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Abstract
Hybrid process chains lack structured decision-making tools to support advanced manufacturing strategies, consisting of a
simulation-enhanced sequencing and planning of additive and subtractive processes. The paper sets out a method aiming at
identifying an optimal process window for additive manufacturing, while considering its integration with conventional technol-
ogies, starting from part inspection as a built-in functionality, quantifying geometrical and dimensional part deviations, and
triggering an effective hybrid process recipe. The method is demonstrated on a hybrid manufacturing scenario, by dynamically
sequencing laser deposition (DLM) and subtraction (milling), triggered by intermediate inspection steps to ensure consistent
growth of a part.
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1 Introduction

The successful implementation of a newly designed compo-
nent in the manufacturing chain and the generation of a suit-
able process plan is a highly complex task, which requires
significant human expertise. As a result, the development of
structured approaches and decision-making tools, which will
help in the creation of optimized and consistent process plans
[1] is a major research topic in the manufacturing industry.
During the last decade, novel manufacturing technologies are
rapidly emerging and establishing their position in the
manufacturing sector. Their emergence is accompanied by
the need to create tools and support systems, which will allow
for the maximum exploitation of their potential in manufactur-
ing applications, while reducing the necessity for human ex-
pertise and increasing the automation levels in the process
planning stage [2]. Direct laser melting (DLM) is gaining
interest in the manufacturing value chain as one of the key

enablers to enhance life-to-value [3] of critical metal compo-
nents [4] since it can offer very high design flexibility by
enabling engineers to implement highly complex internal
and external geometries and integrated functionalities on a
product [5], as well as design multi-material components [6].
Whereas it may seem like a poor choice for specific applica-
tions such as the manufacturing of large components, DLM
presents major opportunities—in terms of product features
and process cost-effectiveness—if integrated with other tech-
nologies [7]. Examples include depositing complex features
on the top of pre-existing components—either new work-
pieces or ones to be repaired [8]—as well as having DLM
integrated into a complex process chain where also subtraction
technologies are envisaged [9, 10]. The integration of these
two technologies in a hybrid process chain presents a high
potential of surpassing conventional manufacturing technolo-
gies, being able to deliver products of net or near-net shape in
lower production time [11]. However, although the integration
of additive and subtractive processes in a single, hybrid
manufacturing machine tool presents a very high level of op-
portunities for industrial implementation, it is still associated
with very significant challenges, mainly in terms of equipment
integration, process recipe design and knowledge, and process
management [12]. Regarding the two latter, the main chal-
lenges are associated with determining the combination of
additive and subtractive operations, which will exploit the
merits of both processes in an optimal manner, and provide
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components with higher performance in terms of economical,
quality, and environmental KPIs.

2 Literature review

Existing literature addresses the aforementioned challenges
primarily from the economical perspective in order to prove
the benefits of additive manufacturing in such manufacturing
contexts. Kopf et al. [13] proposed a two-step methodology
for equipment and process cost optimization in DLM.
ElMaraghy et al. [14] have introduced a process planning
algorithm, which can be utilized for cost minimization among
different variants of the same product, by decomposing prod-
uct features and exploiting hybrid manufacturing technolo-
gies. Priarone et al. [15] have proposed a modelling frame-
work for the assessment of hybrid manufacturing applicabili-
ty, using WAAM and machining, over conventional subtrac-
tive processes, and the benefit in terms of cost, cycle time,
energy consumption, and environmental impact. Basinger
et al. [16] have proposed a feature-based process planning
method, aiming to create semi-automatic and automatic oper-
ation sequencing plans for hybrid manufacturing processes,
focusing on the reduction of manufacturing time. In the same
principle, Liu et al. [17] have developed an operation sequenc-
ing algorithm for five-axis hybrid manufacturing of complex
parts, taking into account tool accessibility and focusing on
the reduction of the necessary tool changes. From a technical
perspective, the core challenge that is still untouched lies in
the overall process design and planning and the related artic-
ulated software infrastructure enabling a complex multi-tech
process engineering, deployment, and adaptation while ensur-
ing the overall final product quality [18]. There are existing
approaches [19] and platforms that allow for hybrid process
planning. Behandish et al. [20] have introduced computational
algorithms for path planning in hybrid manufacturing, taking
also into account the manufacturability constraints of the pro-
cesses involved. Luo et al. [21] have proposed a cutter selec-
tion algorithm for hybrid manufacturing, incorporating rapid
pattern manufacturing (RPM) andmilling. Zhu et al. [22] have
proposed an algorithm, with the aim to aid in process planning
and decision making in hybrid manufacturing, focusing on
material consumption and process time. However, the algo-
rithm was limited to non-metallic part manufacturing. Even at
a commercial level, CAPP platforms, such as Siemens NX
[23], are providing the ability to plan both additive and sub-
tractive processes in a single tool. However, they are allowing
the user to just plan the two processes successively, without
providing the ability to plan them synergistically so that one
can compensate for the drawbacks of the other. Moreover,
limited insight is provided to the user regarding the process
capabilities and how the two processes can be planned more
effectively to address in the most optimal manner the product-

specific KPIs. Such activities are in fact still manually run by
highly skilled operators on the basis of empirical knowledge
gained on the very specific equipment [1] and demand exten-
sive effort when geometries, dimensions, and materials start to
change [24].

The goal of this paper is to introduce a process planning
approach, which, apart from aiding the automation of opera-
tion sequencing in a hybrid manufacturing process, will pro-
vide a holistic tool for hybrid manufacturing planning. This
tool, driven by the authors experience on additive [18] and
subtractive [25, 26] process optimization, will fill the gap of
the existing process planning platforms, by accounting for part
quality KPIs and introducing optimal process windows, upon
which the process plan is going to be built.

The paper aims to support hybrid process chain design,
engineering, and validation that can suit any machine(s) con-
figuration running DLM together with machining operations,
assisted by in-line geometrical inspection. The proposed plat-
form is conceived to be potentially extended to other families
of hybrid manufacturing technologies.

3 Approach

The framework for hybrid technologies addresses the life-to-
value optimization driver; this implies optimizing the process
engineering in order to enhance the component performance
over a fixed time horizon or ensuring specific performance
targets over the longer time frame. The current work focuses
on the process-related challenges and the best exploitation of
multiple technologies to ensure the matching of product qual-
ity KPIs.

The proposed approach has two major innovative aspects
compared with the state-of-art hybrid approaches for process
planning [8]. The first one deals with the capability to generate
several solutions of process plan over time, considering mul-
tiple technologies and having the master process plan (master
part program on the machines) adapted based on in-line geo-
metrical inspection (e.g. adapting some process steps based on
anomalous growth of the material). The second aspect focuses
on having the simulation and validation of the deposition and
subtraction/machining processes integrated into the process
planning phase in order to capture the physics of the process
where the part quality KPIs can be appreciated. The best pro-
cess recipe—formulated as a sequence of process steps and
process-specific parameters—is the one leading to maximiz-
ing the selected KPIs (e.g. technical, economic, and
environmental).

The proposed framework for life-to-value product optimi-
zation consists of three stages, where each stage will deploy a
specific workflow in order to provide an adapted input for the
subsequent ones, as presented in Fig. 1.
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The first stage targets the generation of hybrid process
planning alternatives adapted for specific manufacturing jobs
according to the user’s input, such as part scenario
manufacturing constraints. It mainly consists of two distinct
activities, namely the operation sequencing and operation
planning. The former considers three main categories of oper-
ations (i.e. additive, inspection, and subtractive), the user input
as well as information about the manufacturing resources in
order to derive process plans with adapted sequences. The
latter aims at the selection of the initial set of process param-
eters and tool path strategies for the operations considered.

The second stage addresses the adaptation of the initial
process parameters based on the modelling and simulation
of additive and subtractive operations. This relies upon nu-
merical modelling strategies, considerations, and results as
well as validation techniques using experimental data with
the scope of avoiding undesired defects and enhancing pro-
cess reliability and part quality during manufacturing. The
previously generated process plan alternatives provide the ini-
tial conditions from which the user of the platform can selec-
tively decide which parameters/aspects to optimize based on
its own preferences and available tools and techniques.

Various metrics, such as surface roughness, residual stress,
and dimensional accuracy, and statistics, such as tool path
length and cycle time, captured across the first two stages
can be translated into a number of KPIs to be used for the
selection of the best process plan in the third stage.

In the third stage, the user is given the possibility to sys-
tematize the evaluation of the process planning alternatives
through the multi-criteria analysis capability of the frame-
work. High-value manufacturing, considered as the applica-
tion of leading-edge technical knowledge and expertise to the
creation of products, processes, and associated services can
foster competitive advantage, sustainable growth, and high
economic value. In this respect, hybrid manufacturing has
made early adopters of the technology very optimistic about
the technology’s prospects. Nevertheless, a structured

approach is required to make informed decisions, especially
in the manufacturing landscape where such decisions are nev-
er single-purpose driven.

Three main pillars (i.e. technical, economic, environmen-
tal) are used as the upper-level KPI categories to provide the
decision-maker with the possibility to perform not only a
product-process quality-oriented performance assessment but
also a holistic evaluation of the manufacturing alternatives
which eventually will translate into a life-to-value perfor-
mance score for each one of them. The methodological foun-
dation of the multi-criteria decision analysis is the Analytical
Hierarchy Process (AHP) which can support complex deci-
sions through a direct comparison between alternatives [27].
The third stage of the platform essentially breaks a complex
decision into explicit goals, alternatives, and criteria (i.e.
KPIs), according to the decision maker’s understanding of
the problem. The proposed AHP method is essentially based
on three main operations: KPI’s hierarchy construction, KPI’s
prioritization, and consistency verification.

3.1 Stage 1: Hybrid process planning alternatives

A unified approach in hybrid manufacturing requires a meth-
od to determine the sequence between additive, subtractive
and inspection operations, generating process planning alter-
natives. These alternatives are formulated as a combination of
(i) different operation sequences and (ii) different initial pro-
cess parameters for each involved operation, taking into ac-
count the presence of the others. The method used to sequence
the operations is outlined in Fig. 2.

The starting point could refer to the repair of a component,
the deposition of complex features on the pre-existing part(s),
or building a part from scratch. A number of alternatives can
be generated, based on the combination of additive, subtrac-
tive, and inspection operations. Inspection can be used to
adaptively trigger additive or subtractive operations to correct
geometric deviations. Besides operation sequencing, each

Fig. 1 Overall framework
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operation may deploy a different set of process parameters,
generating a number of alternative process plans which have
the capability to produce the exact same part; however, the
performance of each of the alternatives may differ. Figure 3
depicts the methodology that is followed during the first stage
of the generation of the hybrid process plan.

4 Stage 2: Manufacturing strategy
optimization

In order to optimize the parameters for both the DLM and
milling processes involved in the proposed hybrid chain,
interlinked simulation tools have been implemented,
interacting with each other in an iterative way (Fig. 4). To
successfully model a laser-based AM process two main as-
pects have to be considered: the interaction between the laser
beam and the material that is deposited, as well as the phase

change that the material is subjected to, during the deposition
process [28]. Simulation of the DLM process involves 2 dis-
creet steps, each one feeding data to the next. An existing
mathematical model of DLM [29] has been enhanced by in-
tegrating the modelling of multiple powder ejection nozzles;
the simulation tool assesses the effects of process parameter
effects on deposition rate by considering interactions between
the powder particles streams and mix rate, the laser beam, and
the melt pool. The laser power reaching the surface of the
workpiece is estimated and, assuming this power is used to
re-melt the substrate with the clad having been pre-deposited,
the melt-pool shape is computed using a three-dimensional
analytical model. This numerical tool is coupled with a CFD
simulation that allows evaluation of the effects of the powder
delivery system process parameters in the powder stream
characteristics, and subsequently on the DLM process. The
CFD simulation consists of two successive steps: first, a sim-
ulation of the gas flow and second, a simulation of the powder
particles injection using a discrete phase model (DPM). Here,
key settings are the carrier and assist gas flow rates, powder
flow rate, standoff distance, and nozzle angle. The CFD pro-
cess simulation returns, as a result, the powder stream charac-
teristics (dispersion angle, gas stream velocity, powder parti-
cle velocity, particle location and distribution on the deposi-
tion plate), are fed back to the numerical process model. The
final output KPIs of the DLM model are the deposition rate,
scanning speed, and powder efficiency. The DLM model re-
sults have been validated against the experimental results from
[18].

Regarding milling modelling, the two main methodologies
that are utilized are finite element modelling (FEM) based and
the mechanics of cutting based models [30]. In this work, a

Fig. 3 Stage 1 methodology

Fig. 2 Flow chart of the operation sequencing algorithm
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FEM-based model is implemented, using an explicit solver
and coupled Eulerian–Lagrangian (CEL) mesh to compensate

for the extremely high strain rates (up to ε̇ ¼ 106 s−1Þ and
large deformations of the process, using Johnson–Cook con-
stitutive equations for plastic flow stress and failure. The cut-
ting tool is set as a rigid body fixed in space, while the work-
piece is set as deformable, moving towards the cutting tool
with a speed equal to the cutting speed. The model, taking into
account both process parameters (cutting speed, depth of cut,

etc.) and tool geometrical characteristics (rake angle, clear-
ance angle), generates a number of KPIs (MRR, cutting
forces, residual stress), thus allowing optimization of process
parameters. The simulation results were validated through an
experimental campaign relying upon a milling machine
equipped with an accelerometer and an acoustic emissions
sensor [31], also generating useful knowledge as regard sur-
face roughness and tool wear correlation to process
parameters.

Fig. 4 Stage 2 methodology

Fig. 5 Stage 3 methodology
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4.1 Stage 3: Product life-to-value optimization

In order to calculate the life-to-value performance score
supporting the decision on the most suited hybrid process plan
for part manufacturing the setup of the AHPmethod should be
performed first. Between the decision maker’s strategic goal
and the process plan, alternatives reside the attributes of the
decision problem such as the selection of the KPIs category as
well as the specific KPIs under each category (Fig. 5). While
considering part quality KPIs (technical pillar) as the most
relevant, the performance of a manufacturing strategy can be
measured against multiple KPIs which are very often contra-
dictory (minimize cost vs. increase surface quality).

To execute the model both KPI category and KPIs (i.e.
criteria and sub-criteria) must have associated weights and
scores. Each implementation of the model has its own series
of importance weights, elicited from expert knowledge,
existing data, or simply expressing the preferences of the de-
cision-maker. For a perfectly balanced perspective on the se-
lection of the most adapted hybrid process plan, an equal
weight of 33.3% can be assigned to each KPI category. A
set of matrices representing the pairwise comparison is devel-
oped at every level of the hierarchy, assuming an element in

the upper level is the governing element for those in the lower
hierarchy. These comparisons yield square matrices of judg-
ments. After the consistency test, serving to identify possible
errors in expressing judgments, the local and global weights
are calculated which represents the contribution of each crite-
rion and sub-criteria to the strategic goal. In the final step, a
ranking of all the alternatives will be performed based on the
individual performance of every operation included in a pro-
cess plan alternative with respect to the KPIs considered as
well as the aggregation of these performances to one global
score.

5 Case study

In order to validate the complete process chain design, an
industrial use case involving a repair scenario of a 316L
Stainless Steel gas turbine blade is implemented. 316L pre-
sents a significant interest for this work, as it is used in a wide
range of applications where repair with hybrid manufacturing
through additive manufacturing and milling would be highly
beneficial. In principle, additive manufacturing introduces
thermally induced stresses that can be alleviated using heat

Fig. 6 Creation of the deviation map of the part

Fig. 7 Process plan alternatives
generated for the particular case
study
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treatment. Although 316L cannot be heat treated, AM of 316L
alloys has been successfully used in the past [32–37], even for
repair purposes [38], and its fatigue life has been deemed
satisfactory [39–41]. The processes used in this case are
DLM, milling, and vision-based metrology, but additional
processes could be considered as appropriate. As this is a
repair scenario, the process chain started from an inspection
operation, acquiring a point cloud of the pre-existing blade,
followed by a comparison with the CAD file, and generation
of a deviation map (Fig. 6). This allowed calculation of both
the deviation of the real dimensions in comparison with the
ideal situation, identification of the damaged area, and precise
localization of the blade with respect to the machine frame for
the subsequent operations.

The next step involved a subtractive operation to remove
the damaged area. At this point, a number of alternative pro-
cess plans/strategies are generated, as depicted in Fig. 7.

The process plan alternatives consist of different combina-
tions and sequences of the available operations, based on the
method presented in Section 3.1. The process parameters for
each one of those operations are tailored to the specific con-
ditions occurring from the presence of previous or subsequent
operations on the specific process plan alternative. As an ex-
ample, DLM process parameters can be optimized for depo-
sition rates rather than for dimensional accuracy. This stems
from the logic that the over-deposited volume, resulted after
the DLM process, will be subsequently removed by the sub-
tractive operation. Similarly, milling process parameters can

be optimized for quality (minimum surface roughness) when a
single finishing pass strategy is deployed, or two-parameter
sets can be used when the volume of material to remove is
higher; one parameter set for one or multiple rough milling
pass(es) to remove the bulk of the material as fast as possible,
followed by a finishing pass with process parameters opti-
mized for quality.

To demonstrate the effectiveness of the method, three of
the alternatives generated (Alt. 2, Alt. 5, and Alt. 7) are further
analysed and evaluated. Each alternative uses not only a dif-
ferent sequence of operations but also different sets of process
parameters for these operations. Two sets of process parame-
ters are used for the AM operation, while three and two sets of
parameters are used for the subtractive (side and face milling)
operations respectively. These process parameter sets have
been generated as a result of the second stage of the process
planning framework and are presented in Tables 1 and 2,
while their combination and process steps per alternative are
presented on Table 3. The KPI values for the parameter sets
have been acquired from the experimental campaigns that
were run during stage 2, in order to validate the process
models and create the knowledge base for process
optimization.

Four KPIs are examined: surface roughness (on top and
side surfaces of the blade), total process time, tool life (both
for the 10-mm tool used for side milling, and the 2-mm tool
used for face milling), and material waste. Pairwise compari-
sons as established in the AHP method are used to derive the

Table 1 Parameter sets for
additive manufacturing Parameter set # KPI type SM1 SM2 SM3 SM4 SM5

Parameters Tool diameter (mm) 10 10 10 2 2

Cutting speed (m/min) 120 160 190 157 188

Feed per tooth (mm) 0.025 0.03 0.017 0.0036 0.003

Axial DoC (mm) 4 4 4 2 2

Radial DoC (mm) 0.15 0.15 0.3 0.05 0.1

KPIs Material removal rate (mm3/min) Economic 240 360 480 0.018 0.036

Expected surface roughness Ra
(μm)

Technical 0.68 1.78 3.78 0.42 6.59

Expected tool life (min) Economic 13.5 5 3.5 9.5 12.6

Table 2 Parameter sets for
additive manufacturing Parameter Set # KPI Type AM1 AM2

Parameters Laser power (W) 700 200

Stand-off distance (mm) 10 10

Powder feed rate (g/s) 0.042 0.042

Carrier gas flow rate (L/min) 15 15

Scanning speed (mm/min) 700 200

KPI Specific energy (J/mm) Environmental 52.5 60
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resulting priorities, with a consistency ratio of 5%. The KPIs
(calculated for every alternative, considering the complete
process plan), priorities, and raw values per alternative are
presented in Table 4.

Raw KPI values are subsequently normalized; the normal-
ized calculation for each KPI is between the value 0, for the
worst alternative, and 1 for the best alternative. The normal-
ized values multiplied by the priority result in a score, total
scores are calculated per alternative, and alternatives ranked
accordingly. The outcome of this process can be seen in
Table 5.

Following the selection of the optimal process plan alter-
native (Alt. 2), the part program is simulated for collisions and
then loaded on the machine controller. The final outcome can
be seen in Fig. 8.

The results are further discussed in Section 5.

6 Discussion

Applying the proposed method on an industrial case study of
repairing a gas turbine blade, it is evident that Alt. 2 is the

Table 3 Analytic list of operations for each alternative

Alternative 2
Operation Process parameters set Comments
Inspection - Damage identification
Subtractive manufacturing SM3 Damage removal: priority on high MRR
Inspection - Update of 3D model
Additive manufacturing (Contour) AM2 Deposition on damaged area: priority on contour accuracy
Additive manufacturing (Infill) AM1 Deposition on damaged area: priority on high deposition rates
Inspection - Check for AM defects
Additive manufacturing AM2 Deposition on damaged area: priority on accuracy
Inspection - Update of 3D model
Subtractive manufacturing (Blade Walls) SM1 Finishing of the part: priority on low surface roughness
Subtractive manufacturing (Blade Top) SM4 Finishing of the part: priority on low surface roughness

Alternative 5
Operation Process parameters set Comments
Inspection - Damage identification
Subtractive manufacturing SM3 Damage removal: priority on high MRR
Inspection - Update of 3D model
Additive manufacturing AM1 Deposition on damaged area: priority on high deposition rates
Inspection - Update of 3D model
Subtractive manufacturing (Blade Walls) SM2 Finishing of the part: compromise between roughness and MRR
Subtractive manufacturing (Blade Top) SM4 Finishing of the part: priority on low surface roughness

Alternative 7
Operation Process parameters set Comments
Inspection - Damage identification
Subtractive manufacturing SM3 Damage removal: priority on high MRR
Inspection Update of 3D model
Additive manufacturing AM1 Deposition on damaged area: priority on high deposition rates
Subtractive manufacturing (Blade wall roughing) SM3 Rough milling of over-deposited volume: Priority on high MRR
Subtractive manufacturing
(Blade wall finishing)

SM1 Finishing of the part: priority on low surface roughness

Subtractive manufacturing (Blade top roughing) SM5 Rough milling of over-deposited volume: Priority on high MRR
Subtractive manufacturing (Blade top finishing) SM4 Finishing of the part: priority on low surface roughness
Inspection - Final dimensional inspection

Table 4 Process planning
alternatives KPIs KPI KPI type Priority Alt. 2 Alt. 5 Alt. 7

Surface roughness (top) Technical 31.7% 0.42 0.42 0.42

Surface roughness (wall) Technical 31.7% 0.68 1.78 0.68

Process time (s) Economic 24.7% 1090 1074 1232

Tool wear (top) Economic 3.7% 98.6% 98.6% 87.5%

Tool wear (wall) Economic 3.7% 6.1% 11% 29.4%

Material waste Environmental 4.5% 196.2 192.2 588.3
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preferred one among the three alternative process plans that
have been chosen for investigation (Table 5). In this case,
better performance of Alt. 2 can be attributed mainly to the
use of more intermediate inspection cycles between the sub-
sequent AM steps. This strategy enables more effective ex-
ploitation of the AM process, preserving a stable material
growth, thus requiring less post-processing with milling,
which in turn decreases the overall process time and material
waste. It is worth mentioning that this is only true taking into
account the examined sets of process parameters and their
impact in the performance on the separate processes, as well
as for the specific relative importance of the different KPIs.
For example, if the time required for intermediate inspection
steps is dramatically increased, the preferred alternative might
change. Similarly, if process timewas prioritized, Alt. 5 would
most probably be the new preferred strategy. Nevertheless, the
method itself accounts for such changes, as it is able to re-
evaluate the alternative process plans as needed. In addition,
the user can modify the relative weight of each KPI, which
will result in a different evaluation of the alternatives.

Moreover, it is observed that Alt. 5 and Alt. 7 are close to
each other in terms of overall performance, despite they com-
prise different individual process steps, parameters, and sub-
sequent performance in each individual KPI. This makes clear
that more than one alternative can display similar perfor-
mance, which can render the process of selecting one quite
trivial. As such, the proposed method is a useful tool in aiding
the user to have a clear overview of the potential options, and

thus enabling shifting to another alternative process plan if
new constraints come up (change in priorities, machine avail-
ability, increase in the cost of a particular resource, etc.).

7 Conclusions

The paper introduces a novel process planning approach to
support hybrid process chain design, aiming to optimize prod-
uct life-to-value ratio. The method is based upon the effective
generation of hybrid process plan alternatives, utilizing simu-
lation and experimentation knowledge (or a combination
thereof) as the enabler of a multi-criteria evaluation process,
based on the exact user requirements.

Applying the method in the repair scenario of a gas turbine
blade, it is evident that the same outcome in terms of part
quality (surface roughness in this particular case) is attainable
through multiple hybrid process chain alternatives. However,
the total time required, tool wear, and other KPIs may differ,
based on the alternative process plan deployed. The proposed
method is able to capture and appreciate these differences,
leading to a consistent ranking of the potential alternatives,
while also making explicit the benefits and drawbacks of each
process plan alternative in a consolidated form. These data can
be subsequently used in multiple ways: from planning the
overall company production, managing inventory (tools, raw
materials), to modify the design of the actual part for hybrid
manufacturing.

Suggestions for future work include the integration of the
developments in a single software tool that will enable the
time-efficient generation of effective hybrid process chains.
In addition, suitability (both from a technical and an economic
perspective) and applicability of hybrid process chains should
be evaluated, based on the exact material, component, and
intended application, as well as on industry standards.
Finally, there is a need to evaluate the impact of a hybrid
process chain in the structural integrity and subsequently in
relevant standards for repair of safety-critical structures.
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Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, pro-
vide a link to the Creative Commons licence, and indicate if changes were
made. The images or other third party material in this article are included
in the article's Creative Commons licence, unless indicated otherwise in a
credit line to the material. If material is not included in the article's
Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this
licence, visit http://creativecommons.org/licenses/by/4.0/.Fig. 8 Gas turbine blade samples used for validation. (i) Damaged part,

(ii) part after deposition, and (iii) part after final milling

Table 5 Process planning alternatives score

KPI KPI type Alt. 2 Alt. 5 Alt. 7

Surface roughness (top) Technical 0.317 0.317 0.317

Surface roughness (wall) Technical 0.317 0 0.317

Process time (s) Economic 0.222 0.247 0

Tool Wear (top) Economic 0 0 0.037

Tool Wear (wall) Economic 0.037 0.029 0

Material waste Environmental 0.044 0.045 0

Total score 0.937 0.638 0.671

The emphasized text denotes the highest total score of all alternatives
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