumcom/@creativeai/creativeai-9d4b2346faf3


31. Shneiderman B (2000) Creating creativity: user interfaces for
supporting innovation. ACM Trans Comput Interact 7(1):114–138

32. Hansmeyer M (2012) Building Unimaginable Shapes, Ted Global
2012. [Online]. Available: https://www.ted.com/talks/michael_
hansmeyer_building_unimaginable_shapes

33. Autodesk Inc, Generative Design (2019) [Online]. Available:
https://www.autodesk.com/solutions/generative-design. Accessed:
19-Jul-2019

34. Trinckle, Paramate (2019) [Online]. Available: https://www.
trinckle.com/en/enterprise/paramate.php

35. Silva FJG, Campilho RDSG, Gouveia RM, Pinto G, Baptista A
(2018) A novel approach to optimize the design of parts for additive
manufacturing. Procedia Manuf 17:53–61

36. V. Megaro, B. Thomaszewski, and M. Gross, Interactive design of
3D-printable Robotic Creatures, 2015

37. Prévost R, Whiting E, Lefebvre S, Sorkine-Hornung O (2013)
Make It Stand: Balancing Shapes for 3D Fabrication. ACM Trans
Graph 32(4):81:1–81:10

38. Bächer M, Whiting E, Bickel B, Sorkine-Hornung O (2014) Spin-
it: optimizing moment of inertia for spinnable objects. ACM Trans
Graph 33(4):96:1–96:10

39. Ranjit R (2010) A primer on the Taguchi method. Society of
Manufacturing Engineers

40. Cimbala MJ (2014) Taguchi orthogonal arrays, Instrumentation,
Measurements, and Statistics, no. September. pp 4–6

41. ASTM International (2003) D638 - Standard test method for tensile
properties of plastics. ASTM Int 08:46–58

42. Schmidhuber J (2015) Deep Learning in neural networks: an over-
view. Neural Netw 61:85–117

43. IBM SPSS (2013) IBM SPSS Neural Networks 22
44. Heaton J (2017) The Number of Hidden Layers. [Online].

Available: https://www.heatonresearch.com/2017/06/01/hidden-
layers.html. Accessed: 28-Aug-2019

45. Goudswaard M, Hicks B, Nassehi A (2018) Democratising the
design of 3D printed functional components through a hybrid
virtual-physical design methodology. Procedia CIRP 78:394–399

46. Umetani N, Schmidt R (2013) Cross-sectional structural analysis
for 3D printing optimization, SIGGRAPH Asia 2013 Tech. Briefs,
SA 2013

47. Rutten D (2019) Grasshopper 3D
48. Field Ready (2016) IV Bag Hook, Thingiverse. [Online].

Available: https://www.thingiverse.com/thing:1562085.
Accessed: 11-Oct-2019

49. Timoshenko SP, Goodier JN, Abramson HN (1970) Theory of
elasticity (3rd ed.). J Appl Mech

50. Trask A, Hill F, Reed S, Rae J, Dyer C, Blunsom P (2018) Neural
arithmetic logic units. Adv Neural Inf Proces Syst 2018-Decem:
8035–8044

51. Autodesk Inc, Design Automation (2020) [Online]. Available:
https://www.autodesk.co.uk/solutions/design-automation.
Accessed: 17-Dec-2020

52. Goudswaard M, Hicks B, Gopsill J, Nassehi A (2017)
Democratisation of design for functional objects manufactured by
fused deposition modelling (FDM): lessons from the design of
three everyday artefacts. ICED 2017 Conf Proc 5(August):219–
228

53. Confucius (1979) The Analects. Penguin
54. Wenger E, Snyder W (2000) Communities of practice: the

organizational frontier. Harcard Bus Rev
55. MakerBot (2019) MakerBot Thingiverse. [Online]. Available:

https://www.thingiverse.com/. Accessed: 10-Jul-2019
56. Hallmann M, Schleich B, Wartzack S (2019) A method for

analyzing the influence of process and design parameters on the
build time of additively manufactured components. Proc Des Soc
Int Conf Eng Des 1(1):649–658

57. Wall MB, Ulrich KT, Flowers WC (1992) Evaluating prototyping
technologies for product design. Res Eng Des 3(3):163–177

Publisher’s note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.

2968 Int J Adv Manuf Technol (2021) 113:2951–2968

https://www.ted.com/talks/michael_hansmeyer_building_unimaginable_shapes
https://www.ted.com/talks/michael_hansmeyer_building_unimaginable_shapes
https://www.autodesk.com/solutions/generative-design
https://www.trinckle.com/en/enterprise/paramate.php
https://www.trinckle.com/en/enterprise/paramate.php
https://www.heatonresearch.com/2017/06/01/hidden-layers.html
https://www.heatonresearch.com/2017/06/01/hidden-layers.html
https://www.thingiverse.com/thing:1562085
https://www.autodesk.co.uk/solutions/design-automation
https://www.thingiverse.com/

	The...
	Abstract
	Introduction
	Background
	Material testing for FDM
	Capability profiling
	Generative design in the context of additive manufacturing
	Summary

	Research methodology
	Experimental testing
	Design of experiment
	Tensile test method

	Results
	Identification of trends

	Capability profiling
	Method
	Results

	Integrating the capability profile in a generative design methodology
	Methodology overview
	Defining the solution space
	Exploration of the solution space
	Implementation

	Applying the methodology to design tasks

	Discussion and further work
	Experimental method for developing the capability profile
	The performance of the capability profile
	The benefits of physical and virtual design coupling
	Generalisability

	Conclusion
	References


