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Abstract
Cloud manufacturing represents a valuable tool to enable wide sharing of manufacturing services and solutions by connecting
suppliers and customers in large-scale manufacturing networks through a cloud platform. In this context, with increasing
manufacturing network size at global scale, the elevated number of manufacturing solutions offered via cloud platform to
connected customers can increase the complexity of decision-making, resulting in poor user experience from a customer
perspective. To tackle this issue, in this paper, an intelligent decision-making support tool based on a manufacturing service
recommendation system (RS) is designed and developed to provide for tailored manufacturing solution recommendation to
customers in a cloud manufacturing system. A machine learning procedure based on neural networks for data regression is
employed to process historical data on user manufacturing solution preferences and to carry out the automatic extraction of key
features from incoming user instances and compatible manufacturing solutions generated by the cloud platform. In this way, the
machine learning procedure is able to perform a customer segmentation and build a recommendation list characterized by a
ranking of manufacturing solutions which is tailored to the specific customer profile. With the aim to validate the proposed
intelligent decision-making support system, a case study is simulated within the framework of a cloud manufacturing platform
delivering dynamic sharing of sheet metal cutting manufacturing solutions. The system capability is discussed in terms of
machine learning performance as well as industrial applicability and user selection likelihood.

Keywords Cloudmanufacturing . Industry 4.0 . Decision-making support . Recommendation system .Machine learning .

Neural network

1 Introduction

In modern industrial framework, the broad sharing of
manufacturing services and solutions within large-scale
manufacturing networks is strongly supported by cloud
manufacturing (CMfg). The latter allows to connect suppliers
and customers via a cloud platform by integrating Industry 4.0
key enabling technologies such as cloud computing and
Internet of things (IoT) [1–3].

Most CMfg platforms are designed to dynamically manage
and combine the manufacturing service offers and demands in
the network with the aim to deliver on-demand manufacturing
solutions according to a service-oriented model [1, 3, 4]. On
the one hand, manufacturing enterprises are enabled to put
together their resources and competences as manufacturing
services for sharing them on the CMfg platform [5]. On the
other hand, the cloud assembles the large number of distrib-
uted manufacturing resources available in the manufacturing
network to offer manufacturing solutions to customers accord-
ing to a pay-as-you-go model [6].

CMfg platforms can be managed according to either a cen-
tralized or decentralized approach [6, 7]. In the centralized
approach, the CMfg platform employs the customer
manufacturing service requirements and specifications in or-
der to make up customized manufacturing solutions and even-
tually selects the best manufacturing solution on behalf of the
customers. On the other hand, in the decentralized approach,
the CMfg platform retains the role of assembling the
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manufacturing solutions, but the customers select their pre-
ferred manufacturing solution (on the basis of their own pref-
erences and multiple decision-making criteria) among those
assembled by the CMfg platform [6]. In the latter case, with
the rapid growth of the number of services which are pub-
lished and shared on cloud platforms, the complexity of
decision-making may become a relevant issue [5]. As a matter
of fact, with increasing manufacturing network size at global
scale, the elevated number of manufacturing solutions offered
by the cloud platform (related to the numerous available ser-
vices and resources in the network) can result in information
overload and poor user experience from a customer perspec-
tive [8].

To this aim, the employment of a manufacturing service
recommendation system (RS) could play an essential role in
helping the user identify the best manufacturing solutions to
fulfil the required task, thus improving the efficiency of the
cloud manufacturing platform [5, 6, 9].

Recommendation systems (or recommender systems) are a
subclass of information filtering systems consisting of soft-
ware tools and techniques aimed at predicting the rating or
preference a user would give to an item so as to provide sug-
gestions that are most likely of interest to the specific user
[Wikipedia] [10].

RS has been successfully applied to support decision-
making in various domains, including commercial applica-
tions (as product or service recommenders), entertainment
(as playlist generators for video and music services like
Netflix, YouTube, and Spotify), or content recommenders
for social media platforms (such as Facebook and Twitter),
tourism, e-learning, news [11].

In the field of Cloud Manufacturing, recommendation sys-
tems can play a crucial role by supporting the customer in the
identification of the best services to fulfil the required
manufacturing task [6, 8].

Accordingly, this research work proposes a customized
recommendation system to develop an intelligent decision-
making support tool able to provide for tailoredmanufacturing
solution recommendation to customers in a cloud manufactur-
ing system. The proposed RS employs a machine learning
procedure based on neural networks for data regressionwhich,
on the one hand, processes track record on former customer
selections of manufacturing solutions and, on the other hand,
carries out the automatic extraction of key features from in-
coming manufacturing solution requests submitted by the cus-
tomers and the available manufacturing solutions generated
by the cloud platform. Following this approach, the machine
learning procedure is able to perform a customer segmentation
and build a recommendation list characterized by a ranking of
manufacturing solutions which is tailored to the specific cus-
tomer profile. With the aim to validate the proposed intelligent
decision-making support system, a case study is simulated
within the framework of a cloud manufacturing platform

delivering dynamic sharing of sheet metal cutting manufactur-
ing solutions [1]. The reported simulated case study takes into
account 950 suppliers and 60 customers in order to evaluate
the approach in a large-scale manufacturing network. Ground
truth criteria were set based on the user instances as a regres-
sion learner was initially trained with 15 customers. The sys-
tem capability is discussed in terms of machine learning per-
formance and industrial applicability as well as user selection
likelihood.

2 State of the art

The use of innovative ICT key enabling technologies has trig-
gered a paradigm shift in industries which has been identified
as the fourth industrial revolution, known as Industry 4.0, in
particular in the manufacturing sector [12]. Industry 4.0 aims
at improving manufacturing systems automation, efficiency,
and performance and allowing dynamic value-creation net-
works through the combination of new emerging technolo-
gies, including cloud computing, Internet of things (IoT),
Cyber-Physical Systems (CPS), Service Oriented
Architecture (SOA), and Industrial Information Integration
[12–14]. In Industry 4.0, smart devices are able of integrating
devices, systems, and organizations to allow for real-time data
exchange and sharing, and using anything, anywhere, anytime
communication with the aim to sense, capture, and transmit
data [12]. The virtual space and the physical world are inte-
grated through embedded systems, IoT, and CPS [14–16].

In the scientific literature, Industry 4.0 has been investigat-
ed from diverse perspectives. For example, Kim [17] conduct-
ed a comprehensive review on emerging IT trends relevant to
Industry 4.0, such as IoT, big data, and cloud computing, and
introduced the enabling technologies of CPS and their appli-
cations in industries [17]. Lu [16] reviewed the current re-
search on Industry 4.0 key enabling technologies, major ap-
plications in industries, and identified research trends and
challenges. Da Xu et al. [12] reviewed the recent research on
Industry 4.0 from the industrial perspective, introducing cur-
rent industrial applications and analyzing the research chal-
lenges and future trends associated with Industry 4.0. Li [18]
compared Industry 4.0 andMade-in-China 2025 to investigate
the relationship between technological entrepreneurship and
socio-economic changes in emerging economies. Haleem and
Javaid [19] identified different components of Industry 4.0
and explained the critical ones with particular reference to
additive manufacturing (AM) applications in Industry 4.0.
Yli-Ojanperä et al. [20] surveyed the literature on Industry
4.0 architectures in a factory context and assessed awareness
and compatibility with reference architecture models devel-
oped by industry-driven initiatives [20]. Reinhardt et al. [21]
investigated the state of industry preparedness for the adoption
of Industry 4.0 worldwide so as to provide a base of
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information to both industry and academia that can be used to
deduce the future industrial strategy and direction. Chen [22]
illustrated the challenges and future developments of CPS,
showing the questions that still need to be solved to trigger
and to ease the integration of the physical and cyber worlds.
One relevant issue is the lack of multidisciplinary experts able
to engineer Industry 4.0 applications that are often very com-
plex [23]. Da Xu [24] discussed the potential contribution of
systems science to Industry 4.0, pointing out that systems
science is needed to deal with the great systems complexity
in Industry 4.0 and the surrounding industrial ecosystem.

Within Industry 4.0, cloud manufacturing (CMfg) is
emerging as a valuable tool offering the possibility to realize
a large-scale connection in smart manufacturing networks.
Cloud manufacturing allows to deliver on-demand
manufacturing services to several industrial users throughout
the Internet based on advanced Industry 4.0 key enabling
technologies such as cloud computing, Internet of things,
and Cyber-Physical Systems [2–4, 25, 26]. By involving dis-
tributed enterprises with the role of suppliers and customers,
CMfg offers the opportunity to set up large-scale smart
manufacturing networks where the remote manufacturing fa-
cilities can be managed as cloud manufacturing services reg-
istered into a cloud service platform [9, 27–29].

With the rapid increase of the number of services made
available on the CMfg platforms, the complexity of
decision-making is rapidly becoming a challenge for cus-
tomers, calling for an effective manufacturing service recom-
mendation algorithm [5, 9].

Recommendation systems (RSs) have been recently devel-
oped as tools to identify the best subset of items among all the
alternatives which are appropriate to the requests and the pref-
erences of users [11]. The need for providing recommendations
by filtering a whole range of available alternatives emerged as a
consequence of the enormous growth and variety of information
available on theWeb as well as the development of e-commerce
and new e-business services. The huge variety of items (prod-
ucts and services) offered on the web frequently overwhelm
users, who find it difficult to arrive at the most appropriate
choices and often experience poor decision-making [10, 30].

“Item” is the generic term utilized to indicate what the
system recommends to users, e.g. what product to buy, what
music to listen to, or what online news to read. Based on the
user’s preferences and constraints, RSs aim at predicting the
most suitable products or services in order to provide custom-
ized recommendations as ranked lists of items. To this scope,
recommendation systems collect information from users
concerning their preferences which are either explicitly
expressed or are extrapolated by interpreting the actions of
the user [10, 31]. Upon a user’s request, RSs generate recom-
mendations based on knowledge and data about users, avail-
able items, and preceding transactions collected and stored in
personalized databases.

In the literature, several categories of recommender sys-
tems have been proposed, which can be classified based on
the application domain, the employed knowledge, and the
implemented recommendation algorithm, which defines how
the utility of a recommendation is predicted [10]. The classi-
fication proposed by Burke [32] distinguishes between six
different classes of recommendation approaches: Content-
Based (the system learns to recommend items that are similar
to the ones that the user liked in the past), Collaborative
Filtering (recommendations to the active user are made based
on items that other users with similar tastes liked in the past),
Demographic (items are recommended based on the demo-
graphic profile of the user), Knowledge-Based (items are rec-
ommended based on specific domain knowledge about how
specific item features meet users’ needs and preferences),
Community-Based (items are recommended based on the pref-
erences of the user’s friends by acquiring information about
the social relations of the users and the preferences of the
user’s friends), and Hybrid Recommender Systems (based on
the combination of the above-mentioned techniques).

Collaborative filtering is one of the most popular RS pre-
diction approaches and has been widely implemented for pro-
viding accurate recommendations to active users [10, 11]. The
task of collaborative filtering is to predict the preferences (typ-
ically expressed as numerical ratings) of an active user for
unseen items given preferences of other users.

With the development of cloud computing applications,
new service recommendation algorithms based on different
approaches have been developed. For instance, Fuzzy ap-
proaches for cloud service recommendation were proposed
in the literature. An innovative collaborative filtering–based
recommendation system for cloud services using Fuzzy
Formal Concept Analysis (Fuzzy FCA) was presented in
Mezni and Abdeljaoued [33], while a Fuzzy Ontology struc-
ture for cloud service recommendation built upon semantic
technologies was proposed in Balaji et al. [34].

Regression-based approaches were also investigated. Mild
and Natter compared collaborative filtering approaches to re-
gression models, determining that for a large number of data,
regression with model selection can provide significantly bet-
ter recommendations than traditional collaborative filtering
[35]. In this framework, Li et al. [36] presented a recommen-
dation system based on weighted linear regression models.
Vucetic and Obradovic [37] developed a novel regression-
based approach for collaborative filtering to efficiently ad-
dress the problem of data sparsity and prediction latency that
characterize other collaborative filtering approaches.

More recently, machine learning techniques for service rec-
ommendation have been increasingly studied.Wang et al. pre-
sented a new regression model based on support vector ma-
chine (SVM) classification and an improved particle swarm
optimization (PSO) for the development of an electronic mov-
ie personalized recommendation system [38]. In its
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implementation, a SVM classification model was first
established to obtain a preliminary movie recommendation list
based on which a SVM regression model is applied to predict
movies’ ratings.

Among the several available machine learning techniques,
deep learning is claiming growing attention. The literature
provides diverse applications of deep neural networks for rec-
ommendation systems. Covington et al. developed a DNN
architecture for recommending YouTube videos, splitting
the problem into two distinct sub-problems: candidate gener-
ation and ranking [39]. Cheng et al. [40] proposed a Wide &
Deep learning approach, made of jointly trained wide linear
models and DNNs to combine the benefits of memorization
and generalization for recommender systems. Tkachenko [41]
adopted a model-free Q-learning to train a DNN to map a
client position in the state space to rewards associated with
possible marketing actions.

With specific reference to the manufacturing field, few ap-
plications of RSs in different cloud manufacturing frame-
works have been reported in the very recent literature.

In Liu and Chen [11], a novel clustering-based and trust-
aware RS for reliable cloud manufacturing service recommen-
dation was developed with the main purpose to automatically
predict the personalized Quality of Service (QoS) value of
CMFg services and enable the users to rapidly retrieve the
most appropriate cloud services without being overwhelmed
by irrelevant services.

In Hao et al. [5], a new manufacturing service recommen-
dat ion algori thm based on Time-aware Targeted
Reconstructing Service Descriptions (T-TRSD), taking into
account the evolving characteristics of the cloud manufactur-
ing services, was developed with the aim to accurately identify
the functional requirements of developers, quickly select
proper manufacturing services, and create service
compositions.

In Alinani et al. [6], a recommendation system based on
collaborative filtering for cloud manufacturing was proposed
to identify the best services for the required manufacturing
tasks as well as allow the customer to make informed deci-
sions on the basis of the earlier track record of services. The
proposed RS splits the manufacturing task into many sub-
tasks and identifies the best match services based on item-
based similarity and similarities between other users based
on collaborative filtering.

In Simeone et al. [8], a deep neural network (DNN) para-
digm was adopted to allow for the automatic learning of opti-
mal solution recommendation list based both on customers’
past experiences and new choices.

Following this approach, this research work proposes the
development of a machine learning–based manufacturing ser-
vice recommendation system to provide for tailored
manufacturing solution recommendation to customers in a
cloud manufacturing system. As a further development of

the preliminary research work on cloud manufacturing report-
ed in Simeone et al. [9] and Simeone et al. [1], an original
machine learning–based regression approach employing
three-layer feed-forward neural networks (NN) is adopted to
develop the recommendation system. The latter is then inte-
grated within the intelligent decision-making support module
of a cloud manufacturing platform designed to deliver smart
sharing of manufacturing services in large-scale manufactur-
ing networks. To perform the solution recommendation, the
RS performs a customer segmentation based on previous his-
tory of customer preferences, taking into account multiple
criteria related to time, cost, and resource efficiency. In this
way, this work addresses the research gap related to the lack of
a suitable recommendation system specifically developed for
customers of a cloud manufacturing platform for which the
multi-criteria decision-making process is particularly
complex.

The newly developed recommendation system centred on a
NN-based regression model has been proposed to overcome the
limitations of a pure collaborative filtering approach, which is the
most common approach in recommendation systems, when deal-
ing with manufacturing services. As a matter of fact, in this case,
the recommended item is the tailored manufacturing service so-
lution provided by a supplier. Such item includes customer, sup-
plier, and solution features, where each customer is characterized
by unique features, resulting in each solution being unique. As a
result, the CF algorithm cannot be directly applied in an effective
way to the proposed recommendation system as it is unlikely that
similar users or items based on users’ preferences are found in
this context. Hence, a NN-based regression model was designed
and trained through scoring each manufacturing solution. At the
same time, inspired by the mechanism of CF, the similarity con-
cept was used to build key indicators to characterize the
manufacturing solutions based on the assumption that the cus-
tomers’ preferences would change according to the production
requirements. From such considerations, the use of similar solu-
tions as the indicator to update the recommendation system has
been adopted for more accurate and widely applicable
recommendations.

Moreover, to tackle the issue of large-scale networks, the
intelligent decision-making support system based on the new-
ly developed RS is implemented within a cloudmanufacturing
platform connecting numerous customers and suppliers.

3 Framework

The manufacturing service recommendation system proposed
in this paper is developed as a new tool for the intelligent
decision-making support module of the cloud manufacturing
platform presented in Simeone et al. [1]. Such cloud
manufacturing platform aims at enabling the dynamic and
smart sharing of sheet metal cutting services in a
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manufacturing network with increased resource efficiency.
Smart manufacturing solutions are delivered on demand
through the platform, by dynamically managing and optimally
matching the several sheet metal cutting offers and demands
in the network and assembling the requests into convenient
manufacturing service solutions through data storage and in-
telligent computation algorithms.

Figure 1 shows the structure of the cloud manufacturing
platform which includes three main modules, i.e. a data-
base module, an intelligent assessment and optimization
module, and a decision-making module. The latter repre-
sents a support tool for both the supplier, to suggest the
best production strategy, and the customer, to propose the
best manufacturing solutions. With reference to this sec-
ond objective, the integration of the newly developed RS
within the decision-making module allows to provide for
tailored manufacturing solution recommendation to cus-
tomers in the CMfg platform. As a matter of fact, the
RS is able to build a recommendation list characterized
by a ranking of manufacturing solutions which is tailored
to the specific customer profile.

3.1 Cloud manufacturing platform operation

The cloud manufacturing platform developed in Simeone
et al. [1] allows customers and suppliers to register their
manufacturing service offers and requests with specific refer-
ence to sheet metal cutting processes.

On the one hand, any customer calling for a manufacturing
service can enter a customer instance, Ci, including the fol-
lowing data:

Ci ¼ IDci;Qci; tci;mci; Tci;DLci;CADci; Lcif g ð1Þ
where IDci is the automatically assigned instance number, Qci

the batch quantity (part units to be produced), tci the part
thickness (mm), mci the material, Tci the cutting technology,
DLci the customer deadline, CADci the CAD file, and Lci the
customer location.

On the other hand, as the key objective of the CMfg plat-
form is to improve time, cost, and resource efficiency by pro-
moting nesting of different sheet metal cutting instances (e.g.
from customers and suppliers), any supplier can enter a sup-
plier instance, Si, expressed as follows:

Si ¼ IDsj;Qsj;Msj;msj; tsj;Asj;DLsj;CADsj; Lsj
n o

ð2Þ

where IDsj is the automatically assigned instance number, Qsj

the batch quantity (units),Msj the machine tool, with details on
the machine model, technology, tolerance, power consump-
tion, cutting parameters, kerf width, availability, and scrap rate
[8], Asj the metal sheet size, CADsj the CAD file of supplier
jobs to be completed by the deadlineDLsj, and Lsj the supplier
location.

To select compatible instances, the cloud manufacturing
platform, shown in Fig. 1, performs a functional compatibility
assessment by verifying that materials, thicknesses, and tech-
nologies offered by the supplier match those required by the
customer and that the tolerances indicated by the customer are
not tighter than those allowed by the supplier machine tool.

Afterwards, the set of compatible instances is processed by
an optimization engine to generate suitable combinations of
customer and supplier instances based on parts geometries so
as to maximize the surface utilization rate (SUR), i.e. the ratio

.

Fig. 1 Cloud manufacturing
platform scheme
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of utilized area over the whole sheet metal area. In this respect,
considering the sheet metal cutting process nature, the prob-
lem is configurable as 2D nesting [5, 19, 25, 40].

A decision-making module supports the supplier in the
selection of the best production strategy, specifically accord-
ing to three drivers:

& Surface utilization rate (%)
& Processing time (hours)
& Deadline compatibility

Concerning the customer, the decision-making support
module assists the user in the evaluation and assessment of
the best manufacturing solutions ranked according to the si-
multaneous comparison of six drivers [1], such as:

& Surface utilization rate (%)
& Energy cost (CNY)
& Distance cost (CNY)
& Processing time (hours)
& Number of suppliers
& Supplier(s) rating

In this paper, as a further development of the cloud plat-
form, the enhancement of the customer decision-making sup-
port module via the implementation of a RS providing for
tailoredmanufacturing solution recommendation to customers
is proposed based on the framework reported in Fig. 2.

In this framework, customer and supplier instances are col-
lected as they are submitted to the cloud manufacturing
platform.

Subsequently, the instances are processed in order to ex-
tract and compute a number of features related to the customer
and supplier data and requirements. Afterward, the customer,

supplier, material, and solution features are grouped to form
an input feature vector. The optimization engine is then re-
sponsible to generate solutions which are characterized by a
set of solution features.

At this point, the platform performs a customer segmenta-
tion based on the customer features in order to classify the
customer profile in a predefined category. Based on this seg-
mentation, the manufacturing solutions generated by the cloud
platform are ranked according to the computation of a score.

Based on the customer segmentation results, the solution
features are utilized to build the ground truth aimed at con-
structing the target vector to be utilized for regression
purposes.

The input feature vector and the target vector are then used
to train a machine learning–based regression system. The
trained model obtained in this way is then tested on a new
unlabelled input feature vector related to a new batch of cus-
tomers, suppliers, materials, and solution features.

The estimated results are therefore compared to the real cus-
tomer selection, determined with simulated ground truth built
based on customer segmentation criteria. In case the estimated
solution ranking does not match with the ground truth-based
scores, the recommendation system will perform a retraining
and updating process to improve the ranking estimation.

3.2 Features and dataset

The proposed recommendation system automatically extracts
and computes a number of features from the customers and
suppliers instances. Such features are used as input for the
machine learning–based regression model according to the
following procedure.

With reference to the customer instance, the feature set
comprises:

Fig. 2 Recommendation system
framework
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& The batch quantity, Qci (units), automatically retrieved
from the instance data

& The available time, ATci (hours), computed as difference
between the deadline and the instance submission date,
both available in the instance data

& The perimeter, pci (mm), and the area, Aci (mm2), of the
part, extracted from the customer CAD file

An example of customer instance input data is reported in
Fig. 3, representing the customer GUI including customer
instance, computed features, and CAD file visualization. The
customer features set is reported in vectorial form in Eq. 3.

CFi ¼ Qci;ATci;Aci; pci½ � ð3Þ

Likewise, the supplier instance features set (SFj) is speci-
fied in Eq. 4 and it includes:

& The batch quantity, Qsj (units), automatically retrieved
from the instance data

& The cutting speed vsj (m/min) retrieved from the machine
tool model specifications in the supplier instance
submission

& The machine power consumption Psj (kW) retrieved from
the machine tool model specifications in the supplier in-
stance submission

& The perimeter psj (mm) and the area Asj (mm2) of the part,
extracted from the CAD file uploaded by the supplier

& The supplier rating score Rsj (%)

An example of supplier instance input data is reported in
Fig. 4, representing the supplier GUI including supplier in-
stance, computed features, and CAD file visualization. The
supplier features set is reported in vectorial form in Eq. 4.

SF j ¼ Qsj; vsj;Psj;Asj; psj;Rsj

h i
ð4Þ

The optimization module generates a number of K
manufacturing solutions, for each of which a set of Solution
features (SolFk) is automatically computed as shown in Eq. 5:

SolFk ¼ SURk ;PTk ;Ek ;Dk½ �; k ¼ 1;…;K ð5Þ
where SURk is the surface utilization rate, PTk the processing
time (hours), Ek the energy consumption cost (CNY), and Dk

the distance cost (CNY).
Additionally, features about the material can be included as

represented in Eq. 6:

MatFk ¼ MCk ; tk½ � ð6Þ
where MCk is the material unitary cost (CNY/Kg); tk is the
sheet metal thickness (mm).

By merging the features sets of customer, supplier, solu-
tion, and material, an input feature vector, IFVk, made of 16
features is obtained, as reported in Eq. 7. Such feature dataset
will be used as input for machine learning regression.

IFVk ¼ Qci;ATci;Aci; pci;Dk ;Qsj; vsj;Psj;Asj; psj;Rsj; SURk ;PTk ;Ek ;MCk ; tk
h i

ð7Þ

3.3 Model training

The proposed recommendation system is constructed using a
machine learning–based regression approach. In this respect, a
target dataset is required and obtained from past solution se-
lection history by the customers.

The relationship between the customer requirements and
the most suitable solutions is investigated via machine learn-
ing. The intelligent regression is aimed at understanding and
learning the solution selected by customers based on the data
embedded in the customer instances, the supplier characteris-
tics, and the solution characteristics.

A number of intelligent algorithms can be used for this
purpose, such as neural network (NN), support vector

ID:20200305C00001
CAD FILE 

VISUALIZATION Customer Instance Input Data

Quantity 4500 units
Material Aluminium
Thickness 6 mm
Technology Laser Cutting
Deadline 12/03/2020 DD/MM/AAAA

Customer Instance Computed Features
Available time 144 hours
Material unit cost 158 CNY/kg
Perimeter 2216 mm
Area 83920 mm2

Fig. 3 Customer instance input
data

1041Int J Adv Manuf Technol (2021) 112:1035–1050



regression [42], Gaussian process regression (GPR), regres-
sion trees (RT) [43], and ensemble learning (EL) systems [44].

In this research work, a three-layer feed-forward neural
network (NN) is employed for regression purposes [45].

The regression learner is trained using the customer, sup-
plier, solution, and material features as input, and the solution
scores as target.

In this paper, the target vector is obtained by performing a
customer segmentation according to the definition of ground
truth criteria based on customers likely preferences, for which
the system will assign to each solution a score (SSk) ranging
from 10 to 0, where 10 is assigned to the solution assumed to
be most likely selected (k∗).

Due to the diverse numerical ranges of the various features,
the IFV is pre-processed through a data scaling, normaliza-
tion, or standardization procedure [46] prior to the training
phase.

3.4 Ranking assessment, updating, and retraining

The ranking obtained via machine learning regression is then
assessed by performing a comparison with the ground truth
data, with reference to the solution characterized by the
highest score.

In case the customer selection (k∗) does not coincide with

the estimated best solution (bk ), the solution index character-
ized by the estimated highest score does not correspond to the
solution index with the highest score computed via ground
truth. Hence, the solution ranking has to be subjected to an
updating procedure, which is carried out in the following way:

& Compute the pairwise Manhattan distance [47] between
the selected solution and all the other solutions, normal-
ized between 0 and 10, through Eq. 8:

dk ¼ SSk*−SSkj j−min SSk*−SSkj j
range SSk*−SSkj j � 10 ð8Þ

where SSk∗ represents the score of the solution which was
actually selected by the customer (k∗).

& Assign a score equal to 10 to the selected solution
& Subsequently, an updated solution ranking is established by

re-computing the solution scores SSuk according to Eq. 9:

SSuk ¼ 10−dk ð9Þ

3.5 System performance evaluation

The performance of the proposed recommendation system is
evaluated by considering diverse aspects related to the regres-
sion goodness and effectiveness.

The regression training and testing performances are car-
ried out by considering an error indicator, namely the Root
Mean Square Error (RMSE) to assess the machine learning
regression capabilities, where a low RMSE value (ideally
equal to zero) indicates an excellent regression.

The retraining effect quantification is carried out by com-
paring the RMSE improvement in correspondence of the re-
gression learner retraining. As the updated scores yield to a
lower regression RMSE value, the retraining procedure can be
considered effective.

The effectiveness of the recommendation system is evalu-
ated by quantifying the number of solutions which are more
likely to be selected by the users.

In this respect, the ground truth solution list can be divided
into three subsets, namely Top 3, Top 10, and Others according

ID:20200305S00001
CAD FILE 

VISUALIZATION Supplier Instance Input Data

Quantity 3000 units
Material Aluminium
Thickness 6 mm
Machine Select Model
Deadline 12/03/2020 DD/MM/AAAA

Supplier Instance Computed Features
Available time 144 hours
Material unit cost 600 CNY/kg
Perimeter 1100 mm
Area 60000 mm2

Machine power 13 kWh
Cutting speed 7.5 m/min
Supplier Rating 74 /100

Fig. 4 Supplier instance input
data
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to their position in the ranking based on their scores. In practice,
the Top 3 subset is a list of the three highest ranking items, the
Top 10 subset is a list including from the fourth to the tenth
highest ranking items, while the Others subset is a list including
all the remaining ranked items. Subsequently, the evaluation is
carried out by examining which of the three subsets the best
predicted solution falls within. Clearly, more predicted solutions
within the Top 3 subset indicate a better estimation performance.

In order to quantify the improvement of the updated solu-
tion ranking compared to the initial estimation, i.e. how the
updating procedure brought the estimation results closer to the
ground truth, the following steps are applied:

& Identify the customer instances which need to be updated,
i.e. those for which the predicted result does not match the
customer actual choice.

& For each customer instance to be updated, select the Top
10 solutions according to the ground truth.

& For the Top 10 solutions, compute the indicators as per
Eq. 10:

ΔP ¼ 1

10
∑

top10

k¼1
SSGTk −SSestk

� �

ΔU ¼ 1

10
∑

top10

k¼1
SSGTk −SSuk
� � ð10Þ

where ΔP indicates the mean difference between the Top 10
ground truth solution scores (SSGTk ) and the Top 10 predicted
scores (SSestk ), and ΔU indicates the mean difference between
the Top 10 ground truth solution scores and the Top 10 up-
dated scores (SSuk ). For a generic customer instance, a lower
value of ΔU compared to ΔP shows how the solution ranking
update brings the score closer to the ground truth values.

& Repeat these steps for every customer or batch of
customers.

4 Case study

To exemplify the methodology proposed in this paper, a case
study was simulated taking into account 60 customers. Each
customer has the possibility to choose from 950 compatible
manufacturing solutions resulting from as many suppliers.

The dataset including 60 customers and 950 suppliers was
considered large enough to prove the concepts developed in
this framework, taking into account that the proposed platform
deals with manufacturing services and, compared to e-
commerce platforms, it is characterized by longer cycle times
and a lower number of services.

A number of simplifying assumptions were taken into ac-
count for this case study, as reported below:

& One single material was considered (aluminium), so ma-
terial features were neglected.

& All the parts thicknesses were set constant to 6 mm while
the density was 2702 kg/m3.

& The number of suppliers required for each solution is al-
ways one.

Tables 1 and 2 report examples of customer and supplier
data (instances and features) used in the simulated case study.

With reference to customer #1, Table 3 reports an example
of the solution features computed by the cloud platform.

In this work, the electricity cost was retrieved from the
State Grid Corporation of China website (http://www.sgcc.
com.cn) and the transportation costs were estimated from
http://www.chinawutong.com. The machine specifications
were retrieved from https://www.trumpf.com.

The surface utilization rate (SUR) was computed using the
software Solid Edge 2D Nesting 2020 by Siemens (https://
solidedge.siemens.com).

Processing time, energy cost, part weight, and distance
costs were computed for each solution according to Eq. 11.

Table 2 Suppliers data
ID Quantity Area

(mm2)
Perimeter
(mm)

Cutting speed
(m/min)

Power
(kW)

Location Rating

1 3000 60,000 1100 7.5 13 Shanghai 74/100

2 3000 60,000 1100 7.5 13 Beijing 95/100

… … … … … … … …

950 4500 275,180 3309 12 14 Wuxi 73/100

Table 1 Customers data
ID Quantity Area (mm2) Perimeter (mm) Location Available time (h) Weight (ton)

1 4500 83,920 2216 Shanghai 144 6.12229968

2 3500 110,690 2121 Beijing 264 6.28077198

… … … … … … …

60 2000 67,170 2083 Xi’An 168 2.17792008
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Processing time ¼ Cutting distance� Speed
Energy cost ¼ Electricity price� Power � Processing time
Distance cost ¼ Part weight� Transport price
Part weight ¼ Area� Thickness� Density

8><
>:

ð11Þ

4.1 Customers segmentation and ground truth
definition

With reference to the case study datasets reported in Tables 1, 2,
and 3, customer segmentation criteria were simulated to define
their preference history in order to build the ground truth. The
segmentation procedure was performed by assigning weights to
the solution features on the basis of a number of different con-
ditions (listed in Table 4) characterizing the customer instance.
For each condition, the following solution features weights
were defined: user rating weight, WR, surface utilization rate
weight, WSUR, processing time weight, WPT, energy cost
weight, WE, and distance cost weight, WD.

The customer segmentation has been simulated to cover a
number of likely scenarios through specific conditions:

& Condition 1: Customers with particular geometrical re-
quirements, represented here as a geometrical complex-
ity ratio (area-to-perimeter ratio) higher than 0.025 (ar-
bitrary threshold based on common geometrical fea-
tures), will likely prefer to select solutions character-
ized by with a supplier rating score. To simulate this

condition, a weight of 0.6 was assigned to the supplier
rating, while the weight of each remaining feature was
set to 0.1.

& Condition 2: Customers requesting a large batch size
(here assumed to consist of more than 6000 units)
will likely prefer solutions with higher SUR and less
energy and distance cost to reduce the total cost. To
simulate such condition, SUR, energy cost, and dis-
tance cost were respectively assigned weights of 0.4,
0.2, and 0.2, while the weight of each remaining
feature was set to 0.1.

& Condition 3: Customers with tight time requirements, rep-
resented here as those with an available time not longer
than 144 h, will likely prefer solutions with shorter pro-
cessing time, closer location, and better logistics services.
To simulate such condition, supplier rating, processing
time, and distance cost were respectively assigned weights
of 0.2, 0.3, and 0.3, while the weight of each remaining
feature was set to 0.1.

Additional scenarios have been considered for the ground
truth simulation by combining the above-mentioned condi-
tions. Customers who have more stringent requirements are
represented by intersecting two basic customer segmentation
conditions. For those, reassigning the weighted value by av-
eraging the weighted value of each solution feature in the two
basic conditions. Customers who have no apparent require-
ments are modelled by an equal distribution of eights that each
solution feature is assigned a 0.2 weighted value.

Table 4 Customers segmentation

Condition Features weights

wR wSUR wPT wE wD

pci Aci≥0:025 0.6 0.1 0.1 0.1 0.1

Qci ≥ 6000 0.1 0.4 0.1 0.2 0.2

ATci ≤ 144h 0.2 0.1 0.3 0.1 0.3
pci Aci≥0:025∩Qci≥6000 0.35 0.25 0.1 0.15 0.15
pci Aci≥0:025∩ATci≤144h 0.4 0.1 0.2 0.1 0.2

Qci ≥ 6000∩ ATci ≤ 144h 0.15 0.25 0.2 0.15 0.25

Others 0.2 0.2 0.2 0.2 0.2

Table 3 Solution features
Customer Supplier ID Solution features

SUR (%) Processing time (h) Energy cost (CNY) Distance cost (CNY)

1 1 77.45 29.49 248.45 1224.46

100 81.82 44.38 304.81 2142.80

… … … … …

950 73.66 34.53 319.12 612.23
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For each manufacturing solution, the values of the
five solution features, user rating, R, surface utilization
rate, SUR, processing time, PT, energy cost, E, and
distance cost, D, were normalized from 0 to 10 accord-
ing to the following rules: the bigger the better for the
User Rating and SUR, the smaller the better for pro-
cessing time, energy cost, and distance cost.

Based on the features weights and the normalized features
values, each solution was assigned a ground truth score, SSij,
according to Eq. 12.

SSij ¼ ∑wR � Rsj þ wSUR � SURk þ wPT � PTij þ wE � Eij þ wD � Dij ð12Þ

The scores range from 0 to 10, with 10 representing the best
solution, i.e. the solution which is assumed to be most likely
selected by the customer, and 0 representing the worst solu-
tion, i.e. the least preferred solution by the customer.

4.2 Machine learning–based regression

Machine learning–based regression was employed in the rec-
ommendation system to predict the most suitable manufactur-
ing solutions for given customer instances.

A three-layer feed-forward neural network (NN) with sig-
moid hidden neurons and linear output neurons was used for
regression purposes and trained with the scaled conjugate gra-
dient backpropagation algorithm (trainscg) [45].

The input layer contains 14 neurons corresponding to the
following: the customer features, i.e.Qci, Aci, pci, and ATci, the
supplier features, i.e. Qsj, Asj, psj, vsj, Psj, and Rsj, and the
solution features, i.e. the SURk, PTk, Ek, and Dk.

The output layer contains 1 neuron which represents
the manufacturing solution score according to the NN
prediction.

The learning dataset was randomly divided into training
(70%), validation (15%), and testing (15%) subsets. The num-
ber of hidden neurons was set to 14. The neural network
architecture is reported in Fig. 5.

The system was initialized by training the NN with 15
customers and 950 suppliers for a total of 14,250 training
samples and it was tested on a new batch of 15 customers.

Then, the predicted results were compared to the ground
truth and the updating procedure was applied to the new 15

customers. Subsequently, the NN was re-trained using 15 +
15 = 30 customers and 30 × 950 = 28500 training samples and
tested on a new batch of 15 customers.

This procedure was repeated until the total number of 60
customers was reached. The various datasets utilized in the
NN runs are reported in Table 5.

5 Results and discussion

The assessment of the recommendation system proposed in
this paper and exemplified in the case study can be carried out
according to three principal performance measures, namely
the training performance, the test performance, and the
updating effect on the ranking. The results are presented in
the remainder of this section along with a discussion on the
system capabilities.

5.1 Training performance

The NN assessment was evaluated using the root mean square
error (RMSE) as performance indicator. The chart in Fig. 6
shows very small RMSE values for all the training runs. The
slightly increasing trend can be explained by the fact that, at
every retraining, new customers with new ground truth criteria
were added.

5.2 Test performance and retraining effect

Figure 7 reports the NN regression test performances for runs
#1 to #3 comparing the RMSE obtained with retraining (blue
squares) and without retraining (red dots).

Table 5 Neural network runs dataset breakdown

Training dataset Testing dataset

Run #1 C1 C2 … C15f g C16 C17 … C30f g
Run #2 C1 C2 … C30f g C31 C32 … C45f g
Run #3 C1 C2 … C45f g C46 C47 … C60f g
Run #4 C1 C2 … C60f g N/A

Fig. 5 Neural network
configuration
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The chart highlights how the retraining improves the sys-
tem test performances in terms of RMSE as the blue squares
are increasingly lower than the red dots as a new retraining is
carried out.

To assess the effectiveness of the decision-making system,
a lookup chart is reported in Fig. 8, comparing the number of
solutions falling within the Top 3, Top 10, and Other subsets
for the three different runs as per Section 3.5.

The stacked bar chart shows how the retraining process im-
proves the performance of the system also in terms of solution
ranking. The upward trend of the blue bars remarks how the
system is increasingly able to estimate solutions which will be
considered Top 3 by the customer, while the red bars, i.e. Top 10

solutions, have a slightly decreasing trend and the Others solu-
tions (yellowbars), i.e. thosewhichwill be less likely to be chosen
by the customers, tend to zero in both Run #2 and Run #3.

The results of the above-mentioned procedure are illustrat-
ed in Fig. 9.

By comparing the three charts, it is possible to see how the
ΔP and ΔU indicators have to be computed for a higher num-
ber of instances in correspondence of Run #1 (Fig. 9a), indi-
cating that specifically 10 instances had to be updated and in
most cases there is a sensible difference between ΔP and ΔU.

As the system retrains, in correspondence of Run #2, it is
possible to observe that the update indicators were computed
for 9 instances, showing a little improvement, also in terms of

Fig. 6 NN training performance

Fig. 7 Retraining effect on NN
test performance

Fig. 8 Lookup chart
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accuracy as the difference between ΔP and ΔU results less
evident in most cases (Fig. 9b).

The last run, i.e. Run #3, shows how the retraining yielded
to a more appreciable improvement. In particular, Fig. 9c dis-
plays only 5 instances to be updated and a very small, if not
negligible, difference between ΔP and ΔU.

The results show how customer features, supplier features,
and solution features can be effectively used to predict the
customer behaviour in selecting an appropriate solution and
how the neural network–based regression is capable to capture
the customer “ground truth” in order to make up a valuable
recommendation system.

Moreover, periodical retraining of the NN demonstrated to
sensibly improve the system performance in terms of RMSE
and, more concretely, by lowering the number of customer
solutions to be updated and enhancing the estimation of the
“best solutions,” i.e. the solutions which are most likely to be
selected by the customer.

5.3 Simulation vs industrial implementation

The reported case study was developed via simulation of
ground truth criteria for customer segmentation, while the
industrial implementation of the proposed recommendation

(b)

(c)

(a)

Fig. 9 Ranking update effect in
Run #1 (a), Run #2 (b), and Run
#3 (c)
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system requires a number of preliminary steps for the system
initialization.

In a real industrial context, in fact, ground truth data have to
be retrieved from the customer solution selection history. In
this respect, a way to initialize the system can be represented
by assigning a ranking based on the input feature vectors,
specifically:

& Assign the selected solution a score equal to 10, i.e.
SSk* ¼ 10

& Compute the distance between the selected solution and
all the other solutions based on the input feature vector
(IFVk) elements, as per Eq. 13

dk ¼ ∑
f

i¼1
IFVik*−IFVik
�� �� ð13Þ

where f represents the number of the IFVk features, i.e. 16.
Such distance should be then normalized in the range [0,10].

& Rank the solution scores according to the distance, as per
Eq. 14

SSk ¼ 10−dk ð14Þ

Alternatively, clustering algorithms [48] can be uti-
lized to perform a customer segmentation to learn cus-
tomer preferences and compute the weights to be used
for regression learning.

As regards the possibility to introduce new users, when a
new supplier joins the platform, the system requests to provide
a variety of certifications (machinery, quality standard com-
pliance, sustainability, energy, etc.). Upon the validation of
such certificates, the supplier will be assigned an initial rating.
Regular checks and inspections could be considered for the
implementation phase to update the supplier rating.

Finally, it is worth mentioning some considerations on the
industrial implementation from a platform perspective. The
connection among users is here defined as the matching of
supplier and customer instances yielding to a number of
manufacturing services solutions. Such mechanism is charac-
terized by fairly loose time constraints as the output of the
system consists in a recommendation list, which, by its very
nature, has to be reviewed and analyzed by the customer. The
Graphic User Interface and the database have no particular
requirements in terms of programming complexity, for which
the implementation phase can rely on a widely used database
management system technology such as SQL. A computation-
al issue for the implementation can be represented by the large
number of users (yet resulting in a reduced number of com-
patible instances); however, all the required features, i.e. cus-
tomer, supplier, and solution, are retrieved from the database,

computed from the CAD file calculated in the optimization
module. Such operations are characterized by a low complex-
ity and therefore do not require particularly powerful comput-
er systems. A value added of the proposed platform is repre-
sented by the simple mechanism of the Neural Network, for
which training and retraining operations do not represent a
computational burden as they can be operated offline and in
any case they require a relatively short computation time with
a suitably powerful computer.

6 Conclusions

In this paper, an intelligent decision-making support tool
based on a manufacturing service Recommendation System
(RS) was designed and developed with the aim to provide
for tailored manufacturing solution recommendation to cus-
tomers of a cloud manufacturing platform. The recommenda-
tion systemwas based on amachine learning–based regression
approach employing a three-layer feed-forward neural net-
work (NN). The NN was applied to perform a customer seg-
mentation by processing historical data on former manufactur-
ing solution selections and to build a recommendation list
characterized by a ranking of manufacturing solutions person-
alized for the specific customer profile. In order to validate the
newly developed intelligent decision-making support system,
a case study was simulated within the framework of a cloud
manufacturing platform delivering sheet metal cutting
manufacturing solutions. The machine learning performance
as well as industrial applicability of the method was discussed.
The case study results showed how the machine learning ap-
proach was able to employ customer features, supplier fea-
tures, and solution features to effectively predict the customer
behaviour in terms of manufacturing solutions selection in
order to make up a valuable recommendation system.
Moreover, periodical retraining of the NN demonstrated to
sensibly improve the system performance, increasing the num-
ber of manufacturing solutions identified by the recommenda-
tion system which were actually within the Top 3 selections of
customers based on the ground truth.
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