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Abstract

Data analytics plays a significant role in the realization of Industry 4.0. By generating context-related persistent datasets,
every manufacturing process in real production becomes an experiment. The vision of Internet of Production (IoP) is to
enable real-time diagnosis and prediction in smart productions by acquiring datasets seamlessly from different data silos.
This requires interdisciplinary collaboration and domain-specific expertise. In this paper, we present a novel tool wear
monitoring system for milling process developed in the context of IoP. This system is based on high-frequency data from the
numerical control of the production machine without additional sensors. The novelty of this paper lies in the introduction of
virtual workpiece quality and fusion of multiple build-in sensor signals and a force model as decision support. This bridges
the time gap between quality inspection and production at the shop floor level, establishes an automated statistical process
control system, and provides a more plausible prediction of tool lifetime. The monitoring of two different milling processes
in a real production environment is exemplary demonstrated in this paper. The first case is a face roughing process with the
aim of rapidly removing large amounts of material. The second case is a face finishing operation that follows roughing and

aims to achieve the desired surface quality.

Keywords Tool wear - Digital twin - Data analytics - Quality inspection - Condition monitoring

1 Introduction

Modern production is characterized by vast amounts of
data in numerous domain-silos, which are neither easily
accessible, interpretable, nor connected to gain knowledge
[1]. However, these data and associated analytics have big
potentials in terms of improving the product and production
quality. The concept of Internet of Production (IoP)
targets collecting and processing context-based data from
production and realizing real-time control of production
processes [2]. One challenge is to establish a stable
network infrastructure to be able to collect and handle
vast amounts of production data in real-time. Hard- and
software components for such infrastructure in machine
tool industry are introduced in [3] and serve as background
for further analyses in this paper. Another major challenge
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is to develop fast computing models that are accurate
and plausible enough to help to improve the production
processes. These models are driven by real-time production
data, thus providing deeper insights than a priori simulation
models. For example, based on high-frequency machine
internal data, a digital twin of being manufactured part can
be generated by material removal simulation, which further
approximates the workpiece quality and enables a quick
quality feedback loop [4, 5]. Statistical process control
has been widely used in the manufacturing and process
industries to monitor the performance of a process over
time and eliminate quality problems [6, 7]. In this paper,
we present a novel tool wear monitoring system developed
in the context of IoP. The novelty of this research lies in
the introduction of virtual workpiece quality and fusion of
multiple standard built-in sensor signals as decision support
for cutting processes with different requirements, i.e., for
roughing processes, tool lifetime can be extended to its wear
limit since surface quality is not the focus point. While
for fine finishing processes, even mild wear could cause
unwanted quality issues since here the surface quality is
decisive. All experiments in this study were realized with
real production, not laboratory experiments, which shows
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the flexibility and adaptability of the suggested approaches
when facing the industrial environment.

This paper is organized as follows: Following this
“Introduction” section, Section 2 reviews the background
and existing methods for cutting tool monitoring. The
models used in this paper, such as the force model
based on machine internal data and a dexel-model for
cutting simulation are briefly introduced in Section 3.
Subsequently, two exemplary use cases in the industry
are demonstrated in Section 4. Two different approaches
are introduced and discussed in detail. One is based on a
single process quality indicator and another is based on a
color map representation of the process. Conclusions and
outlooks are provided in the last section.

2 State of the art: Tool wear monitoring

The diagnosis and prognosis of the optimal moment for
tool change are essential for automated mass production.
If tools are changed too often and too early, machine-idle
time, thus material and production cost, will increase. How-
ever, a too late replacement timing may cause quality issues
or even unscheduled machine downtime due to tool break-
age. Normally, cutting tools are replaced regularly after a
fixed number of manufactured parts. This decision is made
by experienced machine operators. Due to the complexity of
milling process and numerous random influences before
and during manufacturing, the tool changing timing tends
to be very conservative. Different tool condition monitor-
ing systems have been developed to expose this hidden po-
tential. Two types of monitoring methods can be distin-
guished: direct monitoring and indirect monitoring [8].

As its name suggests, direct monitoring methods capture
directly the edge of the cutting tools by using vision
systems. The tools will be either took off and examined
on a special measuring machine or directly measured
in a machine tool using an integrated CCD camera and
light systems [9]. The first approach has the most precise
outcome, but results in a long idle time in production. The
latter solution can be seen in some modern machine tools,
such as a61nx machining center from Japanese machine tool
manufacturer Makino. The monitoring system is capable
of effectively detecting tool breakage by comparing images
before and after cutting. However, when it comes to
monitoring flank wear or crater wear, the accuracy of image
processing systems is easily affected by coolants and metal
chips that are left on the tool surface [8].

In indirect monitoring approaches, tool condition is
estimated by analyzing one or more signals from different
sensors that are related to wear and tear. Typical signals
are cutting forces, motor currents, acoustics, and tool
vibrations. Cutting force has been selected as a reliably
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indicator for tool monitoring in [10] due to its fast response
time and high sensitivity. Different signal processing
strategies and post-processing techniques can be adopted to
enhance the performance of force-based wear monitoring
systems [11]. However, additional dynamometers need to be
installed on the machine table or to the main spindle, which
is very difficult in industrial applications. Apart from that,
high-precision force sensors are very expensive and often
lead to a reduction of local machine stiffness. To overcome
this paradox, smart cutting tools for dry turning process are
introduced in [12, 13], which utilize surface acoustic wave
sensors or piezoelectric films to measure the cutting force.

Besides additional sensors, estimation methods based
on tracking coefficients of analytical force models are
introduced in [14, 15], where knowledge of the cut
geometry is required in the first place to estimate the
model coefficients. Another very often used signal is motor
current, as it correlates to process force. One big advantage
of using current signal is that further modification at
machine tool is not necessary. Current signals of the servo
motors can be acquired through special interfaces in modern
machine tools with little effort. A tool-condition criterion
based on the measured current values of the main spindle
and drive motors is introduced in [16]. The proposed method
shows a good capability of monitoring the tool condition for
different cutting parameters. However, current signals are
greatly influenced by friction in feed drive systems, viscous
damping of mechanical components, and torque ripple of
servo motors [17, 18]. Tool monitoring systems based on
vibration signals can also be often found in many literature
works. Accelerometers are mounted either on the spindle
shaft [19] or on the workpiece [20]. The collected signals
are then processed in time or/and frequency domain in order
to extract features and estimate tool condition based on
training samples. Nevertheless, vibration signals are very
sensitive and can be error prone due to noise, such as
the influence of coolant and non-cutting vibrations [8]. As
shown above, using only a single sensor for tool monitoring
is limited in some cases. Therefore, multiple sensors and
signals are usually adopted in sense of sensor fusion to
eliminate the uncertainty and achieve a robust prediction
result [21]. A simple machine learning allied with data-
driven methods for tool monitoring is described in [23].
The input data are spindle load, spindle power, and axis
load, respectively, which are provided by the machine tool
in 1 Hz through a standard Internet protocol. Experimental
results show that predicting accuracy with multi-domain and
multi-sensory signals (e.g., force, vibration, and current) is
higher than that of other methods [22]. However, no reliable
commercial solutions for tool and process monitoring can
be found.

As a conclusion of the literature review, there is a
variety of sensors and signals that can be used to monitor
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SS Spindle speed rpm
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Fig. 1 System framework and data flow. Top: different data sources.
Middle: middleware for data processing and data storage. Bottom:
models to analyze data in real time

the tool wear and good results are expected in laboratory
experiments. However, the question is to what extent these
methods can be implemented at shop floor level. On the one
hand, external sensors, such as force and vibrations sensors,
are very difficult to integrate into a machine without
affecting the existing manufacturing processes. On the other
hand, a lot of experimental samples are required to train
an accurate model, which will increase the implementation
effort. This paper introduces a new concept for monitoring
tool wear at shop floor level. The research was carried out by
analyzing historical production data. To predict the optimal
timing for tool changing, virtual quality of the workpiece
was combined with multiple machine internal signals and a
force model.

3 Turning data into value

The overview of the utilized system framework for data
processing and tool monitoring is briefly described in
Fig. 1. A customized software solution has been installed
on an edge computer near the machine tool, which records
continuously and automatically all the relevant NC-internal
signals of the machine at a sampling rate of 500 Hz (Fig. 1,
top). A list of the recorded high-frequency signals can
be found in Table 1. In addition, event-based information
such as tool number in spindle, active zero offset, name
of the current NC program, and tool information were
also recorded. All these data were transmitted via the
MQTT protocol to a time series database [3] (Fig. 1,

middle). Different real-time models and simulation software
packages have been developed at Laboratory for Machine
Tools and Production Engineering (WZL) to create a digital
shadow of the machining process and final workpiece based
on the collected trace data. These models are then used to
realize the online tool wear monitoring (Fig. 1, bottom).

3.1 Force model

One of the most important factors that describes the cutting
operation is the process force, which is difficult to measure
in automated production. Force model based on motor
current is a very common approach to estimate cutting
forces in real-time [24]. However, the drive motor in the
control loop acts as a low-pass filter, so that low- and
high-frequency axis loads can not (exactly) be determined
[25]. The force model used in this paper is based on the
method described in [25]. Instead of using the drive motor
current, the measured position values of the linear scale
and motor encoder are taken into account. For a feed drive
axis with two position measuring systems, e.g., an indirect
measurement system X1 and a direct measurement system
X2, the axis force F) is calculated as:

Fy = Axcorrectea X kx,pos (x) (D

where Axcorrectea 18 defined as:

Axcorrected = X1 — X2 + Cfric(v) + Cpitch(x)
+Cacc(a) + Cair (v) ()

Crric(), Cpiren(x), Cacela), and Cy;r(v) are the velocity-
dependent friction error, the position-dependent pitch error
of the ball screw drive, the acceleration error, and the
direction-dependent error, respectively. These errors were
identified by reference runs in the first place and stored as
lookup tables. The stiffness k. pos(x) was experimentally
determined by measuring the force applied to the tool center
point and the changing of the machine internal data under
static conditions at different axis positions. The obtained
stiffness characteristics of motor current and difference
between encoders are shown in Fig. 2. The difference
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Fig.2 Measured stiffness
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between encoder signals (X1 — X2) shows a better linearity
and virtually position-independent behavior.

The developed force model was experimentally validated
by cutting tests with a force measuring platform in the
milling machine DMC-80-H-linear. The workpiece material
was GG-25. The sampling rates of the force measuring
platform and the force model were 10 kHz and 500 Hz,
respectively. A comparison of the estimated force and
measured force is given in Fig. 3. The estimated force
shows an overall good agreement with the measured force,
except with regard to the bandwidth, which is limited by the
position regulation cycle of the CNC machine tool.
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Fig.3 Validation of the force model with force measuring platform
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3.2 Material removal simulation in real-time

In manufacturing, quality control is usually done by regular
quality checks. However, there is still a considerable time
delay when feeding back negative trends or tolerance
violations [4]. In order to shorten the time delay between
the production and the subsequent quality measurement,
a process-parallel chip removal simulation has been
developed at WZL. Data from the CAD-CAM-NC process
chain and the real production data are linked together. The
actual tool center point (TCP) is calculated based on the axis
position X2 given by the CNC and the measured machine
stiffness &y achine (x):

Xrcp = X2 + Fx/kmachine(x) + Xgeometric T Xthermo 3

where the geometric error of the machine tool xgeomerric Was
identified in the first place. The influence of temperature
Xthermo 18 neglected here because the machine is in series
production and the hall temperature is maintained at a
constant level. The workpiece itself is modeled by a 3-dexel
representation and the tool is modeled by a layered depth
normal image representation, which can be transformed into
a local dexel model when the tool engages the workpiece
[4]. As a result, a digital twin of the being manufactured
workpiece is generated in real-time, which includes the
random effects in production. Figure 4 shows the interface
of the real-time material removal simulation. The simulation
was performed on a computer with an I15-7600k CPU and
a GTX 1080 graphics card. As shown in the screenshots,
similar tool marks can be seen on both real and virtual
workpieces.

The generation of virtual workpiece further allows an
automated virtual quality check. For example, for flatness
measurement, the measurement path from a coordinate
measurement machine (CMM) can be imported into the
software developed in WZL called virtual measurement
machine (VMM) [4] as point cloud (Fig. 5, top left). These
points are then orthogonally projected onto the workpiece
surface to extract the intersection points, which represents
the raw surface geometry. Subsequently, a least square
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Fig.4 Material removal
simulation and comparison of
real workpiece vs. virtual
workpiece

fitting is performed to find a fitted plane in 3-dimensional
space to the raw data points. The distances from the raw data
points to the fitted plane are then calculated and smoothed
with a spline filter [26]. A comparison of the measurement
report obtained from the virtual measurement and real
measurement is given in Fig. 5. The flatness of the measured
surface is defined as the difference between the maximum
and minimum value of the filtered curve. In this case,
the flatness of the virtual workpiece and real workpiece
are 0.0082 mm and 0.008 mm, respectively. Although
the virtual measurement here shows good agreement with
real measurement, virtual quality reports can never replace
a high-precision measurement machine [27]. However,
automated virtual quality measurement can enable a
statistical quality control, give information about whether
the process is stable or not, and provide indications whether
the tool wear progress will affect the workpiece quality.

4 Exemplary use case for tool wear
monitoring

4.1 Description of the scenario

Some parts of a raw casting need to be machined to meet the
specific tolerance requirements. In this scenario, four raw
casting parts were fixed in a clamping device and machined
in a batch as shown in Fig. 4, top left. To achieve the desired

surface quality (0.03 mm flatness), first, a roughing tool
(hereinafter referred to as T1) was used to rapidly remove
the raw casting material (see Fig. 6). Then, a finishing tool
(hereinafter referred to as T2) was used to produce the
final geometry. Both tools were replaced regularly after 20
batches, i.e., 80 workpieces in serial production. The main
goal of this paper is to develop a tool monitoring system
that optimizes the tool changing process by determining the
actual tool condition. Meanwhile, the following problems
have been encountered that may not appear in research
environments:

— Data came directly from a production machine. Exper-
iment on the machine was only possible to a limited
degree without disturbing the normal production.

— Real production is complicated and fraught with
uncertainty. For example, the coolant is turned on
during cutting or the cutting volume is not always
constant.

—  Finishing follows roughing. The result of the roughing
process could have an influence on the subsequent
finishing process.

4.2 Tool monitoring methods
This section presents two different approaches to evaluate

the tool wear condition considering the execution of
finishing and roughing processes. Both developed tool
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Fig.5 Comparison of real
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monitoring systems were based only on machine internal
data. Both approaches used the information such as NC
line number and tool number in main spindle; thereby,
the corresponding production data with T1 and T2 were
extracted from the data stream. The mean forces in Z
direction over the entire roughing and finishing process
were proved to be related to tool wear. As shown in
Fig. 7, the mean force in Z direction increases with
the number of manufactured workpieces. The moment
of regular tool changing after around 80 workpieces can
be clearly observed by the averaged force. Furthermore,
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Raw casting \.

T
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T

Fig.6 Description of the scenario
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different combinations of roughing and finishing tools have
been tested, such as T1 is nearly worn out while T2 is new
or T1 is new while T2 has been used for a while. Results
indicated that influence of the roughing tool on the finishing
tool was negligibly small. The trend development of the
finishing tool was not affected by roughing. Therefore, it
is reasonable to consider these two processes separately
in the following sections. Besides the mean force, similar
trend development as in Fig. 7 were obtained by taking the
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S 200 New tool
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Fig. 7 Mean forces of the roughing and finishing process in Z direction
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average value of the main spindle current or the drive motor
current.

4.3 Monitoring of the roughing process

Approach 1: the aim of roughing is to effectively remove
large amounts of material. The surface quality does not
matter, as it will be finished later. A roughing tool can be
used as long as the cutters are not worn out and the process
is stable. With this in mind, a process quality indicator (PQI)
based on the cutting force and spindle current similar to [16]
can be adopted as:

PQI = \/wl (Fz — Fzref)? + w2 - (Isp — Isp ref)?
“4)

where w1 and w; are weighting factors; Fz and Igp are the
root mean square values of the cutting force in Z direction
and spindle current, respectively. Fz ,.r and Isp ,.f are
the reference force in Z direction and the reference spindle
current, respectively. Force Fz is estimated based on the
difference between linear scale and motor encoder. The
reason for using force instead of directly using drive current
is that the encoder signals have a better linearity and
disturbance forces can be corrected to achieve a better result
(see Section 3.1). Figure 8 (left) shows the trend of the
calculated PQI as a function of workpiece batch number.
Note: every time, four workpieces were manufactured in
one batch. A total of 600 workpieces (with 30 tools) from
the historical data are plotted in the diagram. Due to some
random effects of the cutting process, such as built-up-edge,
raw casting form variation, there is a +15% variation in
the calculated PQI. This indicator is mainly affected by tool
wear, when all the process parameters remain unchanged.
Based on the rising trend, an upper warning or control limit
can be defined, which indicates a need for tool replacement.
Figure 8 (right) shows two cases that were detected by this
monitoring method. The cross markers already show a high
PQI at the beginning and the indicator rises continuously
with the number of workpieces. This indicates that instead
of a new roughing tool, a heavily worn tool was changed in.
The square markers have an outlier when manufacturing the
first workpiece. The cutting force here was two times higher
compared with the usual cutting processes. As expected and
verified by the production documentation, this part had a
quality issue. Possible reasons for the outlier could be the
wrong tool length in tool table or the wrong zero point shift
in NC program.

Approach 2: since PQI is a mean-value-based quality
indicator, a second approach in time domain was inves-
tigated for the roughing process. Therefore, a tool wear
indicator based on cutting force, spindle current, and unix
timestamps is proposed. The indicator is based on a color

map representation that illustrates the interpolated histor-
ical process behavior dependent on the cutting forces Fz
and spindle current Igp over the machining time interval
t. Thus, each combination of the point pair (Fz and Isp)
is quantified with an absolute value of time, thus indirectly
quantifying the time spent for each pair of force and cur-
rent points acquired in the process. Figure 9 shows four
color maps which characterize the progressive wear of the
roughing tool from its beginning. It is notable that in the
first figure with a new cutting tool, the process uses a small
amount of current and has a larger cutting force range. How-
ever, with the increase of the manufactured workpieces, the
process needs to consume more power and higher cutting
forces to perform the same task as before. This is due to the
fact that the tool is progressively wearing out. These charac-
teristics can also be observed by the decrease in the effective
area of the color map. Thus, there is a direct correlation of
tool life with the size of the effective area on the color map.

4.4 Monitoring of the finishing process

Approach 1: the aim of the finishing process is to achieve
the desired surface flatness of 30 um. A 63-mm face
milling cutter with five inserts was used to remove the 0.5-
mm allowance which was left after roughing. The cutting
force in finishing was therefore very small (under 200 N).
Furthermore, due to the varying width of the surface being
cut, using only mean values over the whole process as in
Section 4.3 does not provide the best indicator. To enhance
the estimation accuracy and reduce the variation of PQI,
three signals were fused together to build the wear indicator
(Fig. 10). Besides force and spindle current, the spindle
speed was also found to be related to tool wear. As the
tool wear progresses, it requires more power for cutting.
Thus, when the tool engages the material for the first time,
spindle speed decreases as the cutting force works as an
external disturbance, which excites the speed control loop.
The decrease of spindle speed is quite robust for tool wear
monitoring in this case. Similar to Eq. 4, the process quality
indicator based on these three signals was calculated.

As shown in Fig. 11, a good describable rising trend of
PQI depending on the workpiece batch number is evident.
However, it is unclear whether the tools have reached their
maximum lifetime after 20 batches. Conventionally, a lot
of time-consuming laboratory tests are required to identify
the tool wear limit. Especially when it comes to monitoring
the finishing tool, light to medium tool wear and tear could
already lead to a bad surface finish, which is the decisive
factor for finding an appropriate tool change timing. To
overcome this problem, the virtual quality (see Section 3.2)
was adopted to support the monitoring of the finishing tool.
Historical data indicated that the finishing process and the
workpiece quality were stable after 20 batches. Therefore, a
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Fig.8 Process quality indicator
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small test series has been conducted, where a finishing tool
was carefully adopted for 25 batches or 100 workpieces.
This corresponds to a 25% more lifetime compared with 20
batches. Every fourth workpiece was examined by a high-
precision coordinate measuring machine. All workpieces
were virtually manufactured and measured based on high-
frequency trace data. As shown in Fig. 12, even though
the PQI rises continuously after finishing 80 workpieces,
which indicates higher wear and tear of the tool, the surface

Fig.9 Color maps

Workpiece #1

Workpiece batch number

flatness quality is still maintained at a good level near 8
pum. The 100% PQI in Fig. 12 is an approximated worn-
out limit. However, the wear limit was never reached in
real production, as this would cause a high scrap rate. We
assumed that the wear status is at 80% after 25 batches in the
real production. In order to safely get close to the maximum
lifetime of the tools, PQI was combined with virtual quality,
which offers a statistically controlled production and a quick
quality feedback. Nevertheless, certified real measurement
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processes are still indispensable. As shown in Fig. 12,
regular real measurements were conducted to control the
virtual measurement.

Thus, the reliability of the developed tool wear moni-
toring system can be improved. Negative trends of quality
features that are possibly caused by tool wear can thereby
be fast identified and serve as decision support for tool
changing. Outliers far from normal data points need to be
specifically examined on a measurement machine.

Approach 2: Even though the cutting forces of the
finishing process are relatively small when compared with
those of roughing, it was possible by means of the second
method to obtain a tool wear indicator. The cutting force,
spindle current, and timestamp signals are used as in the
previous process to create a tool wear indicator for the
finishing process. Figure 13 shows that the wear profile of
the finishing process is similar to that of roughing. However,
in the finishing process, it is possible to see that wear occurs
more slowly having as parameter the effective area of the
color map. In the first pieces in which the tool is new, the
effective triangle range is large. With the increase of wear,
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Process quality indicator (PQI %)

Workpiece batch number

Fig. 11 Process quality indicator for the finishing process (plotted:
600 workpieces and 30 tools)

the force and current during the same cutting process shift
to the higher values, so that the effective triangle range
becomes smaller.

5 Summary and outlook

This paper introduces two new methods for quality and
tool wear monitoring in production environments in context
of the Internet of Production. Both developed methods are
based only on machine internal data, which were collected
and handled by edge devices that do not influence the
CNC performance. High-frequency trace data and data-
driven simulation models were combined together to enable
a real-time tool monitoring. In the first approach, a process
quality indicator has been constructed based on different
input signals. This reduced the uncertainties in estimation
and improved the robustness of the system. For a workpiece
that requires a high surface finish, virtual quality has been
taken into account to support the tool monitoring based
on process quality indicator. As all the data were collected
from real industrial practice, this method shows its good
practicability and reliability. To evaluate the applicability
of the proposed method to other machining operations,
further tests considering different tools and operations need
to be carried out. The second approach constructs the wear
indicator as a heat map, which succinctly describes the
cutting history over time. Considering that the color map-
based methodology presented detailed results, an extension
of the methodology using artificial intelligence and deep
learning approaches to predict the wear and tear of the tool
based on the color map would be a viable and interesting
option to explore.

To further increase the applicability and reliability of
the method, additional sensors such as spindle-integrated
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Fig. 12 Monitoring of a test 100
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force sensors [27] can be combined with the developed tool
monitoring system. By utilizing the force sensors, cutting
forces can be accurately measured above 10 kHz; thus, the
virtual quality measurement and wear estimation can be
further improved.
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