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Abstract
The paper deals with a problem of robust optimization of mechanical assemblies, which combines the allocation of tolerances
with the selection of dimensional parameters. The two tasks are carried out together with the aim of minimizing the manufactur-
ing cost and the variation on an assembly-level functional characteristic. The problem is addressed in the specific context of
planar linkages used in structures and mechanisms. The proposed solution is based on an optimality condition involving both
tolerances and dimensions, which allows to define a joint optimization problem avoiding the need of two sequential optimization
phases. The condition is developed with the method of Lagrange multipliers using an expanded formulation of the reciprocal
power cost-tolerance function. The optimal tolerances depend on the stackup coefficients of the output characteristic, which are
calculated with a tolerance analysis method based on a static analogy. The procedure is demonstrated on two examples to
illustrate some application details and discuss potential advantages and limitations.

Keywords Tolerance allocation . Parameter design . Robust optimization . Planar linkages . Cost-tolerance function . Tolerance
analysis

1 Introduction

The parts of a mechanical assembly are manufactured with
random deviations from their nominal geometry. Once the
parts are connected, the geometric errors stack up through
the contact features between them. As a result, an assembly
dimension (i.e., the relative position between features of dif-
ferent parts) may also deviate so that the function of the prod-
uct could be negatively affected.

Such issues are commonly avoided by specifying tighter
tolerances on part features. This requires that the parts are
manufacturedwith more accurate processes, which are usually
slower and more expensive. To get a good compromise be-
tween quality and cost, the designer should find out which
tolerances have the most influence on the variation of the
assembly dimension, and reduce them more than others with
less influence. These decisions can be optimized by solving a
problem of tolerance allocation: given the allowable variation

on the assembly dimension, determine the set of tolerances
that minimizes the total manufacturing cost.

In its traditional formulation, tolerance allocation regards
the tolerances as the only variables to be optimized. However,
the error stackup depends on the nominal dimensions of the
features as well. In principle, these could be optimized togeth-
er with the tolerances, so that the specified assembly variation
could be met with wider tolerances on the individual parts.

The optimization of nominal dimensions is a special case of
robust parameter design, a problem aimed to reducing output
variation in any type of system. In literature, the problem has
been tackled using two main approaches. The first one is
based on experimental or simulation plans, which are suitable
for complex systems that cannot be described by simple math-
ematical models. The second one is based on analytical or
numerical optimization, which allows an easier search for so-
lutions in continuous spaces of many variables, with possible
constraints and multiple objectives. Robust optimization
seems to have more applications in tolerancing, probably
due to the availability of mathematical methods for stackup
analysis. In few cases, however, dimensions and tolerances
have been treated jointly in the same optimization problem.

Integrating dimension and tolerance optimization is the
main goal of this paper. Although in principle the robust
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allocation problem would make sense for any type of assem-
bly, the study will focus on planar linkages for applications in
structures and mechanisms. These are interesting for
tolerancing problems as their complex layout may involve
some difficulties in stackup calculations; moreover, they lend
themselves to a simple, standard definition of the optimization
problem. The proposed method treats the dimensions as direct
optimization variables, while the tolerances are set in back-
ground using conditions for optimal allocation. These are
found using an analytical optimization method (Lagrange
multipliers), a cost-tolerance function including the effect of
dimensions, and a method for stackup analysis based on a
static analogy.

The paper is structured as follows. Section 2 reviews avail-
able studies on parameter and tolerance design for generic
systems, mechanical assemblies and linkages. Section 3 de-
fines the optimization problem and the assumptions underly-
ing the proposed method, which is described in Section 4 and
demonstrated on two examples in Section 5. The conclusions
in Section 6 discuss the benefits and limitations of the method.

2 Background

The work is related to several research topics as discussed
below.

2.1 Robust parameter design

A system is designed with the goal of improving its outputs
through an optimal setting of its inputs. However, this may not
guarantee a consistent behavior of the system because of var-
iation sources (noise factors and errors in the input values),
which may cause excessive output variation. Taguchi intro-
duced the concept of robust design, which aims to reduce the
effect of variation sources on outputs [1, 2]. He also proposed
methods based on design of experiments (DOE) to achieve
this goal [3, 4]. The core of Taguchi methods is parameter
design, which uses an experimental plan based on orthogonal
arrays to select the settings of system inputs (control factors)
that are less sensitive to noise factors. Applications of the
methodology to the design of manufactured products are re-
ported in [5–7]. Attempts were also made to translate the
Taguchi concepts into either practical design principles [8],
or metrics to evaluate the robustness of a design [9].

Alternative DOE approaches to parameter design are most-
ly based on the response surface methodology (RSM). Its
advantages on Taguchi methods include more efficient plans
and the estimation of interaction effects between control fac-
tors, which can drive the search for optimal solutions [10–13].
Extensions of Taguchi and RSM approaches have been pro-
posed to treat cases with multiple outputs or multi-objective
decisions [14–16], and to improve the estimation of

interaction effects [17]. Other studies adopt different experi-
mental strategies and criteria for parameter selection [18, 19].

Robust optimization methods have been proposed as an
alternative to DOE when dealing with complex cases involv-
ing many variables, constraints, unknown output functions, or
statistical distributions [20–23]. The selection of parameter
settings is modeled as an optimization problem in a continu-
ous domain; the proposed objective functions include the out-
put range for a given input setting [24–26], and the effect of
the uncertainty in the model used for output calculation [27].

2.2 Tolerance allocation

The problem of tolerance allocation for a mechanical assem-
bly has been studied extensively in literature. Given the allow-
able variation on the output (the assembly dimension), the
goal is to determine the tolerances on the part dimensions that
are linked to the output through a chain of assembly relation-
ships (tolerance chain). This is described by an exact or ap-
proximate stackup function, which can be found by either
geometric inspection or one of the available methods of toler-
ance analysis [28]. The optimal allocation is usually the one
that minimizes a cost function while satisfying the constraint
on output variation.

Introductions to tolerance allocation and classic application
examples are given in [29, 30]. A recent review on allocation
methods [31] cites about 250 studies, classifying them in a
detailed taxonomy. This includes the definition of the optimi-
zation problem (objective functions, constraints), the cost-
tolerance models, and the assumptions on assembly require-
ments, tolerances (dimensional or geometric), and stackup
criteria (worst-case, statistical). Other reviews [32, 33] are also
recommended for a full account of available approaches.

Most methods use search algorithms to find optimal toler-
ance allocations. In this work, an analytical solution is pre-
ferred for an easier integration with parameter optimization. In
literature, analytical methods have been proposed under sim-
plified yet realistic assumptions (dimensional errors with nor-
mal distributions, linear or first-order Taylor stackup func-
tions). The most widely known is the method of Lagrange
multipliers [34], which is also the basis for many numerical
solutions.

Robust design concepts have been applied to tolerance al-
location, in the attempt to balance the conflicting criteria of
reducing cost and output variation. As in generic design prob-
lems, DOE and optimization are the two main routes to robust
allocation.

In Taguchi methods, tolerance design is carried out after
parameter design [35]. It is based on the quality loss function,
which expresses the economic impact of deviations from the
target output value. The concept is used to allocate tolerances
on the control factors of the system, once an experiment has
allowed to estimate the contribution of each factor to the
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overall quality loss. Modifications of Taguchi’s tolerance de-
sign have been proposed in [36–38]. Other DOE approaches
replace the quality loss with alternative selection criteria in-
cluding the output variance [39] and various formulations of a
cost function [40–43].

In optimization methods, quality measures are introduced
into the objective functions or the constraints of the problem.
Two common choices for the quality measure are the quality
loss and the nonconforming rate. In the first approach (design
for quality), the objective function is a sum of the manufactur-
ing cost and the quality loss; this defines an unconstrained
optimization problem, which has been solved with several
search algorithms (see again [31–33] for reviews) and applied
to some special formulations of the tolerancing problem
[44–52]. In the second approach (design for reliability), sev-
eral formulations have been proposed: minimize cost with a
constraint on the nonconforming rate [53–57], maximize a
process capability index [58], or optimize a function of cost
and various indices related to the nonconforming rate [59–61].
Other formulations and choices of the objective function are
discussed in [62–66].

2.3 Optimal selection of dimensions and tolerances

A few studies have dealt with the optimization of both dimen-
sions and tolerances. This usually involves extending toler-
ance allocation problems by adding one or more dimensions
as optimization variables, with constraints on the allowable
design ranges. The sum of cost and quality loss (or a function
of nonconforming rate) is minimized with several methods in
problems involving single dimensions [67–69] or tolerance
chains [70–74]. In [75], the cost is evaluated as the sum of
separate elements depending on parameters and tolerances,
while the output range is treated as a constraint. In [76, 77],
a multi-objective genetic algorithm is used to optimize regres-
sion functions of cost. In [78], a Pareto frontier is generated to
balance cost optimization with application-dependent perfor-
mance metrics. In the RSM-based method of [79], a modified
process capability index is defined to balance the conflicting
objectives of minimum cost and maximum process capability.

An additional requirement with respect to plain tolerance
allocation is that the solution space must also satisfy the geo-
metric closure of the assembly as well as possible structural or
functional requirements. These issues are usually overcome
by solving two sequential optimization problems. In [80],
the dimensions are found by minimizing the output variance
for a tentative tolerance setting; then, the tolerances are allo-
cated by minimizing a linear combination of cost and output
variance. In [81], the dimensions are selected by minimizing
quality loss using RSM on a plan of simulations; then, the
tolerances are refined by minimizing an objective function
including quality loss and cost of scrap or rework. In the
single-variable problem of [82], the two stages optimize

process means and variances with respect to cost and quality
loss by closed formulas.

In the attempt to avoid two separate optimization stages,
[83] minimizes the total cost with a constraint on the assembly
dimension by Lagrange multipliers with numerical solution;
unlike other cases, the optimal dimensions are selected in
narrow ranges around reference values satisfying geometric
and functional constraints. Other methods join the two stages
by excluding cost from the objective function. [84] minimizes
the variance of an overall performance measure given by the
weighted sum of the variances of the functional requirements.
In [85], process means and tolerances are selected with a geo-
metric procedure that finds the points furthest from the bound-
aries of the allowable ranges in the space of nominal
dimensions.

2.4 Tolerance allocation on linkages

The above problems have also been studied for some types of
linkages. The design of parameters is usually done by extend-
ing classical design problems in order to comply with specific
structural or kinematic requirements. For structures, robust
design optimization is an extension of deterministic structural
optimization with random uncertainty sources including di-
mensional errors [86–89]. For mechanisms, the kinematic
synthesis problem has been extended to a stochastic formula-
tion to consider the effects of dimensional errors on the de-
sired kinematic function [90–96].

Tolerance allocation on mechanisms is often addressed by
minimizing output variation over a set of different poses; the
output is usually defined as the position of a point of interest.
In [97], Lagrange multipliers are used in two optimization
stages, which optimize output variation and cost. In [98],
Lagrange multipliers are combined with a penalty function
to minimize the cost with stackup constraints. In [99, 100],
the output variation is minimized with a cost constraint.
Taguchi-like methods have been proposed with different ex-
perimental designs to take into account kinematic and dynam-
ic parameters [101, 102], joint clearances and additional errors
from assembly and operating conditions [103], and sets of
poses of the mechanism with reduction to a single perfor-
mance index [104]. Both experimental and optimization
methods have been attempted for specific types of mecha-
nisms such as robotic manipulators [105, 106]. A related prob-
lem has also been addressed for machine tools through the
statistical analysis of multibody models [107].

In the above studies, dimensions and tolerances are usually
optimized in distinct phases of mechanism design, namely
kinematic synthesis (with given tolerances) and tolerance al-
location (with given dimensions). In one case, however, the
two phases are joined into a single problem. It consists in a
robust optimization based on a graphical model, an ellipsoid
in the space of variables, whose semi-axes are in inverse
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relationship with the sensitivity of the output to the corre-
sponding variables [108]. This allows to express the objective
of robust design by geometric conditions on the ellipsoid
(size, aspect ratio, and orientation); the conformance is
checked by comparing the ellipsoid with a tolerance box
representing the tolerances specified on the variables [109].

2.5 Overview

The hypothesis of this work is that the dimensional parameters
of an assembly can be optimized together with the tolerances
in order to reduce the output variation due to manufacturing
errors. It is apparent that this objective has been recognized in
a diversity of design problems well beyond the field of
tolerancing. Robust parameter design as a DOE methodology
allows to treat complex systems whose outputs can only be
evaluated by physical testing or computer simulation.
However, it is not suitable to problems with many variables,
constraints, and interaction effects; the parameters are selected
from discrete values, and optimal settings can only be found
by iterations of the experiments. These limits are overcome by
robust optimization methods, which require continuous and
possibly differentiable output functions. In both approaches,
parameters and tolerances are usually selected in distinct
phases rather than in a single optimization problem.

The same dichotomy between DOE-based and optimiza-
tion approaches applies to tolerance allocation. The availabil-
ity of methods for tolerance stackup calculations justifies a
relative preference for optimization methods, which incorpo-
rate robustness by adding the quality loss or the
nonconforming rate to either the objective functions or the
constraints. However, the allocation problem is usually de-
fined with given dimensions. The separate optimization of
dimensions and tolerances has been attempted with DOE ap-
proaches or multi-objective problems, where the two usual
objectives (output variance and cost) are combined with
weighting functions or kept separate for a final selection of
Pareto-optimal solutions. The effective integration of the two
problems seems to be restricted to special formulations, which
include single-dimension problems, selection of parameters in
narrow ranges, or optimization problems without cost
functions.

Tolerance allocation on linkages has been mostly studied
for applications on path-generating mechanisms, where the
optimization spans a set of positions of the tracing point.
The robust optimization of dimensions and tolerances has
been perceived as a useful extension of the allocation problem
with given dimensions, with promising theoretical contribu-
tions (such as the sensitivity ellipsoid) that could pave the way
for the treatment of increasingly complex design cases.

The literature review seems to justify the goal of a seamless
optimization of dimensions and tolerances. An aspect that has
been relatively neglected, and which will be discussed below,

is that treating dimensions as additional optimization variables
emphasizes the need of cost models including the influence of
dimensions as well as tolerances. Such a model has been pro-
posed in a recent study [110] as an extended formulation of
one of the available cost-tolerance functions, and will be used
in this study.

3 Problem and assumptions

This work will consider planar linkages with rigid links con-
nected by revolute and prismatic joints. They are assumed to
be exactly constrained; this condition applies to isostatic struc-
tures such as trusses, but also to mechanisms with a degree of
freedom locked in a reference pose. These assumptions cover
a wide diversity of function-generating and path-generating
mechanisms; the proposed method does not place limits on
the number of links and joints, although particularly complex
mechanismsmay require the analysis of many poses as well as
a greater amount of calculations for each pose. The extension
to mechanisms with higher kinematic pairs may require fur-
ther developments for the necessary extensions of the calcu-
lation procedures.

The output Y defined on the linkage is a linear or angular
dimension defined at assembly level, such as the absolute
position of a point along a certain direction, the distance be-
tween two joints, or the orientation of a link. The output is to
be controlled within a tolerance TY from a nominal value Y0 to
ensure the desired function of the linkage.

The output depends on n dimensions Xi of individual parts;
they include the lengths of links, and the diameters of holes and
pins. The relationship between the output and the dimensions is
assumed to be a linear (or linearized) stackup equation:

Y ¼ ∑
n

i¼1
SiX i

where Si is the sensitivity of the output to dimension Xi.
Each dimension has a nominal value X0i and a tolerance Ti,

which can be controlled through the manufacturing process of
the part. In statistical tolerancing, the dimensions Xi are as-
sumed to be independent and normally distributed. Their
means are equal to the X0i, and their standard deviations σi
are in a constant proportion with the Ti. The nonconforming
rate is assumed to be low, e.g., ≤ 0.27% if Ti ≥ 3σi. Under
these assumptions, Y is also normally distributed with mean
Y0 and standard deviation in the same proportion with T0; the
output tolerance is calculated from part tolerances through the
root-sum-square (RSS) equation:

TY ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
n

i¼1
S2i T

2
i

s
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If any of the above assumptions is violated, the stackup of
the input tolerances results in a higher output error due to
various reasons (covariance terms, linear accumulation of sys-
tematic errors, etc.). These effects are accounted for by a cor-
rection factor c ≥ 1 in the RSS equation [29]:

TY ¼ c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
n

i¼1
S2i T

2
i

s

A 50% increase of the output tolerance is often assumed
(c = 1.5), although more accurate statistical expressions of the
correction factor are available [111].

In tolerance allocation, the X0i are given and the Ti are the
variables of the following optimization problem:

min ∑
n

i¼1
f i T ið Þ

s:t: T2
Y ¼ c2 ∑

n

i¼1
S2i T

2
i

ð1Þ

where fi(Ti) is the cost-tolerance function for Xi. Further con-
straints on the values of the individual Ti can be avoided as-
suming that the minimum cost is always reached within the
allowable tolerance ranges.

The proposed extension considers the X0i as optimization
variables in addition to the Ti. That is, in addition to the opti-
mal tolerances, the optimal values of the nominal dimensions
are also searched for in the domain of possible configurations
of the linkage. Just like the tolerances, the dimensions must
also meet some conditions, which include the following:

& Constant values possibly set for some dimensions in order
to control the overall size of the linkage;

& The nominal value of the output dimension:

Y 0 ¼ ∑
n

i¼1
SiX 0i

& Relationships that must occur between the dimensions in
order to ensure the geometric closure of the assembly; as a
simple example, in a rectangular truss the lengths of two
links (one horizontal and one vertical side) determine the
lengths of all the other links (the opposite sides and the
diagonal).

The optimization problem could be formally defined by
adding constraints for these conditions to (1). However, this
choice would lead to different constraint equations for each
different case, and would lose the chance of a solution in
common form for all possible linkages. For the purposes of
this work, it is rather suggested that the designer identifies a
set of independent dimensions, i.e., those that can be freely
optimized without violating the above conditions. These will

be treated as the optimization variables, while the other non-
constant dimensions will be expressed as functions of the
independent ones.

The independent dimensions may even be chosen outside
the set of X0i; in some cases, it might be better to optimize
auxiliary geometric variables, such as an angle (e.g., to deter-
mine two sides of a right triangle) or a ratio between two
dimensions (to allow their choice in a wide range while con-
trolling the aspect ratio of the linkage). Any possible set of
independent dimensions is likely to lead to the same optimal
set of X0i; the choice should generally be guided by the need
for simplicity and clarity of the geometric relationships. When
dealing with mechanisms, however, explicit constraints may
need to be added to the optimization problem in order to avoid
solutions that are technically not feasible, e.g., causing the
jamming of a mechanism. In this paper, such possibility will
not be considered, and any kinematic and static verification of
the linkage will be assumed to have been carried out according
to the type and function of the mechanism being designed.
General criteria for these tasks are currently dealt with in ki-
nematic synthesis, where the parameters of a mechanism are
optimized either deterministically or including the effects of
random errors with given tolerances [90–96].

The above defined optimization problem has two more
difficulties than plain tolerance allocation:

& The cost-tolerance functions depend on the nominal di-
mensions: a given tolerance is more expensive to satisfy
on a larger dimension due to some variation sources in the
manufacturing process (e.g., deformations of workpieces
and fixtures);

& The sensitivities Si depend on the nominal dimensions:
these determine the layout of the linkage, and therefore
the geometric relationships among the different links and
joints.

4 Method

The proposed solution is based on a known method for toler-
ance allocation, which is used to establish analytical condi-
tions on the optimal tolerances. These are expressed as a func-
tion of the dimensions using a suitable cost-tolerance function.
An optimization problem is then defined for a set of indepen-
dent dimensions. Its solution requires the calculation of sensi-
tivities, which is done through a tolerance analysis method
based on a static analogy.

4.1 Optimal allocation

For any choice of dimensions, the optimal tolerances are the
solution of the allocation problem (1). The Lagrange
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multiplier method [34] finds them by solving the following
unconstrained optimization problem:

min C ¼ ∑
n

i¼1
f i T ið Þ þ λ T2

Y−c
2 ∑

n

i¼1
S2i T

2
i

� �

The multiplier λ is calculated by equating the derivatives
∂C/∂Ti to zero:

λ ¼ ∂ f i=∂Ti

2c2S2i T i

The above expression can be made explicit by choosing a
relatively simple form for fi(Ti), such as the reciprocal power
function:

f i ¼ ai þ bi
Tk
i

ð2Þ

where ai is a fixed cost with respect to tolerance, while bi and k
are the factor and the exponent of the variable cost with re-
spect to tolerance (the only parameters that appear in ∂C/∂Ti).
As λ is constant for i = 1, ... n, the following analytical rela-
tionship among the optimal tolerances is found:

Tið Þopt∝
bi
S2i

� � 1
kþ2

ð3Þ

These known results will be the starting point to build a
method for the simultaneous optimization of dimensions and
tolerances. The method of Lagrange multipliers with RSS
equation and reciprocal power cost-tolerance function could
seem a limiting choice: in fact the allocation problem is treated
in literature with less restrictive assumptions on the distribu-
tions of dimensions (not normal), on the stackup functions
(not linear, or even not known a priori), and on the very nature
of the optimization problem (with discrete variables in the
presence of alternative choices on processes and equipment).
The proposed approach may be justified by the objective of
verifying the feasibility of extending the problem considering
the various types of constraints (geometric, functional, struc-
tural) that may occur on part dimensions. Based on existing
approaches, it is not obvious that the improvements over clas-
sical tolerance allocation outweigh possible complications in
defining and solving the problem. It is believed that the an-
swer to these questions should be sought in the simplest for-
mulation of tolerancing problems, where an assembly dimen-
sion is determined by the linearized stackup of part dimen-
sions satisfying basic statistical assumptions (independence,
normal distributions, limited nonconforming rate). This will
allow a sufficiently simple analytical formulation, on which
the possible benefits of the extension can be more easily
evaluated.

4.2 Cost-tolerance function

As mentioned, the cost parameters in (2) depend on the di-
mensions. The reciprocal power function has been widely
used in literature assuming values for bi and k from
application-dependent cost data. In an expanded form of the
same function proposed in [110], the exponent is constant and
the factor is empirically related to the nominal dimension:

bi ¼ βiX
k=3
0i ð4Þ

Therefore, the variable cost of a feature depends on its
nominal dimension through a power-law relationship with
an exponent equal to one-third of that of its tolerance. This
result was obtained in [110] through the regression of data
from several sources on the costs of machining processes as
a function of the tolerance grades on the machined features.
The same analysis led to the estimate of a value k = 0.55 for
the exponent of the cost-tolerance function, which should be
verified on real cost data in specific production contexts.

The coefficient βi depends on the properties of the part
feature associated to the dimension:

βi ¼ f Ai � f Fi � f Mi � b0 ð5Þ
where:

& fAi is the area of the feature in cm2;
& fFi depends on the shape of the feature; possible values on

rotational parts are 0.75 and 1.25 respectively for external
and internal features; on prismatic parts, 1.5 for cylindrical
features, 1–1.5 for non-cylindrical features, and 0.5–1 for
planar features (higher values for smaller features);

& fMi is inversely related to the machinability of the material,
with base 1 for mild steel, in a range from about 0.3 for
aluminum alloys to about 2 for stainless steels;

& b0 is a constant that does not influence the allocation re-
sults (b0 = 1.0 · 10−3 from [110]).

Compared to the basic reciprocal power function, the ex-
panded form makes explicit the influence of the nominal di-
mension in the cost of a feature. As discussed in [110], this
should improve the consistency of the results of tolerance
allocation, as the costs of all features involved in a tolerance
chain are more easily estimated on a common scale. The func-
tion is even more useful in the present work, where the nom-
inal dimensions are treated as additional variables of the opti-
mization problem.

Equation (4) was obtained for linear dimensions, but can be
extended to angular dimensions. However, the cost of an an-
gular dimension is likely to depend not so much on the nom-
inal angle as on the adjacent linear dimensions. In a general
situation of the type illustrated in Fig. 1, an angle θ in radians
is limited by two linear features (e.g., edges of a part) with
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lengths l1 and l2. If one of the two elements is subject to
tolerance (T1 or T2), the resulting variation on θ is

T θ ¼ T1 sin θ
l2

or T θ ¼ T2 sin θ
l1

For simplicity, it can be assumed that Tθ is related to the
geometric mean l of the two lengths:

T θ ¼ Tl sin θ
l

; l ¼
ffiffiffiffiffiffiffi
l1l2

p
ð6Þ

In (4), the angle must be associated to an equivalent nom-
inal dimension Xθ, which has the same cost as l for the same
variation. Considering only the variable cost, (2) and (4) give
the condition

X k=3
θ

Tk
θ

¼ lk=3

Tk
l

which combined with (6) becomes

X k=3
θ

Tk
θ

¼ sinkθ

Tk
θl

2k=3
→ X θ ¼ sin3θ

l2
¼ sin3θ

l1l2
ð7Þ

Therefore, the expanded form (4) of the variable cost factor
can also be used for an angular dimension in radians by re-
placing the nominal angle with an appropriate function of the
angle and of the adjacent linear dimensions.

Substituting (4) into (3) gives a new condition on optimal
tolerances, which explicitly takes into account the nominal
dimension and the properties of the feature:

Tið Þopt∝
βiX

k=3
0i

S2i

 ! 1
kþ2

ð8Þ

Without loss of generality, it is now assumed that all the
links are similar for material, shape, section size, and hole

diameters. This implies that the coefficients βi have the same
values for all the Xi. This can be justified by considering the
product (fAi · fFi) that appears in the expression (5) of βi. The
features are either the holes (for the link lengths and the hole
diameters) or the cylindrical surfaces of the pins (for the pin
diameters). The pin surfaces have double area fAi with respect
to the holes (assuming that each pin connects two links), but a
shape coefficient fFi half that of the holes (0.75 vs 1.5), and
thus equal value of their product. As a result, the condition (8)
on optimal tolerances for the linkage simplifies to

Tið Þopt∝
X k=3

0i

S2i

 ! 1
kþ2

ð9Þ

4.3 Objective function for nominal dimensions

The optimal dimensions can be found by solving another op-
timization problem whose only variables are the X0i. The ob-
jective function is the stackup of the optimal tolerances

σ ¼ c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
n

i¼1
S2i T

2
i

s

where the Ti satisfy the condition (9) for each possible set of
Xi. To optimize the output variance σ2, the problem can be
defined as

min ∑
n

i¼1
S2i

X k=3
0i

S2i

 ! 2
kþ2

¼ ∑
n

i¼1
X a

0i Sij j3a ; a ¼ 2k
3 k þ 2ð Þ ð10Þ

with a = 0.14 for k = 0.55. The overall problem is therefore
solved concurrently by two nested optimizations: minimum-
variance dimensions are found by assuming minimum-cost
conditions for the tolerances. Once the optimal dimensions
are known, the optimal tolerances are scaled to the specified
output tolerance TY:

Ti ¼ TY

c
Ti=T1ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑
n

i¼1
S2i T i=T1ð Þ2

r ;
Ti

T 1
¼ X k=3

0i

X k=3
01

S21
S2i

 ! 1
kþ2

ð11Þ

This last step should not be considered a second optimiza-
tion phase, as the proportions between the tolerances are al-
ready included in condition (9) and therefore incorporated by
(10). The underlying assumption is that the optimality condi-
tion does not depend on the tolerance specification on the
output dimension. This is not guaranteed, however, because
cost-tolerance functions are not linear; a proportional increase
of all tolerances would thus change the relationships between
the corresponding costs, which may yield a total cost that is no
longer optimal. To verify if the nested optimizations are able

l2

l1

T1

T

T
T2

Fig. 1 Tolerance on an angular dimension
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to approximate the solution of the original optimization prob-
lem (1), the solution space must be explored in the search of
the minimum cost over the acceptable combinations of inde-
pendent dimensions. In the following, such a verification will
be made on two simple examples by enumerative search; in
more complex cases, different constrained or unconstrained
search algorithms may be required.

4.4 Calculation of sensitivities

In the objective function (10), the sensitivities Si = ∂Y/∂Xi

depend on the dimensions. Given the layout of the link-
age, the Si can be calculated with one of the tolerance
analysis methods available in literature. The method that
will be used here was previously proposed for rigid and
exactly constrained assemblies [112] and later demon-
strated on planar linkages [113].

The method is based on a static analogy, which converts
the tolerance analysis problem into an equivalent problem
of force analysis. In the linkage of Fig. 2a, the output Y is
the position of a point along a given direction and has
unknown sensitivities to the dimensions of the parts
(lengths of links, diameters of holes and pins). As shown
in Fig. 2b, the problem is solved by considering an equiv-
alent static model, where an external force F is applied to
the output point along the output direction. The analysis of
the forces on the static model requires a free-body diagram
to show the support reactions and the forces between the
links; these are calculated from the equilibrium equations,
which are equal in number to the unknown force compo-
nents as the linkage is exactly constrained. The solution of
the static model gives the axial internal forces Fi in the

links. The sensitivities of the output to link lengths are then
found dividing the internal forces by the external force:

Si ¼ Fi

F
ð12Þ

Other types of dimensions and outputs can be treated sim-
ilarly. If the output is the distance between two points of the
linkage, opposite forces are applied to the two points in the
direction of their distance. For angular dimensions or outputs,
the internal or external force is replaced by a torque. A mech-
anism can be analyzed in one of its poses by locking its de-
grees of freedom with additional constraints; the internal force
or torque corresponding to each constraint gives the sensitivity
of the locked linear or angular displacement.

Due to joint clearances, the output also depends on diame-
ters D and d of holes and pins. Their sensitivities are calculat-
ed as

SD ¼ 1

2

Fi

F
ð13Þ

Sd ¼ −
1

2
∑
j

F j

F
ð14Þ

where Fi is the axial force of the same link of a hole
and the Fj are the radial forces on a pin by adjacent
links or supports (Fig. 2b).

As discussed in [113], the static analogy derives from the
application of the principle of virtual work to the equilibrium
condition on an assembly or linkage. Although it has only
been demonstrated on planar systems, the analogy could
therefore be extended to three-dimensional problems. This
would require further developments to deal with new cases
of geometric errors (e.g., angular errors in different direc-
tions), and to establish their correspondences with new types
of internal forces (e.g., twisting moments or bending moments
in different directions). In the treatment of spatial mecha-
nisms, further types of joints would have to be considered
(e.g., helical or spherical joints); moreover, it is likely that
the solution of some 3D static models is so complex to require
a dedicated software implementation.

5 Examples

The method will now be demonstrated on two examples: a
structure with one independent dimension, and a mechanism
with two independent dimensions.

5.1 Structure

Figure 3 shows a truss with three members, simply supported
at points A and B. The upper member has nominal length L1

Y

F

a)

b)

Fi

(Li, D)

Fj

(d)

Fig. 2 Static analogy: (a) output and dimensions; (b) equivalent static
model
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and nominal angle δ to the horizontal. All the joints include
pins with nominal diameter d and holes with nominal diameter
D = d, connected with a line fit. The optimization variables
include the nominal dimensions L2 and L3, and the tolerances
on all dimensions (L1, L2, L3, D, d). The output is the vertical
position Y of point C with respect to A (nominally equal to L1
sinδ), for which a tolerance TY is specified.

FromEqs. (1), (2), and (4), the cost associated to dimension
i can be expressed as

f i T ið Þ ¼ ai þ βiX
k=3
0i

T k
i

ð15Þ

The cost function can be simplified by excluding the fixed
cost ai and considering that, under the assumptions discussed
in the comment to Eq. (8), the coefficient βi is equal for all the
dimensions of a planar linkage. A suitable objective function
fC is thus the sum of the variable costs divided by the common
coefficient β. From (15), such function has the following ex-
pression:

f C ¼ ∑
n

i¼1

X k=3
0i

T k
i

ð16Þ

Therefore, the optimization problem (1) can be stated as
follows:

min f C ¼ Lk=31

Tk
1

þ Lk=32

Tk
2

þ Lk=33

Tk
3

þ Dk=3

Tk
D

þ dk=3

Tk
d

s:t: T2
Y ¼ c2 S21T

2
1 þ S22T

2
2 þ S23T

2
3 þ S24T

2
D þ S25T

2
d

� � ð17Þ

As discussed in subsection 4.2, the solution to (17) will be
found by solving the equivalent problem (10), where the sen-
sitivities Si have now to be evaluated.

As the unknown dimensions L2 and L3 are dependent on
each other, the angle γ between the two members is taken as
the optimization variable, so that

L2 ¼ cos δ þ γð Þ
sin γ

L1; L3 ¼ cos δ
sin γ

L1

The equivalent static model is defined as shown in Fig. 4a:
a vertical force F is applied to C and causes support reactions
in A and B for the equilibrium of the structure. The analysis of
the free-body diagram in Fig. 4b gives the forces acting on the
links and pins.

The sensitivities of Y to the lengths X1, X2, and X3 of the
links are calculated from (12):

S1 ¼ −
L1
L2

S2 ¼ −1−
L1
L2

sin δ

S3 ¼ L1
L2

cos δ
sin γ

For the diameters D1, D2, and D3 of the holes, the sensitiv-
ities are calculated from (13):

SD1 ¼ 1

2

L1
L2

SD2 ¼ 1

2
1þ L1

L2
sin δ

� �

SD3 ¼ 1

2

L1
L2

cos δ
sin γ

Similarly, the sensitivities related to the pin diameters dA,
dB, and dC are calculated from (14):

SdA ¼ −
1

2
1þ L1

L2
þ 1þ L1

L2
sin δ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ L1

L2
cos δ

� �2
s2

4
3
5

SdB ¼ −
1

2

L1
L2

cosδ þ 1þ L1
L2

sin δ þ L1
L2

cos δ
sin γ

� �

SdC ¼ −
1

2
1þ L1

L2
þ L1

L2

cos δ
sin γ

� �

Although the tolerances on individual diameters could be
optimized separately, a common specification is assumed for
all the holes (X4, with nominal diameterD) and for all the pins
(X5, with nominal diameter d). Considering that there are two
equal holes on each link, the sensitivities of Y to these two
variables are obtained as a function of γ from the following
equations:

S4 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2S2D1 þ 2S2D2 þ 2S2D3

q
S5 ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2dA þ S2dB þ S2dC

q
From (10), the objective function for the dimensions is

therefore

φ γð Þ ¼ La1 S1j j3a þ La2 S2j j3a þ La3 S3j j3a þ Da S4j j3a þ da S5j j3a

Y
L1

L2 L3

A

B

C

Fig. 3 Truss structure
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where L1, D, and d are constant, while L2, L3, and the sensi-
tivities Si (i = 1, ... 5) are functions of γ.

Figure 5 shows the graph of ϕ for L1 = 100 mm, D = d =
5 mm, and δ = − 30°; within the range 0° < γ ≤ 90°, the func-
tion has a minimum for γ = 32.9°, which determines the opti-
mal dimensions L2 = 183.9 mm and L3 = 159.4 mm. The fig-
ure also shows the graph of the function ϕ1 limited to the first
three terms, which would have been used if the joint clear-
ances were neglected. The difference between the two graphs
suggests that such simpli f icat ion would lead to
underestimating the output variance by over 30%, and to a
different optimal solution (γ = 90°).

The optimal tolerances Ti (i = 1, ... 5) can be calculated
from (11), where n = 5 and the nominal dimensions X0i are
L1, L2, L3, D, and d. Assuming TY = 0.2 mm and c = 1.5, this
gives the optimal tolerances listed in Table 1 along with the

nominal dimensions and sensitivities. Figure 6 shows a draw-
ing of the optimized structure.

Figure 7 shows the graph of total cost fC, the objective
function in (17), obtained by finding the optimal tolerance
allocation for the different configurations of the structure with
the same values of L1, D, d, and δ. It is apparent that the
variation of cost with the optimization variable follows a sim-
ilar pattern to that of the output variance. The minimum cost
differs by just 0.2% to that of the solution found with the
proposed method (indicated on the graph), and corresponds
to a very close value of the variable (γ = 27.4°). When γ in-
creases beyond the optimal value, the cost increases signifi-
cantly: in comparison to a solution with γ = 30° (truss shaped
as a right triangle in C, very similar to the one illustrated in
Fig. 6), the cost would increase by about 6% for γ = 60° (truss
shaped as an equilateral triangle), and by 25% for γ = 90°
(truss shaped as a right triangle in B).

5.2 Mechanism

Figure 8 shows a mechanism for the transmission of motion
between two linear axes [114]. As the slider A moves along
direction OA, the tracing point B translates along direction

Fig. 5 Output variance for the truss

Table 1 Optimization results for the truss

Dimension X0i, mm Ti, mm |Si|

X1 L1 = 100 0.104 0.544

X2 L2 = 183.9 0.086 0.728

X3 L3 = 159.4 0.075 0.867

X4 D = 5 0.057 0.888

X5 d = 5 0.027 2.318

Fig. 4 Equivalent static model for
the truss: (a) external force and
support reactions; (b) free-body
diagram
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OB at an angle δwith the perpendicular to OA. The lever AEC
with dimensions rA and h is connected to the lever CDB with
dimensions l and rB; they have equal internal angles (90° - δ)
and proportional dimensions (rA/h = l/rB). The followers OD
and OE with lengths h and l are connected to levers AEC and
CDB, so as to form a parallelogram ODCE with an inside
angle γ in O and anglesα and β to the paths of A and B, where

tan α ¼ rA cos γ þ δð Þ
l þ rA sin γ þ δð Þ

β ¼ 90°− αþ γ þ δð Þ

As a result of the movements of the four links, the slider
and the tracing point are both approaching or moving away
from O; their travel is limited by two extreme poses where the
parallelogram is folded (γ = 0) or completely unfolded (γ =
90° - δ). The output Y is the position of B along its path OB for
a given position of A, corresponding to γ = 45° - δ/2 (halfway
from the extreme poses). A tolerance TY must be satisfied at
minimum cost by selecting both dimensions and tolerances.
Given the nominal lengths of the outermost bars (rA =

150mm, rB = 200mm) and the nominal diameters of the joints
(D = d = 10 mm), the problem boils down to two independent
dimensions: angle δ and length l.

The dimensions influencing the output include six lengths
(X1, ... X6), two diameters (X7, X8), and two angles (X9, X10).
Table 2 explains the meaning of the Xi and lists the nominal
dimensions X0i, some of which depend on the unknown inde-
pendent dimensions δ and l. For the two angles, the nominal
dimensions are set at equivalent values according to (7).

With the above notation, the optimization problem has the
following definition:

min f C ¼ ∑
10

i¼1

X k=3
0i

T k
i

s:t: T2
Y ¼ c2 ∑

10

i¼1
S2i T

2
i

ð18Þ

with the same meaning of fC as in the previous example.
The mechanism can be treated as an exactly constrained

linkage by locking slider A in the given pose. Consequently,

Table 2 Dimensions related to the output for the mechanism

Dimension Description X0i

X1 Length of BD rB
X2 Length of CD l

X3 Length of OD h

X4 Length of OE l

X5 Length of CE h

X6 Length of AE rA
X7 Diameter of holes D

X8 Diameter of pins d

X9 Angle CDB, radians cos3δ/rB l

X10 Angle CEA, radians cos3δ/rA h
Fig. 7 Total cost for the truss

O A

B

D

C

E

90

90

l

l
h

h

rA

rB

Fig. 8 Mechanism for transmission of linear displacement

30°

32.9°

(1)

(2)

(3)

(1)
100 0.052

(2)
183.9 0.043

(3)
159.4 0.037

5
+0.057

0
5

0

0.027

Fig. 6 Optimal dimensions and tolerances for the truss
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the equivalent static model in Fig. 9a has fixed supports in O
and A. The external force F is applied to B along direction
OB. The free-body diagram in Fig. 9b shows the forces acting
on all links and pins. The equilibrium equations to each part
give the following expressions for the unknown forces:

FD ¼ F
l cos αþ δð Þ þ rBsin α

l cos αþ β þ δð Þ
FCH ¼ FD sin β þ δð Þ−Fsin δ
FCV ¼ FD cos β þ δð Þ−Fcos δ
FE ¼ FCH rAsin β þ h cos β þ δð Þ½ � þ FCV rAcos β þ h cos β þ δð Þ½ �

rAsin αþ β þ δð Þ
FAH ¼ FE cos α−FCH

FAV ¼ −FE sin αþ FCV

FOH ¼ −FD sin β þ δð Þ þ FE cos α
FOV ¼ FD cos β þ δð Þ−FE sin α

Then, the resultants FC, FE, FA, and FO are calculated as the
vector sums of the respective components.

According to the static analogy, the sensitivities of Y to the
lengths are calculated from (12):

S1 ¼ F
F
cos α ¼ cos α

S2 ¼ FCH

F
cos αþ FCV

F
sin α

S3 ¼ FD

F

S4 ¼ −
FE

F

S5 ¼ −
FCH

F
sin β þ δð Þ−FCV

F
cos β þ δð Þ

S6 ¼ −
FAH

F
cos β−

FAV

F
sin β

The sensitivities of Y to the diameters are calculated by
adding the contributions of the corresponding forces from
(13) and (14):

S7 ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
FA

F

� �2

þ 2
FC

F

� �2

þ 3
FD

F

� �2

þ 3
FE

F

� �2
s

S8 ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
FA

F

� �2

þ FC

F

� �2

þ FD

F

� �2

þ FE

F

� �2

þ FO þ FD þ FE

F

� �2
s

The sensitivities of Y with respect to the angles in radians
are given by the bending moments at the vertices D and E of
the levers, divided by the external force:

S9 ¼ −rB sin α

S10 ¼ −rA
FAH

F
sin β−

FAV

F
cos β

� �

O A

B

D

C

E

F F
B

D C

FD

FCV FCH

FD

FD

O

D

FE

FE

O

E

FCV

FCH

FAH

FAVFE

E

C

A

FD

FDD

FE

FE

E

FC

FC
C

FE

FD

FO

O

FA

FA

A

a) b)
Fig. 9 Equivalent static model for
the mechanism: (a) constraints
and external force; (b) free-body
diagram

Fig. 10 Output variance for the mechanism
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The output variance

ϕ δ; lð Þ ¼ ∑
10

i¼1
X a

0i Sij j3a

varies with the two independent dimensions as shown in the
graph of Fig. 10. The function is decreasing with length l: for
any δ the optimal length is the maximum of the predefined
range (from 50 to 150% of length rB). The function is influ-
enced only marginally by δ, with minimum values at the ex-
tremes of its range (from 30° to − 30°). The point of minimum
indicated in the graph corresponds to δ = − 30° and l =
250 mm, which give h = 120 mm, α = 21.8°, β = 37.8°, and
γ = 60° in the given pose of the mechanism.

Again, the optimal allocation of the tolerances Ti (i = 1, ...
10) is given by (11), where the nominal dimensions X0i and
the sensitivities Si have now been evaluated from the dimen-
sions of the mechanism as listed in Table 3. The optimal
tolerances are calculated assuming TY = 0.4 mm and c = 1.5.
Figure 11 shows a drawing of the optimized structure.

Figure 12 shows the graph of the total cost fC defined in
(18) with the same values of rA, rB, D, and d. Again, the cost
varies in the solution domain very similarly to the output var-
iance. The solution found with the proposed method is

actually optimal with respect to cost (fC = 190.5). Within the
allowable ranges for the two independent dimensions, the cost
varies in a range of about 20%.

6 Conclusions

The paper has dealt with an extended version of tolerance
allocation on planar linkages. In addition to choosing a set
of minimum-cost dimensional tolerances, it seeks optimal
values for the nominal dimensions in order to reduce the var-
iation on an assembly-level dimension of interest. A linkage
with optimal dimensional parameters will need wider toler-
ances on the parts, allowing a further cost reduction.

The concept has its roots in the robust designmethodology,
which aims to make the output of a system insensitive to
internal or external noise factors.While most existingmethods
are based on experimental design, the proposed method
adopts a robust optimization approach as it finds an optimal
solution using mathematical models of the objective and con-
straints. This is feasible for mechanical assemblies (including

Table 3 Optimization results for the mechanism

Dimension X0i Ti |Si|

X1 200 mm 0.074 mm 0.929

X2 250 mm 0.078 mm 0.886

X3 120 mm 0.049 mm 1.486

X4 250 mm 0.048 mm 1.629

X5 120 mm 0.089 mm 0.700

X6 150 mm 0.099 mm 0.629

X7 10 mm 0.032 mm 2.059

X8 10 mm 0.021 mm 3.441

X9 120° 0.098 mm 1.296 mm/°

X10 120° 0.098 mm 1.296 mm/°

10
+0.032

0

10
0

0.021

120 0.049

120 0.049

Fig. 11 Optimal solution for the
mechanism

Fig. 12 Total cost for the mechanism
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the structures and mechanisms covered in the paper) provided
that the cost and the output variance have simple analytical
expressions. Tomeet this condition, the method integrates two
previous results: a static analogy for stackup calculations, and
an expanded formulation of the reciprocal power cost-
tolerance function.

The approach has potential advantages over existing
methods for optimizing both dimensions and tolerances:

& Being based on optimization rather than on DOE, it is
suitable to cases with many dimensions varying within
wide ranges; it can easily take into account geometric
closure constraints, and allows a continuous search for
the optimum without the need to choose among discrete
alternatives (as in Taguchi methods) or to iterate the ex-
periment (as in RSM approaches);

& It minimizes both output variance and cost without the
need to tackle the two optimization problems sequentially
(with the risk of obtaining suboptimal solutions) or to
balance the two objectives (with the risk of arbitrariness
in the weighting coefficients).

The application of the method to two simple examples
confirms that the proposed optimization strategy is able to find
optimal solutions with respect to cost. It also shows that fur-
ther cost reductions in the order of 10–20% can be achieved
compared to tolerance allocation with given parameters. It is
expected that the simultaneous optimization of dimensions
and tolerances can be even more advantageous for more com-
plex design cases.

On the other hand, the method in its current state has some
limitations, which will have to be overcome in future
developments:

& The assumptions are realistic but do not cover all possible
applications; further extensions may consider cases of in-
terrelated tolerance chains, non-normal distributions of di-
mensions, minimization of quality loss, and geometric tol-
erances according to ISO and ASME standards;

& Setting up the optimization problem requires a preliminary
study to reduce the solution space to a subset of indepen-
dent dimensions; it remains to be seen whether general
criteria can be developed to take into account geometric
closure as well as additional design constraints (kinematic,
structural);

& The robust optimization of a linkage is bound to a given
layout of the links and joints; further cost reductions could
be obtained by extending the optimization to alternative
layouts, where the number and the connections of the links
are also optimized along with dimensions and tolerances.

& Some calculation details are linked to the specific applica-
tion context of this work (planar linkages with lower ki-
nematic pairs); these should be generalized in order to

allow the treatment of spatial linkages and generic me-
chanical assemblies.
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