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Abstract
Cyber-physical production systems (CPPS) are mechatronic systems monitored and controlled by software brains and digital
information. Despite its fast development along with the advancement of Industry 4.0 paradigms, an adaptive monitoring system
remains challenging when considering integration with traditional manufacturing factories. In this paper, a failure predictive tool
is developed and implemented. The predictive mechanism, underpinned by a hybrid model of the dynamic principal component
analysis and the gradient boosting decision trees, is capable of anticipating the production stop before one occurs. The proposed
methodology is implemented and experimented on a repetitive milling process hosted in a real-world CPPS hub. The online
testing results have shown the accuracy of the predicted production failures using the proposed predictive tool is as high as 73%
measured by the AUC score.

Keywords Cyber-physical production systems (CPPS) . Production failure . Dynamic principal component analysis (DPCA) .

Gradient boosting decision trees (GBDT) .Machine learning

1 Introduction

Cyber-physical production systems (CPPS) are mechatronic
systems (physical part) monitored and controlled by software
brains and digital information (cyber part) [1]. The presence of
the high-technological information and communication com-
ponent aims to provide factories with self-aware and self-
adaptive production patterns to restore the monitored produc-
tion process from the faulty status to the normal functional
condition [2]. Tool condition monitoring (TCM), in particular,
is a critical function of the CPPS, which allows early failure
detection by continuous monitoring over the machine tool and
the overall production process in order to increase the reliabil-
ity and productivity of the machine tool and keep a high-
quality control over the produced workpieces [3, 4]. Within
the field of TCM, the investigation and development of the

failure predictive tool have attracted tremendous interests
from researchers across different fields.

A wide range of failure prediction methods have been ex-
plored to date, which can be broadly categorised into model-
based [5, 6] and data-driven techniques [7, 8]. A premise
condition of the model-based methods is the prior knowledge
of both the physical system and the mathematical foundation.
The model-based techniques have demonstrated its suitability
and efficiency in applications varying from fault detection for
compressors and pumps to process monitoring for electronic
induction [9–11] and automatic control systems in multiple
manufacturing processes [12–14]. Recently, the reduced cost
of machine sensors, the enormous growth in computational
power and the tremendous surge of the cloud systems have
driven more attention to the other data-driven alternative, un-
derpinning which is the generalisation of statistical methods
and machine learning algorithms at scale [15].

The data-driven methods are particularly interesting for
CPPS which use data as a non-physical medium to communi-
cate information carrying production process status to core
control computers. Numerous data-driven methods have been
developed since the first introduction of the concept in 1930
[15], generally classified into three mainstreams including the
two multivariate statistical approaches: principal component
analysis (PCA) [16, 17] and partial least square (PLS) [18, 19]
and the third machine learning approach using algorithms
such as neural networks [17, 20], [21], support vector machine
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[22, 23] and tree-based models [24]. Both PCA and PLS are
able to reserve the most significant variety of the original set
of parameters, which are assumed to follow Gaussian distri-
butions. PLS differs from PCA by taking the relationship be-
tween the inputs (the measured parameters and their varia-
tions) and outputs (machine statuses of interests such as pro-
duction failure or faults) into account during the model train-
ing stage on the batch data [8].

Despite their low computational complexity, both PCA and
PLS methods require further improvements in robustness and
accuracy for predicting failures in a real production environ-
ment, where parameters appear dynamic (non-stationary) and
nonlinear. The dynamic and kernel techniques have been in-
vestigated to complement the PCA and the PLS (resulting in
dynamic PCA [25–27], dynamic PLS [18, 19, 28], kernel
PCA [24, 29] and kernel PLS [30, 31]), and to tackle the
system dynamics and nonlinearity respectively. A kernel
PCA first maps the original input space to a higher dimension-
al nonlinear space and then implements the PCA on the con-
verted space in order to obtain the nonlinear principal compo-
nents. DPCA differs from PCA in applying the PCA on to a
time lag shifted input space instead of the original input space.
The two techniques can also be applied simultaneously in
association with the PCA to handle systems which possess
both of the common yet troublesome properties [24]. As for
the machine learning algorithms, the support vector machine
[22, 23] and neural networks [17, 20], [21] have been inten-
sively explored solely or in combination with previously men-
tioned multivariate statistical models to resolve the nonlinear-
ity and dynamics between parameters those do not follow
Gaussian distributions. A tree-based model with the sliding
window technique has been proposed in [32], which has been
shown to provide an accurate prediction of production failures
with less computational complexity compared with the above
two algorithms.

The comparison of the mentioned methods from the per-
spectives of mainstreams and their main successors, assump-
tions on parameters and computational complexity, is present-
ed in Table 1.

Considering the application of the data-driven approaches
in milling processes within a CPPS environment, various pa-
rameters can be measured to reflect the real-time status of the
machining process, with common ones including spindle
power, vibration spectrum and severity, feed rate and spindle
speed. However, due to the long manufacturing processes of
work pieces, it is impractical for a technician to identify ab-
normal signals by continuously monitoring the process pat-
terns. In addition, it is wise to give consideration to the rela-
tionship between the measured parameters in order to accu-
rately determine the occurrence of the faulty process behav-
iour [33]. Therefore, in order to make the most of the real-time
sensory data and provide the most useful information to the
decision-makers, a computational efficient and economically
affordable machine tool monitoring system is required to be
developed within milling CPPS environment, while taking the
system dynamics into consideration. This paper introduces a
novel process monitoring strategy, composed of the DPCA to
extract the auto-correlations in the dynamic milling process
and to reduce the dimension of the parameter space, followed
by the gradient boosting decision tree (GBDT). GBDT is a
supervised machine learning model (a type of model that re-
quires known inputs variables and labelled target variables to
train), constituted by a series of decision trees with each suc-
cessive tree attempting to correct the prediction error of the
previous series. It has been increasingly popularised due to its
accurate prediction power for large-scale datasets and low
computational complexity. In addition to its prediction capa-
bility, the GBDT model also provides feature importance (a
score that quantifies the contribution of any feature to the
overall prediction decision) as a by-product and thus can be
utilised to understand the relative importance of involved
features.

The remainder of the paper is organised as follows:
Section 2 describes the paradigm of the CPPS and gives a
detailed description of the data collection mechanism. In
Section 3, the concepts of the DPCA and the GBDT are pre-
sented. This is followed by the presentation of the machine
tool predictive tool underpinned by the hybrid model of the

Table 1 The comparison of
existing data-driven methods Mainstream Successors Parameter assumptions Computational complexity

PCA DPCA Dynamics Median

KPCA Nonlinearity Median

PLS DPLS Dynamics Median

KPLS Nonlinearity High

Machine learning algorithms SVM Nonlinearity

Non-Gaussian

High

Tree-based model Dynamics nonlinearity Median

Neural networks Dynamics

Nonlinearity

Non-Gaussian

High
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DPCA and the GBDT. The proposed predictive tool is then
implemented and tested in a comprehensive real-world mill-
ing process with the results presented. The final section con-
cludes the current research and presents potential future
works.

2 The design of the cyber-physical production
system

This section introduces the architecture of a cyber-physical
production system (CPPS), which will then be implemented
in Section 4 on a large milling machine. The framework of the
CPPS is illustrated in Fig. 1.

2.1 Data collection

One important element of a CPPS is the shop floor machine
tool that is equipped with sensors and associated devices to
measure different features of the production process (e.g. spin-
dle speed, spindle power and vibration level). This data is then
processed and uploaded onto the cloud for storage. The other
fundamental element is a modern machine tool with central
control system like computer numerical controlled (CNC) to
gain access to all the sensory data and perform a closed-loop
control. The CNC also provides information about the current
part program running on the machine, the current program line
and the programmed feed rate and spindle speed. Moreover,
the feed and spindle speed overrides are relevant for the mon-
itoring platform as they correspond to the actions of the ma-
chine operator. In the industrial application analysed in this
article, the machine operator can change the feed or spindle
override if he or she detects any problem or stop the current

execution and use the manual mode to move the tool away
from the work piece and change broken cutting edges during
the machining operations.

To obtain additional and high-frequency information on
the manufacturing process, additional sensors are connected
to a real-time controller that can process the signals.
Acceleration sensors have high sensitivities and can be used
for chatter detection, condition monitoring or collision detec-
tion [34]. Two accelerometers are allocated on the spindle
housing (the part holding the spindle) perpendicularly along
the x-axis and y-axis respectively on a plane paralleling to the
work piece to take measurements, including vibration severity
and amplitude and acceleration jumps for both axes. The mea-
surements are processed and passed to an industrial computer
and then uploaded to the cloud server as part of inputs for the
predictive tool to forecast production stops. Transferring all
this high-frequency data to the cloud platform would be bur-
densome and costly, so local processing of the acceleration
signals is performed to extract the most meaningful informa-
tion. The fast Fourier transform is used to obtain the frequency
spectrum of the vibration, and only the ten highest peaks are
transferred to the cloud platform, the vibration severity is also
computed for different frequency ranges (from 20 to 80 Hz
and from 20 to 1000 Hz). The lower frequency range corre-
sponds to the vibration frequencies of the complete machine
structure and it is monitored with special attention because
strong chatter vibrations can appear within this frequency
range. The second vibration severity range covers the com-
plete vibration spectrum. Hence, the vibration level can be
well reflected with a limited amount of data without loss of
material information.

The measurements of the internal CNC sensors are collect-
ed every second, same as the pre-processed vibration signals

Fig. 1 Framework of the milling cyber-physical production system
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coming from the real-time controller. Both slowly changing
variables (e.g. tool parameters, spindle speed, program line
number) and highly dynamic variables (e.g. vibration severity,
spindle power) are transferred and stored in cloud-based data-
bases to predict future production failures.

2.2 Data storage

A manufacturing operation can be complex and highly pro-
cess-oriented. The real-time data collected from a large num-
ber of shop floor machine sensors is typically with high fre-
quency, large volume and high dimension. All the collected
data is required to be pre-processed and stored in a database
that is capable of handling vast quantities of data with different
types while keeping its integrity, resilience and security at a
required level. For this purpose, a cloud-based database is
utilised to store the pre-processed measurements. Apart from
sensory data collected from shop floor machines, the machine
alarms and the operator comments are also stored in the data-
bases. Due to the variety of data types (structured data such as
processed sensory data and unstructured data like operator
comments), a NoSQL database, Amazon CouchDB [35], is
used. The information stored in the database is accessible to
any party with granted permission.

2.3 Data analytics: the machine tool monitoring
system

The monitoring system offers online monitoring and supports
adaptive controls over the undergoing production process by
extracting available and necessary historical data from the
cloud database together with the real-time data from the shop
floor machine sensors. Both sources are used to realise differ-
ent functionalities with embedded analytical models. The pro-
cess monitoring system provides functionalities including the
following:

& Descriptive analytics that analyses and monitors current
and historical production status of the machine tools, such
as the cutting tools used for specified part programs, days
and machine tool. This functionality has been realised by a
visual analytics commercial software (e.g. QlikView
[36]).

& Prognostic analytics that detects faults having occurred
and predicts failures that will happen in the near future
based on the most updated sensory data. The real-time
data collected from a wide range of machine sensors each
second brings a new challenge to existing business soft-
ware in terms of the prediction accuracy and speed.

& Diagnostic analytics that provide fault isolation and iden-
tification by locating the causes that result in the identified
production failures. Tool wear and tool breakage are the

two main reasons that result in production stops and
downtimes.

This research will focus on developing a novel predictive
tool that benefits the prognostic functionality. Due to the large
number of sensors and the frequency of measurements and
collection (per second), the dataset is expected to belong to
the big data scope (with high volume, high velocity and high
variety). That is why an analytical model that could realise fast
and accurate analysis such as the gradient boosting decision
trees should be explored. The objective is to build a system
able to automatically stop the machining process in the case of
a faulty behaviour to help minimising human efforts and cost
on production monitoring. Ideally, human operators will only
be required to make decisions when the control system is not
authorised to. The operator is also needed to provide feed-
backs to the process monitoring system on false alarms or
inappropriate suggested activities to improve the models.

3 The proposed predictive tool

This section introduces a novel hybrid model based on dy-
namic principal component analysis (DPCA) and the gradient
boosting decision trees (GBDT) to predict failures in produc-
tion processes.

3.1 Dynamic principal component analysis

The dynamic principal component analysis (DPCA) has been
widely employed to detect faults in process monitoring since
first introduced in [27]. In this research, the DPCA will be
utilised to extract time-dependency within the same variable
and to reduce the dimensionality of the input variables in the
time domain. Like PCA, DPCA is a feature extraction tech-
nique which can achieve a set of reduced-dimensioned and
uncorrelated features by linear combing the time lag shifted
original inputs.

Considering an original dataset that containsm inputs and n
observations, X = [x1, x2,⋯, xm]m × n. In the case when the in-
puts are generated from a dynamic system, there exists time-
dependency within each of the time series, xi, meaning that the
current value relies on the past values. Applying the standard
PCA on the l time lag inputs X(t : t − l), where X(t : t − l) = [x1(t),
x2(t),⋯xm(t), x1(t − 1), x2(t − 1),⋯xm(t − 1),⋯x1(t − l), x2(t −
l),⋯xm(t − l)]m(l + 1) × n will eliminate the time linearity within
each xi as well as exclude highly correlated inputs. PCA is a
dimensional reduction technique that reduces the original
dataset into a set of uncorrelated or orthogonal vectors though
a linear transformation as mentioned in Section 1. By solving
the eigenvalue problem,

λ v ¼ ΣX t:t−lð Þv ð1Þ
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whereΣX t:t−lð Þ is covariance of X(t : t − l) [37]. Eigenvectors with

the first p largest eigenvalues are selected to keep the variance
to a certain level and are then multiplied by X(t : t − l) to get
reduced-dimensional inputs, Xcp = [x1(t), x2(t),⋯xα(t), x1(t −
1), x2(t − 1),⋯xβ(t − 1),⋯x1(t − l), x2(t − l),⋯xγ(t − l)]p × n

[37]. Xcp contains p variables, where p <m ∗ (l + 1). Note that
as the dimension of the time lag shifted feature space [X(t : t −

l)](l + 1) ×m is l + 1 time more than the dimension of the original
input space [X]m × n; the dimension of the selected principal
components [Xcp]p × n, which is used as inputs to train the
GBDT model, may be larger than the dimension of [X]m × n.

3.2 Gradient boosting decision trees

Gradient boosting decision tree (GBDT) is one of the super-
vised machine learning models that require both known input
variable and target variables to utilise an algorithm to learn a
function mapping from the inputs to the target. It has been
deployed as the fundamental component of the embedded
failure prediction methodology due to its capability in han-
dling complex relationships and interaction effects between
measured inputs automatically [38], providing better interpret-
ability than other machine learning approaches like support
vector machines or neural networks [39] and low computa-
tional complexity, which makes it realistic to be utilised and
implemented to produce valuable prediction results in a real-
world production environment [40–42].

A decision tree is an acyclic graph starting from a root node
and ending at leaf nodes where each split node (either the root
node or an intermediate node) is connected with two branches
(‘True’ or ‘False’). The split node represents a splitting con-
dition and the leaf node represents the predicted values of
outputs. The depth of a decision tree refers to the maximum
number of layers of the tree. For the example tree shown in
Fig. 2, it has two layers above the leaf nodes and thus has a
depth of 2. Considering an input variable x = {x1 = 7, x2 = 1},

the tree model will give a predicted target value y = − 1.2, as x
went to the true branch on the root node and false branch on
the intermediate node. For a binary classification problem, the
leaf node has a probability value ranging from 0 to1 and a
threshold will be chosen to determine its class type. A proba-
bility value above the threshold will be considered ‘positive’
as a failure event and below the threshold ‘negative’ as a non-
failure event.

The GBDT constitutes a sequence of decision trees with
each successive tree being built to correct the error of the
precedent trees (as illustrated by Fig. 2). The full algorithm
to construct the GBDT is detailed in Appendix 1.

During the construction of the series of decision trees, the
feature importance is computed explicitly, leading to a critical
secondary product of a GBDTmodel that allows features to be
ranked and compared with each other. The feature importance
is a score quantifying the significance of a feature contributing
to the structure and the prediction power of the sequence of
decision trees. The higher the value, the more the feature is
employed to make critical decisions within the GBDT model
and vice versa.

A single decision tree is constructed in a top-down man-
ner such that a node that improves the performance mea-
sure (weighted by the number of observations the node is
responsible for) the most is located higher in a tree. Two
commonly used performance measures are Gini impurity
and entropy [43]. These two measures produce similar re-
sults with the choice made just based on preference. The
feature importance is equivalent to the sum of the perfor-
mance measures of the nodes within the single decision
tree that contain the named feature. The importance of
the feature for the GBDT model is then computed as the
average across all of trees [44].

The GBDT will be utilised twice in the predictive tool, first
for facilitating determining the right level of time lags for the
DPCA followed by the feature generation step and later for
achieving a production failure prediction model.

Fig. 2 Structure of the gradient
boosting decision trees
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3.3 The proposed production failure predictive tool
for CPPS

The procedure of developing and deploying the proposed pre-
dictive tool is illustrated in Fig. 3a, b. Segments of historical
data are extracted from the cloud database and are used for the
offline analysis to train a predictive model for production fail-
ures. The predictive model is then fed with a set of unseen new
data to foretell real-time production failures in the future. A
more in-depth description of each of the steps is presented in
this section.

3.3.1 Marking production stops and labelling failure events

A production stop can be identified according to a combina-
tion of measured variables which reflect the actions of the

machine operator: the program is paused, the machine opera-
tion goes to the manual operating mode and the operator door
is opened for more than 1 min. However, the production fail-
ure (such as tool wear and tool breakage) happens before the
operator stops the process. The machine is undergoing a cer-
tain critical status between a normal operation status and an
established production stop, which is manually switched to by
an operator after having observed unhealthy signals from the
industrial computer or other physical characteristics of the
machine tool. It is the critical status that is of our interest to
predict. The measurements taken during the critical status will
be labelled as failure events of the target variable.

An operator stops the process based on his/her experience
by noticing the change in the chip formation (colour, shape,
sparks), noise level or vibration level. The monitoring system
is not capturing information about the chip formation or the

Fig. 3 a The offline model development for the predictive tool. b The online model deployment for the predictive tool
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machining noise, but both the vibration and the spindle power
are sensitive to the degradation of the cutting conditions. If the
operator is next to the machine when the failure event occurs,
he/she can stop in only a few seconds whereas it can take
longer if he/she is less attentive to the cutting process or fur-
ther from the control panel. The actual time varies but based
on the experience of operators working on the shop floor in
the experimental factory, an estimation of 60-s window is
assumed for the duration of the critical status to cover the
reaction time of a human operator to notice a potential pro-
duction failure and the action time to switch off the machine
tool or adjust the production pattern.

3.3.2 Feature generation

In addition to the input variables pulled from the cloud data-
base, at the offline stage, new features are generated to include
as much information as possible while keeping the past infor-
mation in a compact way to assist in improving the perfor-
mance of a prediction model. One classical approach is to use
the rolling summary statistics of the physical variables, such
as maximum, minimum, average, variance and skewness
within a specified time period [45]. In this research piece,
the maximum, average and variance values within 10-s, 30-s
and 60-s windows are computed for the variables measured by
the CNC and accelerometers.

3.3.3 Feature ranking using GBDT

The DPCA in the next step requires the determination of time
lags, and the GBDT is first employed here to facilitate decid-
ing the choice of the time lags. Using the generated feature
space and the labelled production failures from the last steps,
the importance score of the feature can be computed as a result
of the constructed GBDT. By investigating importance score
of generated features, the time window with the most highly
important features will be chosen as the l time lags to shift the
feature space to implement the DPCA.

3.3.4 Feature extraction using DPCA

In order to eliminate the auto-regression within a variable, up
to l-seconds lag shifted features are generated and added to the
newly generated feature space from the last step to perform
DPCA analysis. Applying the PCA to the l-time lag shifted
new feature space will eliminate features that are highly cor-
related and extract only ones that are orthogonal to each other
while keeping the maximum variance of the new feature
space. A number of principal components are determined to
keep 85% of the total variance. The selected principal compo-
nents are then used as inputs to train the GBDT model. This
reduced-sized feature space can help to reduce the online anal-
ysis time and thus to detect potential production failures more

rapidly. However, one disadvantage of the DPCA is that, due
to the time lag shifting and linear transformation (PCA) ap-
plied to the feature space, the resulted principal components
will lose the physical interpretability.

3.3.5 GBDT model construction

The principal components achieved after the DPCA together
with the corresponding target variable are split into a training
part which is used to train the GBDT model and a validation
part used to assess the performance of the trained model in
order to avoid the overfitting problem (the model performs
well on the training set, but poorly on the test set).

We will use the k-folder cross-validation technique for the
training-validation separation. For k-folder cross-validation,
the dataset is partitioned into k equal-size subsets. For the k
subset, one set is retained for the model testing and the left k-1
sets are used for model training. The process repeats for k
times and an average of all the k results are used to estimate
the performance of the model. Considering the time-related
nature of the data, the dataset is partitioned following a tem-
porarymanner. All transformed data from the previous steps is
divided into k equal-size subsets, and the GBDT model that
with the ‘best’ performance is trained.

The performance of the GBDT model can be justified by
specified metrics. Since the failure events constitute merely a
small portion of the target variable, it is sensible to choose a
measuring metric that is diagnostic to the imbalanced nature
of target variable. The area under the curve (AUC) is
employed as the metric to evaluate the performance of the
GBDT model during the model training on the historical data
and to evaluate the performance of the prediction model on
unseen data. In order to better explain the metric, the follow-
ing definitions are introduced:

& True positive (TP): number of correct predictions for fail-
ure events.

& True negative (TN): number of correct predictions for
non-failure events.

& False positive (FP): number of incorrect predictions for
failure events.

& False negative (FN): number of incorrect predictions for
non-failure events.

The AUC measures the area under the receiver operating
characteristic (ROC) curve (as depicted in Fig. 8), which is a
plot of the true positive rate (sensitivity), calculated as TP/(TP
+ FN) against false positive rate (1 − specificity), calculated as
FP/(TN + FP). It is a plot which illustrates the diagnostic
ability of a binary classifier as the threshold to discriminate
the positive and negative events is varied. The diagonal dash
line is a benchmark indicating relationship between the true
positive rate and the false positive rate of a randomly
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generated model. The closer a curve to the upper left corner
and thus the closer to value 1 the AUC, the better the model
performs. The best possible prediction model is yield in the
upper left corner marked by the coordinate (0, 1) representing
0 false positive and 100% true positive rate. The AUC is
equivalent to the probability that a classifier ranks a randomly
chosen positive instance higher than a randomly chosen neg-
ative one [46].

The iteration of the GBDT algorithm stops if the measuring
metric; i.e. the AUC score is not improved in 100 rounds or
the maximum number of iterations is reached.

4 Case study: a milling process

4.1 The experimental setting

The performance of the proposed predictive tool is tested and
demonstrated in a milling process. The experimental setup is
organised following the cyber-physical production systems
(CPPS) design presented in Section 2.

Figure 4 shows the hardware architecture that has been
implemented to monitor the machining process. The milling
machine is operated by a Siemens 840D numerical controller
that offers a data service interface to read data from the CNC.
An industrial computer has been added to the machine to pull
the data every second from the CNC and send it to the cloud
monitoring platform. This industrial computer is also connect-
ed through a Modbus communication to a real-time controller
that processes the vibration measurements and outputs the
vibration indicators (vibration severity, highest peaks of the
vibration spectrum, etc.) every second. Finally, the historical
data stored in the cloud is downloaded to a local machine that
uses R programming language to train the GBDT model. The
historical data contains 17 variables used as initial inputs var-
iables; the explanation of each of the variable is presented in
Table 2 in Appendix 2. In addition to these variables, the
historical data also contains information about the machine
operation mode (manual or machine operation), operator door
mode (open or close) and program block number, which are
used to deduce the production stops and then discarded after
completing labelling the failure events. The trained GBDT
model will be implemented on the industrial computer to fore-
cast production failure events and provide potential produc-
tion stop alerts in advance.

On the shop floor, the machine tool is operated in two shifts
per day and always runs the same four machining programs to
complete each work piece using 10 different types of tools.
Figure 5 shows a schematic view of the work piece and a
selection of the most problematic cutting tools. The total ma-
chining time by work piece is longer than 40 h. 40 days of
machining operations are measured and used as the historical
dataset. The program and cutting conditions are frozen, hence

the main source of process variation comes from the mechan-
ical properties of the raw work piece and inserts that affect the
tool wear. To minimise the risk of scrapping an expensive
part, it is desirable to have a system which can stop the cutting
process automatically when a failure is about to occur.

Figure 6 shows a typical vibration pattern obtained by su-
perposing several executions of the machining program. It is
not trivial for a human expert to identify a faulty behaviour
based on a combined information of all the variables and it is
impractical to set upper and lower boundaries for each vari-
able along the 40 h of machining of the work piece to define
the normal machining behaviour.

Using the criteria described in Section 3.3.1, production
stops are marked for this process. The planned stops such as
tool changing time and shifts between two-part programs, the
starting and shutting-down periods of the machine tool (the
first and last 5 min of a day) and small stops (within 1 min) are
excluded from the unplanned production downtime. The pro-
posed strategy to label the failure events tends to ensure that
the instants marked as ‘failure’ are really representing prob-
lematic machining conditions. However, the learning algo-
rithm can be perturbed by the fact that other problematic ma-
chining conditions are not marked. For example, large vibra-
tions can appear during more than a minute if the operator is
not able to stop the process rapidly or the machine can be
stopped due to totally external reasons not related to the cut-
ting process.

4.2 Feature generation and relative importance

The raw data set pulled from the cloud server contains records
measured by 17 physical components every second (as pre-
sented in Table 2 in Appendix 2). The rolling statistics, i.e.
mean, variance andmaximum values within the 10-s, 30-s and
60-s time windows, are computed for all the 17 variables
respectively.

The enriched features are normalised so that each feature
variable follows a normal distribution with mean 0 and vari-

ance 1 using the formula: z ¼ x−min xð Þ
max xð Þ−min xð Þ, where x stands for

the feature variable.
The GBDT is first utilised to achieve the relative impor-

tance of the newly generated features together with the origi-
nal features in order to determine the best number of time lags
for the DPCA. (Due to the high correlation among the features
and auto-correlation within each feature, the prediction power
of this first GBDT model is not ideal. Therefore, the DPCA
has been deployed in the next step to eliminate the auto-
correlations in order to achieve a better-performed predictive
model.)

The features with the top 20 relative importance scores are
shown in Table 3 in Appendix 3. The table can be utilised to
provide a general idea of feature significance in order to assist
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allocating sensors to measure the most relevant machining
properties in the future and most importantly, to facilitate de-
termining the choice of the time lags in the DPCA. It is rep-
resented that the maximum vibration amplitude peak within
60 s and 30 s, and the maximum vibration severity from 20 to
80 Hz on the y-axis within 60 s plays the most important roles
in predicting production failures of this case study. From the
ten highest peaks of the vibration spectrum (40 data per sec-
ond), the most significant elements correspond to the maxi-
mum peak in x- and y-directions. As the machine is more
flexible in the y-direction, the second highest peak in the y-
direction is also part of the relevant process variables. The rest
of the frequency spectrum data are useful for the diagnostics
of the process as they permit distinguishing the appearance of
chatter vibrations, but they are not fed into the machine learn-
ing algorithm to reduce the size of the training dataset. Each

tool is used with a specific programmed spindle speed hence
the programmed spindle speed gives redundant information.
However, the measured spindle speed varies slightly during
the machining operation due to the cutting forces. Large spin-
dle speed variations can be caused by the modification of the
tool work piece engagement or by a broken cutting edge. The
spindle power also gives important information about the cut-
ting process. As for the spindle speed, the variation of the
spindle power can be related to the normal entry and exit in
the material or to a broken tool. Considering the configu-
ration of the machine and the shape of the part, the x-axis is
almost not moving. Indeed, the feed movement is mainly
given by the rotation of the B-axis hence it makes sense
that the position of the x-axis does not lie within the group
of the most relevant variables. The acceleration jumps are
measured in the raw temporal signal. Large acceleration
jumps are characteristics of the impacts of rapid machine
movements. The most significant variables (e.g. variation
amplitude in 30 s and 60 s, the max Y20–80 Hz in 60 s) to
predict the production failures are not related to a specific
part program, tool number or block number and therefore
makes the predictive tool adaptive and flexible enough to
be applied even if the machining program is modified.

Table 3 has illustrated that majority of the high ranked
features are rolling statistics of the 60-s time window (12 out
of 20). Therefore, from 1 s up to 60 s, time lag shifted feature
space is generated for the implementation of DPCA.

4.3 Feature extraction using DPCA

A software has been developed using an open-source statisti-
cal language, R, to implement the predictive tool. An R pack-
age named ‘freqdom’ [47] is utilised to extract principal com-
ponents of the processed time series in order to eliminate the
auto-correlation within a variable and to reduce the dimension
of the new feature space and the GBDT models are developed
using the R package named XGBoost [41, 48].

The implementation of the DPCA requires premise of a
properly defined hyper-parameter-the maximum time lag to

Fig. 4 Hardware and software architecture

Fig. 5 Graphic representation of the work piece and different types of the problematic cutting tools
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shift the feature space. Employing the GBDT in the last step to
rank the relative importance of generated summary statistics
features has assisted to determine that the 60-s time window is
the most relevant time lag to use. Principal components are
extracted from the normalised 60-s time lagged shifted feature
space and the number of principal components is determined
such that 85% of the variance is retained. The resulted princi-
pal components space will have much lower dimensions com-
pared with the time-shifted feature space. Unfortunately, due
to the disadvantage of inexplicability of the resulted principal
components, the inputs for the GBDT model do not represent
any physical components properties or measurements and are
thus lack interpretability. Finally, the input space composed of
82 principal components that are selected by the DPCA is
used to train the GBDT model.

4.4 The development of the GBDT model

XGBoost is an efficient and scalable implementation program
of GBDT that supports a wide range of built-in and self-
defined objective functions (both regression and classifica-
tion). It has proven to consume much fewer resources and
perform 10 times faster than other GBDT packages by
performing parallel computation automatically [41].

Data over 40 days are transferred and stored in an Amazon
CouchDB database [35]. This data is then extracted by the
developed software to train the predictive model. Initially, a
set of hyper-parameters are defined to start a 4-folder cross-

validation as a premise to train a GBDT. The predefined
hyper-parameters are as follows: the maximum number of
decision trees, 10,000 (an upper bound of the number of de-
cision trees in the GBDT), maximum decision tree depth, 10
(a stopping rule for constructing a single decision tree), and
the learning rate, 0.005 (scale of the new tree when it is added
the current decision tree sequence), minimal child weight, 60
(minimal number of observations after a node split). In this
case study, we will only consider predicting the production
failures. Thus, the objective of the GBDT model is to learn a
binary classification model that could predict the probability
of a failure event. The performance of the model is evaluated
using the AUC score on the validation set during the cross-
validation.

The GBDT algorithm (as presented in Algorithm 1 in
Appendix 1) stops the iteration if the evaluation metric value
has not improved in the next 100 rounds or the maximum
number of iterations is reached. Training the GBDT model
takes 340 iterations and the best model is obtained at iteration
number 240 when the GBDT model has achieved a mean of
0.96 AUC score with 0.005 standard deviation on the training
sets and 0.91 AUC score on the validation sets with 0.013
standard deviation. The model complexity is shown in Fig.
7, with the upper plot illustrating the distribution of the num-
ber of leaf nodes at a certain depth and the lower plot depicting
the distribution of the average weighted number of cover (i.e.
observations) terminated at a certain depth. The two-model
complexity has facilitated the choices of the maximum depth

Fig. 6 Patterns of the experimental milling processes
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and the minimum child weight hyper-parameters mentioned
in the last paragraph.

4.5 The online testing results

The developed GBDT is then deployed on the industrial com-
puter to predict potential production failures. The fed real-time
data of 21 days comes from both the CNC machine and the
high-frequency controller (as illustrated in Fig. 5). The two
segments of data coming from the low-frequency sensors
and high-frequency acceleration signals are joined together
as the original inputs for the online predictive tool.

Due to the quality of the sensors and time used to transfer
the signals and to record the measurement from the machine
tool to CNC, there are less than 5% of records missing from
measurement read from each of the CNC indicators. The
missed value is filled with the last available value in the same
variable. Measurements taken multiple times within the same
second are averaged in order to keep only one record per
second. The first 60 records containing unavailable values
resulted from time lagging the features are deleted.

The GBDT model returns probabilities as output to distin-
guish failure events and non-failure events. The threshold of
0.2 is utilised to separate a non-failure and a failure event. This
is due to the non-failure events that constitute 95% of all
records in the dataset that is used to train the GBDT model
and 0.2 is the 95th percentile of the predicted probabilities.
The ROC curve of the GBDT model is shown in Fig. 8. The
ROC shows the relationship of the sensitivity (true positive
rate) against 1 − specificity (false positive rate). The accuracy

of the predictive tool measured by the AUC value for the
unseen data is 73%.

Considering the production period shown in Fig. 9a, where
the blue line represents the accumulated program block num-
ber, a production stop can be located starting from 17:26 and
ending at 17:29 and another one starting from 17:50 and end-
ing at 17:54, as the block number does not change and thus
reflecting a production stop. The 60-s time interval before the
stop starting points is marked by the red blocks. The

Fig. 7 Model complexity
facilitating determining the choice
of the maximum depth of the
decision trees and the minimum
child weight hyper-parameters

Fig. 8 Receiver operating characteristic (ROC) curve of the obtained
GBDT model
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production failure might be associated with the increase of
vibration severity before the stop.

It is not trivial even for an expert to identify the deviations
from normal behaviours due to the large timeframe of the
production and the large number of measured parameters.
Indeed, several correct failure detections cannot be explained
by the detailed analysis of the data by the expert.
Unfortunately, the GBDT is also generating false negative
and false positive detections as shown in Fig. 9b, c.
However, most of the predictions correspond to true negative
events given the chosen threshold.

The prediction precision of 73% implies that most of the
production failures can be predicted accurately. Thus, it is
believed that the cyber-physical model can be used to let the
machine unattended while protecting the expensive parts. In
that case, the predictive tool would automatically raise alerts
of potential production failures and allow the operator to take
appropriate countermeasures such as changing the cutting
edges or pausing the production process.

5 Conclusion and future work

This paper has introduced a framework of CPPS, which gave a
detailed description of the data acquisition mechanism from

the shop floor equipment, the data storage solution in a cloud-
based database and data analytics that are used for process
monitoring. Thereafter, a predictive tool as part of the CPPS
has been proposed. The predictive model has utilised the dy-
namic principal component analysis (DPCA) to extract the
auto-correlation within the same variable and to reduce the
dimensionality of the input space such that only the inputs
that contain the most meaningful information are retained
for training the GBDT model. The GBDT is a powerful su-
pervised machine learning algorithm that could deal with
large-scale datasets with high efficiency. It has used the
boosting ensemble technique by building a sequence of deci-
sion trees to achieve better prediction results. A classification
GBDT model was developed to predict the production failure
and has been tested on a real-world CPPS performing a ma-
chining process.

The GBDT has been utilised twice in the predictive tool
earlier on the offline stage for facilitating determining a
preferred time lag to shift the feature space as a premise
of implementing the DPCA and later on the online stage to
be trained properly as a classifier to forecast potential pro-
duction stops. Considering the approach taken to separate
the events into failure and non-failure classes and the fact
that the failure events constitute merely 5% of all events in
the training dataset, it is wise to choose a measuring metric

Fig. 9 Example production stops in the experimental CPPS. a Two correct predictions (true positive). bTwo false negative predictions. cA false positive
prediction
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for the developed classification predictive model that is
meanwhile suitable for imbalanced data. In this research
piece, we have chosen the area under the ROC (AUC)
score as the measuring metric. Testing results have shown
the predictive tool can achieve 73% accuracy using the
AUC score when foretelling the failure events on an un-
seen dataset. Despite the disadvantage of abolishing the
physical meaning of a feature, the DPCA can eliminate
the auto-correlation within a variable and thus enhance
the performance of the following GBDT model and largely
reduce the dimension of the time lag feature space and thus
make the prediction process more efficient. An accurate
and efficient productive tool makes it possible for a self-
aware and self-adaptive CPPS that is able to adjust the
production patterns before a failure event occurs, and
therefore significantly reduce the downtime and associated
production cost.

The main contribution of this paper lies in the introduction
of a predictive tool by employing both the statistical method,
DPCA, and the machine learning model, GBDT, and
implementing the predictive tool to predict the production
failures of a complex machining operation in a real-world
CPPS.

The following aspects can be further explored in future
work:

& The developed predictive tool can be further extended
to diagnose varying reasons that lead to a production
stop such as tool breakage, over-heating, high vibra-
tion. The predictive tool in this manuscript has de-
ployed a binary target variable including only failure
and non-failure events. Instead of a two-class target, it
is possible to label the target as multiple categories by
means of recognising and recording the manufacturing
failure that lead to the production stop. For example, if
the production stop is caused by the tool breakage, then
the target variable in the critical stage will be labelled
as ‘tool wear’; if it is the over-heating that result in the
shut-down of the manufacturing process, the target var-
iable will be categorised as ‘high temperature level’.
The choices of the manufacturing failure can differ de-
pending on the experimental setting scenario and thus
require manual initialisation as an input to train the
GBDT model.

& As described in Section 3.3.2, observations within the
1 min prior to an established production stop are labelled
as the failure events of the target variable. It is assumed
that before entering the established stop status, the
manufacturing process is undergoing a critical status from
the normal production status. It is the critical status of the
manufacturing process that the predictive tool is forecast-
ing. However, the 1-min time interval has been chosen by
the subject matter experts (SMEs) based on their

experience of manoeuvring machine tools, whereas the
actual critical status can go longer or shorter under differ-
ent cases. Therefore, it will require a more scientific way
to support or improve this judgemental decision. One pos-
sible approach is to utilise an unsupervised model (a type
of model that only contains inputs variable) to classify the
machine status to several different clusters using the inputs
variables. The number of clusters can be manually deter-
mined based on SMEs’ experience (e.g. it is sensible to
assume that the output the unsupervised model accommo-
date 3 categories which include the normal status, the
critical status and the stop status of the machining tool)
or by a data-driven method (such as the elbow method), in
which case, the number of clusters will be determined
numerically. Since an unsupervised model trains a model
without using labelled output, it does not need to bother to
mark production stops and label records in the critical
status judgementally. Meanwhile, by attempting a differ-
ent type of model, it is possible to further enhance the
prediction power of the predictive tool with a 73% accu-
racy level.
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Appendix 1: GBDT algorithm
for a classification problem

With a K-class classification problem, the target variable Y
takes values in a set Φ = {Φ1,Φ2,⋯,ΦK}. Within the data
science applications, the interest often lies in finding the class
probability, pk(x), k = 1, 2,⋯K represented by a logistic func-
tion as shown in Eq. (2) [44]:

pk xð Þ ¼ eFk xð Þ

∑ K
l¼1e

−Fl xð Þ ð2Þ

which ensures that 0 ≤ pk(x) ≤ 1 and ∑ K
l¼1 pk xð Þ ¼ 1.
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Suppose F(x) is the function/classifier that is learned using
the GBDT algorithm, the fundamental schema for the GBDT
algorithm is then represented in Algorithm 1.

Appendix 2: Feature names and explanation
measured by sensors

Table 2 Feature names used as original inputs pulled from the cloud server

Feature name Explanation Measured by Unit

ToolFactor The type of the cutting tool CNC -

Spindle_speedActual Actual spindle speed CNC rpm

Cnc_Override_Axis Override percentage to control the spindle speed CNC %

Axis_FeedRate_actual Actual velocity at which the cutter is advanced against the work piece CNC mm/min

Axis_B_positionActualMCS_deg Actual position of the rotation degree of the work piece CNC degree

Axis_Y_positionActualMCS_mm Actual position of the work piece along the y-axis CNC mm

Axis_Z_positionActualMCS_mm Actual position of the work piece along the z-axis CNC mm

Spindle_Power Spindle power CNC kw

IC3_X_Accel_Max_Discontinuity Acceleration jumps along the x-axis Accelerometer mm/s2

IC3_X_FFT_Peak_Amplitude_1 Peak vibration amplitude at range 20 Hz–80 Hz along the x-axis Accelerometer mm/s

IC3_X_Severity_range_1 Vibration severity at range 20 Hz–1000 Hz along the x-axis Accelerometer mm/s

IC3_X_Severity_range_2 Vibration severity at range 20 Hz–80 Hz along the x-axis Accelerometer mm/s
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Appendix 3: Features with the top 20
importance scores ranked by the GBDT

Table 3 Features with the top 20 importance scores ranked by the GBDT

Rank Feature name Importance score Statistics
features (60 s)

Statistics
features (30 s)

Statistics
features (10 s)

Original

1 IC3_Y_FFT_Peak_Amplitude_1, max60 0.08 ✓

2 IC3_Y_Severity_range_2, max60 0.07 ✓

3 IC3_Y_FFT_Peak_Amplitude_1, max30 0.06 ✓

4 Axis_B_positionActualMCS_deg, ampli60 0.04 ✓

5 Axis_X_positionActualMCS_mm, max60 0.04 ✓

6 IC3_Y_Severity_range_2, max30 0.04 ✓

7 Axis_B_positionActualMCS_deg, ampli30 0.04 ✓

8 IC3_Y_FFT_Peak_Amplitude_2, max60 0.04 ✓

9 Axis_B_positionActualMCS_deg 0.03 ✓

10 IC3_Y_Accel_Max_Discontinuity, max60 0.03 ✓

11 Spindle_speedActual, ampli60 0.03 ✓

12 Axis_B_positionActualMCS_deg, ampli10 0.03 ✓

13 Axis_Y_positionActualMCS_mm, aver60 0.03 ✓

14 Axis_Y_positionActualMCS_mm, max60 0.03 ✓

15 Axis_FeedRate_actual, ampli60 0.03 ✓

16 IC3_X_FFT_Peak_Amplitude_1, max60 0.02 ✓

17 IC3_Y_Accel_Max_Discontinuity, max30 0.02 ✓

18 IC3_X_Severity_range_1, max30 0.02 ✓

19 Axis_Y_positionActualMCS_mm, aver30 0.02 ✓

20 IC3_X_Accel_Max_Discontinuity, max60 0.01 ✓

Explanation of suffix:max60maximum value within 60 s, ampli60 variance within 60 s, aver60mean within 60 s,max30maximum value within 30 s,
ampli30 variance within 30 s, aver30 mean within 30 s, max10 maximum value within 10 s, ampli10 variance within 10 s, aver10 mean within 10 s

Table 2 (continued)

Feature name Explanation Measured by Unit

IC3_Y_Accel_Max_Discontinuity Acceleration jumps along the y-axis Accelerometer mm/s2

IC3_Y_FFT_Peak_Amplitude_1 Peak vibration amplitude along the y-axis Accelerometer mm/s

IC3_Y_FFT_Peak_Amplitude_2 2nd peak vibration amplitude along the y-axis Accelerometer mm/s

IC3_Y_Severity_range_1 Vibration severity at range 20 Hz–80 Hz along the y-axis Accelerometer mm/s

IC3_Y_Severity_range_2 Vibration severity at range 20 Hz–1000 Hz along the y-axis Accelerometer mm/s
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