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Abstract
Thermally induced loads inmotor spindles can cause a number of undesired effects. As a result, the process capability of spindles,
and thus, the productivity of a process can decrease. Future motor spindles will be exposed to higher mechanical and especially
thermal loads due to trends aiming to increase power densities and maximum speeds. These trends are amplified by increasingly
powerful drive concepts and developments in bearing technology. Therefore, researchers assume that it will not be possible to
raise the performance potential of spindles due to insufficient cooling of its heat sources. A series of different cooling concepts
have been researched and developed in recent decades. These developments have been made for different purposes. They also
differ considerably in terms of their cooling principles and cooling performance. In this article, these cooling approaches and the
motivations for their development are described. Firstly, the causes of heat development in motor spindles are described in a
historical context. Subsequently, the effects of heat development on the manufacturing-relevant properties of motor spindles are
revealed. Finally, current deficits in the area of spindle cooling and the need for the development and transfer into industrial
practice of more efficient and cost-effective cooling concepts to overcome future challenges are discussed.
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1 Introduction

The achievable accuracy of machine tools has been continu-
ously increasing over the last decades. In Taniguchi [1], the
development of the manufacturing possibilities with regard to
achievable machining accuracy since the 1940s (Fig. 1) is
shown. Future developments in research and industry will lead
to further increases in manufacturing accuracy of machine
tools. This development is driven by increasing demands for
accuracy of workpieces. Thus, achievable accuracy is also a
crucial sales argument for machine manufacturers.

The achievable manufacturing accuracy is significantly in-
fluenced by the thermal and mechanical properties of spindle
main drives and their rotational accuracy [2–6]. A spindle

drive is a drive that generates the rotary cutting motion to
cut materials. The cutting motion can be carried out by rotat-
ing the workpiece (e.g., lathes) or the tool (e.g., drilling or
milling machines). All spindles are designed as shaft-bear-
ing-systems. A rotary shaft is coupled to a surrounding spindle
housing by at least one bearing [7]. Spindle drives have two
basic main functions [8]. They ensure the rotation of the work-
piece or tool in space. Moreover, they transmit the necessary
energy for the cutting process. Due to the comparatively low
purchase and operating costs, roller bearing spindle systems
are mainly used in current manufacturing practice [9]. The
majority of these spindles have an integrated motor drive
[8]. Such spindles are called motor spindles. As a result of
the conversion of electrical energy into mechanical energy,
electrical losses in the form of heat occur. Friction be-
tween the bearing elements causes additional heat,
which acts as a load on the spindle system. Increasing
relative speeds between rotating components and the
surrounding fluid (usually air) leads to the increase in
heat caused by fluid friction [10]. For these reasons, a
motor spindle represents the main heat source in ma-
chine tools [11]. The proportion of losses occurring in
motor spindles is shown in Fig. 2 exemplarily for an
IM grinding spindle at a maximum speed of 36,000
min−1 and maximum power of 7 kW.
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Heat generation causes a number of undesirable ef-
fects. These effects can ultimately lead to machining
inaccuracies or even to machine failures. To counteract
these effects, spindle cooling concepts have been
researched and developed in recent decades. The
cooling of heat sources is the most common and effec-
tive way to reduce or avoid undesirable effects [12].
However, the requirements for cooling concepts are
changing as a result of emerging trends in the field of
motor spindle development such as increasing spindle
power and power densities.

To outline future requirements for spindle cooling concepts
from a historical context, Section 2 of this article deals with
the development of motor spindles for machine tools in recent
decades. Section 3 deals with heat-related effects that limit the
performance of motor spindles. Section 4 provides an over-
view of concepts for cooling motor spindle components. The
cooling concepts are evaluated in terms of their techni-
cal, economic, and ecological properties. The aim of
this article is to identify deficits between the current
situation and present future challenges in the develop-
ment of motor spindle cooling systems (Section 5).

2 Development of motor spindles

Until the 1980s, gear spindles were used to achieve high
speeds [8]. This drive concept was still state of the art in the
early 1990s [13]. At that time, very high spindle speeds could
only be achieved by using magnetic bearings. However, this
expensive and complex technology did not find its way into
industrial practice. Technological advances in the fields of
bearing and lubrication technology as well as the development
of more powerful and efficient drives beginning in the mid-
1990s led to an increasing market relevance of motor spindles
[8, 14]. At the beginning of the 1990s, rolling bearings with
ceramic rolling elements (hybrid bearings) were not yet an
alternative for conventional steel bearings [15] due to their
cost and performance. However, this development was the
key technology for increasing spindle speeds at the end of
the 1990s [16]. The so-called specific speed parameter n·dm
is used as an indicator for evaluating the development of new
rolling bearing technologies. This indicator is calculated by
the product of the speed at the operating point speed n (in
min−1) and the mean bearing diameter dm (in mm). The n·dm
parameter defines the maximum permissible speed for stan-
dard designs of a bearing type. In the early 1990s, the achieve-
ment of values between 1.0 and 2.0 × 106 mm/min was still
revolutionary [14]. At the beginning of the 2000s, however,
research was already being conducted to develop n·dm values
in the range of 3.5–4.0 × 106 mm/min [17, 18]. Since the
beginning of the 2010s, bearings with n·dm values of 4.0 ×
106 mm/min and more have been offered by many rolling
bearing manufacturers [19–22]. Improved converter technol-
ogies have also made it possible to reduce harmonious motor
supply fractions and the resulting harmonic losses. This also
led to a reduction of heat loss and an increase in power density
of motor spindles [8]. Further development of permanently
excited synchronous motors (PMM) allowed further increases
in power density and smaller spindle sizes to be achieved with

Fig. 2 Proportion of losses for an IM grinding spindle according to [10]

Fig. 1 Evolution of the achievable machine accuracy according to [1]
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the same or even higher power than with induction mo-
tors (IM). Nevertheless, IM are still frequently used to-
day in main spindles. The reasons are the lower acqui-
sition costs due to the absence of permanent magnets
(rare earths elements) in the rotor. Moreover, PMM
are associated with demagnetization risks. Presently,
motor spindles with rolling bearings have largely re-
placed spindles with alternative drive concepts such as
gear-driven spindles, direct-drive spindles, and belt-
driven spindles. Due to the low acquisition costs, belt-
driven spindles are nowadays mainly used in the lower
machine price segment at speeds of up to 15,000 min−1,
if there are no high demands for manufacturing accura-
cy [23]. Direct drive spindles are primarily used in aux-
iliary drives [24]. Gear spindles are still superior to
motor spindles in terms of high torque ratings [25].
However, due to continuous further developments, the
operating ranges of today’s motor spindles could be
extended to significantly larger speed, power, and
torque ranges. Figure 3 illustrates the maximum speeds
of commercially available motor spindles with the cor-
responding maximum power. This representation is
based on [8] and was supplemented with data from
market research carried out in 2019. For this purpose,
the product catalogs of twelve leading motor spindle
manufacturers were analyzed. Figure 3 depicts distinct
trends towards higher motor outputs and higher maxi-
mum speeds. This trend is also confirmed in [26].
Increases in spindle speed and motor power lead to
increasing metal removal rates and thus reduce machin-
ing time. Tools with larger diameters can be used to
increase the material removal rate. The feed per tooth
can also be increased by augmenting the spindle speed.
By increasing the cutting speed, higher surface qualities
can be achieved during finishing [15].

Despite all innovations and performance enhancements of
the recent decades, the shaft-bearing-system is still a bottle-
neck for new spindle developments [8]. Especially decreasing
the shaft temperature is of central importance to improve the
performance of motor spindles. The reasons for this are ex-
plained in the following section.

3 Heat in motor spindles

Heat losses can lead to the following effects [10, 27]:

– Geometry errors on the workpiece due to thermo-elastic
deformation of the spindle,

– Process instability and consequently surface defects due
to varying bearing preload,

– decrease of available electric motor power due to decreas-
ing flux density,

– reduced motor lifetime due to faster aging of insulation
materials,

– increase in non-productive times as a result of a longer
period of time to reach a thermally steady state, and

– reduced bearing lifetime due to increasing tribological
wear.

In Fig. 4, the thermal chain of these effects is demonstrated
according to [28]. The thermo-mechanical properties of the

Fig. 3 Evolution of maximum speed and motor power according to [8]
Fig. 4 Thermal effects within a motor spindle according to [28].
Supplemented by the authors
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shaft-bearing-system significantly influence the accuracy of
the relative motion between the tool and workpiece. Motor
spindles are therefore the main sources of machining errors
[10, 11]. However, a spindle system cannot be described by
two isolated thermal and mechanical subsystems as interac-
tions exist between these systems. These interactions are ex-
plained in the following subsections. Whether an insufficient
machining result was obtained as a result of insufficient ther-
mal or mechanical properties of the spindle cannot always be
assumed. A separation between thermal, mechanical,
and geometric errors of the machine tool, as described
in [29], is therefore not permissible when considering a
spindle system individually.

Challenges due to heat in motor spindles are currently be-
ing addressed by the industry and research. The efforts to
improve the thermal properties of motor spindles with roller
bearings can also be evaluated on the basis of articles pub-
lished on this subject since 1990 (Fig. 5). All relevant articles
on the subjects of “spindle cooling,” “spindle temperature,”
and “spindle thermal” accessible at webofknowledge.com
have been used for this evaluation. Since 2011, a significant
increase in scientific articles is noticeable. Compared with
2010, the number of articles published annually has
increased more than fourfold to the present time.

3.1 Influence of thermal load on manufacturing
accuracy

Deviations between the nominal and the actual position of the
TCP can lead to manufactured dimensions being beyond the
tolerances to be maintained. In a best case scenario, the work-
piece can be reworked. This is to be associated with consid-
erable additional time and effort. In the worst case, the work-
piece must be rejected [30]. During manufacturing, a variety
of factors can lead to these deviations. These include machine
errors (e.g., geometry and position errors), process errors (e.g.,
tool displacement and vibrations), and errors due to inade-
quate properties of auxiliary equipment. In order to evaluate
the relative relevance of each source of error on the resulting
total error, error budget analyses can be used [31]. The error
budgeting method can link error sources to target values via

coupling mechanisms [31–33]. For this purpose, a multi-
physical model of the relevant machine behavior is
established. Subsequently, the influences of individual param-
eter value changes on the TCP displacement are determined.
The determined influences are indicated as sensitivities [33] or
uncertainties [31]. A result of such an error budgeting is illus-
trated in Fig. 6 for analyses of a 3-axis conventional high-
speed machining center and a 3-axis ultra-precision micro
milling center. Accordingly, the share of thermally induced
expectable error EM in the overall machining error is 7%
(ultra-precision micro milling center) and 17% (high-speed
machining center), respectively. Besides tool deflection,
the thermally induced error thus has the second largest
influence on the total uncertainty error in the case of
high-speed machining.

The influence of temperature on manufacturing precision
cannot be quantified universally. Figure 6 is therefore only to
be understood exemplarily. The displacement depends too
much on the respective machine structure, kinematics, and
other mechanical and thermal boundary conditions.
However, it is well known that thermally induced errors ac-
count for a considerable proportion of the total manufacturing
error of workpieces [33, 34]. It is estimated that thermal ma-
chine tool error due to Tool Center Point (TCP) displacement
accounts for up to 50% of workpiece rejects [29]. These ap-
parent contradictions with regard to the influence of heat result
on the one hand from the fact that the studies from [29, 31] are
not directly comparable. In addition, numerous measures are
applied in manufacturing practice to minimize the
abovementioned influences. Errors such as tool displacement
or trajectory errors can often be predicted deterministically or
are reproducible. Consequently, measures to reduce these in-
fluences are more effective. On the other hand, thermal errors
are not only caused by internal heat sources or heat sinks, but
also by varying ambient conditions. These include room layer
temperatures, solar radiation, heat from auxiliary equipment,

Fig. 5 Development of publications on spindle cooling from 1990–2019
Fig. 6 Error budgets of an ultra-precision and a conventional machining
center according to [31]
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and other influences. These variables are often difficult or
impossible to quantify and therefore cannot be taken into ac-
count for countermeasures.

However, there is no work known from the current state of
knowledge whose results allow generally valid statements to
be made about the sole proportion of spindle elongation in
thermally induced manufacturing defects. In practice, TCP
displacements due to spindle elongation amount to values in
the one to two-digit micrometer range. Even displacements of
up to several tenths of a millimeter can occur [35]. Research in
which the influence of temperature rise on the spindle elonga-
tion is quantified can be found, for example, in [11, 36–43]. In
general, the displacement of the TCP can be described by the
superposition of the thermally induced displacements of the
machine components within the thermo-mechanical effect
chain. Figure 7 shows an example of the thermo-elastic ex-
pansion Δz of two joined bodies with lengths l1 and l2 and
coefficients of thermal expansion γ1 and γ2. The expansion
can be described by the linear correlation according to Eq. 1.
The values θ1,1 (θ1,2) and θ0 represent the mean temperatures
of the bodies in warm and initial states.

Δr ¼ γ1 � ∫
l1
0 θ1;1−θ0
� �

dzþ γ2 � ∫
l2
l1
θ1;2−θ0
� �

dz ð1Þ

In practice, the influence of the spindle position can be mini-
mized by two approaches. One approach is compensation, which
also includes the cooling techniques discussed in this paper. The
application of special materials (e.g., [44, 45]) and targeted heating
(e.g., [46, 47]) as well as design adaptions (e.g., [48, 49]) are also
assigned to compensatory measures. Another approach is the ap-
plication of corrective measures. Here, the thermo-elastic displace-
ments are determined by means of models or measurements.
Subsequently, a correction matrix is added to the target value
matrix of the control system [50]. Such corrective measures are
often carried out for thermal stabilization of the entire machine or
individual structural units (e.g., [51–60]). However, as motor spin-
dles are usually the main sources of heat, there are a series of
studies that deal with the modeling of spindles and their metrolog-
ical investigation for the identification of correction values (e.g.,
[41, 61–72]). A review on this topic is given in [73]. A major
disadvantage of correction measures is the often time-consuming
development of sufficiently accurate models and associated exten-
sive experiments. Moreover, particularly critical are varying

displacements, which can occur during machining due to varying
operating conditions. Such time-dependent changes are often not
considered by less complex correction models. Due to the high
relevance of thermally induced displacement, however, correction
approaches are applied in industrial practice [31] to minimize the
most significant share of error.

In addition to these macroscopical geometrical errors due to
TCP displacement, thermo-elastic deformation of the shaft-
bearing system can also indirectly influence the surface quality
of aworkpiece. The reason for this is the variation of the dynamic
properties due to a thermo-elastically induced variation of the
contact conditions between rolling elements and bearing rings
described in Section 3.2. In [74], Fujii et al. refer to the contra-
diction between increasing preload and the associated tribologi-
cal temperature increase in the bearings. The authors note a sig-
nificant temperature increase in the bearing inner and outer rings
due to the increase in bearing preload. Fujii et al. determined the
arithmetic average roughness Ra of the component surfaces for
two different spindle speeds by varying the bearing preload in
three steps. The resulting surface qualities for a spindle speed of
7,800 min−1 are shown for three preload values in Fig. 8.
Thermally induced increase in bearing preload from 550 to
2,080 N leads to a decrease of Ra by about 50%. Although a
large preload leads to a decreasing surface roughness, in this
paper as well as in [75], it has been observed that an excessive
preload is not appropriate for achieving high machining accura-
cy. High preloads lead to increasing tribological effects and thus
to reduced bearing lifetime.

3.2 Influence of heat on bearing properties

Bearing friction losses which occur during spindle operation
increase exponentially with rotational speed [10, 15]. As a
result, at high speeds the friction converted into heat can
amount to several hundred watts [76]. The heat can generally

Fig. 7 Thermo-elastic deformation of two coupled solid bodies
Fig. 8 Effect of bearing preload on workpiece surface quality (reworked
from [74])
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be dissipated less effectively from the inner rings than is the
case of the outer rings. This is due to the better thermal cou-
pling of the outer bearing rings to the housing [50]. As a result,
the inner rings expand thermo-elastically. In addition, bearing
inner rings can be subjected to heat losses from the motor [77].
Moreover, gravitational, centrifugal, and process forces, the
lubricant and the applied coolant strategy, the obligatory
sealing air, and environmental influences affect the thermo-
mechanical behavior of a spindle. These loads overlap and
partly interact with each other. As a result of these loads, the
contact conditions between rolling elements and bearing rings
and consequently the mechanical properties of a spindle sys-
tem change. The complexity of these interactions practically
makes it impossible to analytically describe the thermo-
mechanical behavior of shaft-bearing systems [77].

The mechanical properties of a shaft-bearing-system are
significantly influenced by the combined bearing preload
[78]. The combined preload consists of the initial preload,
i.e., the preload that is set during spindle assembly, and the
portion of the preload due to mechanical and thermal influ-
ences. The actual applied bearing preload can normally not be
measured during operation. Instead, the bearing clearance e is
used as a variable to characterize the bearing preload indirect-
ly. The bearing clearance describes the distance by which one
bearing ring can be moved from one limiting position to the
other in radial (radial clearance erad) or axial direction (axial
clearance eax) in relation to the respective other rings, without
any force being measured (Fig. 9b).

However, a change of eax has only minor effects on the
contact conditions between rolling elements and bearing race-
ways. The reason for this is the negligible influence of varia-
tion of eax on the bearing osculation κ [77]. The bearing os-
culation is the quotient of the rolling element radius re and the
groove radii rrw,i or rrw,o. For angular contact ball bearings, the
bearing osculation is calculated according to Eq. 2.

κ ¼ rre
rrw

� 100 ð2Þ

For this reason, the variation of erad is considered a
measurand for the evaluation of the thermally induced influ-
ence on the bearing contact conditions [77]. The thermally
induced variation of radial clearance Δerad is calculated ac-
cording to [77] by Eq. 3.

Δerad θb;i; θb;o
� � ¼ 2 � rgr;o � γm;oθ�b;o−rre � γm;re � θb;o þ θb;i−θb;o

2

� �� �
−rgr;i � γm;i � θb;i

� �

ð3Þ

Hereby, rgr,o and rgr,i are the distances between the bearing
axle and the bearing groove at the outer and inner ring. The
coefficients of thermal expansion of the bearing inner and
outer ring material as well as of the rolling element material
are given by γm,i, γm,o, and γm,re. The mean temperatures of
the bearing outer and inner rings are given by θb,o and θb,i.

A further characteristic parameter describing the contact
conditions is the contact angle β. This parameter is related to
erad by Eq. 4.

cos β0ð Þ ¼ 1−
erad

2 � rgr;i þ rgr;a−2 � rre
� � ð4Þ

The initial manufacturing contact angle is given by β0
(Fig. 9a). For angular contact ball bearings of 70-, 719-, and
72-series, it is usually 15°, 20°, or 25°. An arrangement of
these bearings within an O-arrangement is the most common
configuration in main spindles [50]. For an O-arrangement,
the manufacturing contact angle β0 shifts towards larger
values as a result of the preload force Fpre, which is set during
spindle assembly (Fig. 9c). During bearing operation, the con-
tact angle varies as a result of external forces Fext, centrifugal
forces Fce, gyroscopic torques Mgt, and thermal expansion of
the bearing components (Fig. 9d). As a result of this load
spectrum, two different operating contact angles occur at the
inner bearing ring (βop,i) and at the outer bearing ring (βop,o).

According to Eq. 3, lower values of γ of the bearing com-
ponents lead to an increase of erad and thus to higher permis-
sible thermal load capacities of the bearings. In particular, the
thermally induced expansion of the bearing rings constitutes a
significant part of the reduction of erad [79]. Figure 10 illus-
trates the correlation between the temperature-induced varia-
tion of erad and the resulting increase of combined preload
Fcom according to [80] in terms of an O-arrangement with
bearing type 7014. Even a slight increase in the temperature
difference dθin/out by a few Kelvin leads to an increase in
preload of several kilonewtons.

By increasing Fpre resulting from decreased erad, a
tribologically induced reduction of bearing lifetime or even
sudden bearing damage can occur (Fig. 11, red paths).

Fig. 9 Geometric properties of an angular contact ball bearing
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Lowering the operating temperature of the lubricant by 10 to
15 K furthermore doubles the theoretical lifetime of the bear-
ing lubrication [81]. In Fig. 11, the failure mechanisms ac-
cording to [82] are illustrated. A stable operation of
the bearing is only possible when there is an equilibri-
um between supplied and dissipated heat to the bearing
components (green path).

With γ = 3·10−6 K−1 (silicon nitride, Si3N4), the coefficient
of thermal expansion of ceramics is significantly lower than
comparable conventional bearing materials (100Cr6, γ = 12·
10−6 K−1). However, ceramic bearing rings are unsuitable for
conventional motor spindles due to their comparatively low
fracture toughness and highmanufacturing costs. The increase
in n·dm values mentioned in Section 2 is instead mainly attrib-
uted to lower coefficients of thermal expansion of newly de-
veloped rolling element materials [15, 79].

Besides reducing erad, a further effect occurs when the tem-
perature of the inner rings increases. The thermo-elastic defor-
mation of the spindle shaft causes the inner rings to shift in
axial direction relative to the outer rings. For bearings in an O-
arrangement, this results in increasing eax. This effect is insig-
nificant when the initial distances between the bearings are
small. However, if this distance increases, the potential
temperature-induced axial displacement increases as well.
For rigidly adjusted O-arrangements, this effect leads to

decreasing Fpre and increasing spindle compliance. Due to
the significant influence of heat on Fpre, bearings in spindles
for very high speeds often cannot be adjusted rigidly. Such an
adjustment, however, offers advantages in terms of stiffness,
costs, and assembly space [50].

To reduce the thermally induced effect on the bearing pre-
load, bearings or bearing packages are elastically adjusted.
Elastic elements such as spiral or disc springs are implemented
in the force flux. A disadvantage of elastic adjustment is the
increase in axial compliance due to the integration of these
elements. Furthermore, it is possible that axial movement may
be restricted by fretting [50]. Because of centrifugal effects
and the associated jamming of the bearing fits, a constant
bearing preload cannot always be assured. Thus, elastically
adjusted bearing arrangements can have similar properties as
rigidity adjusted arrangements [77]. The effect of decreasing
erad can be influenced only to a limited extent by using elas-
tically adjusted arrangements since only the variation of eax
can be compensated this way [50]. The performance limit of
bearing arrangements is therefore primarily determined by the
increase in preload resulting from increasing dθin/out.
Excessive cooling of the bearing outer rings is consequently
not a suitable measure to increase the spindle performance. If
cooling is too intense, erad can decrease during the operation,
and thus, an increase in contact pressure is facilitated. To
increase the maximum speed, the temperature rise of the inner
bearing rings must be reduced. Consequently, cooling the in-
ner bearing rings is the key to increasing spindle speed [77].

3.3 Influence of thermal load on motor performance

The motor converts electrical energy into mechanical energy.
Heat is generated as a result. Summaries of detailed causes are
given in [10, 83–85]. In motors, the following losses occur:

– I2R losses (copper losses) in the stator circuit, caused by
the current and ohmic resistances of the windings,

– iron losses due to induced eddy current and hysteresis
losses,

– friction losses due to the overcome of tribological resis-
tances of air,

– stray load and other losses caused by the magnetization of
the conductor periphery and not purely sinusoidal supply
of the motor by the frequency inverter.

In Fig. 12 (left), the proportions of these losses are illustrat-
ed for a PMM with an input power of 37 kW according to
[83]. In addition to the mentioned losses, additional I2R losses
occur in the rotor circuit of IM (Fig. 12, right). I2R losses of
the stator and rotor together make up the majority of the total
heat loss [83, 85]. Total power losses of several kilowatts can
occur [61, 76]. Due to the I2R losses in the rotor, the rotating
spindle components are subjected to significantly higher

Fig. 10 Correlation between temperature difference, radial clearance, and
preload according to [80]

Fig. 11 Tribologically induced reduction of bearing life of rolling
bearings according to [82]
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thermal loads when IM are used. An increasing motor tem-
perature resulting from these losses affects the motor efficien-
cy negatively. In [86] it is shown that the efficiency of a PMM
decreases by about 4% with an increasing permanent magnet
temperature from 20 to 100 °C. In [87], the influence of the
coil temperature on the efficiency of an IM with an output of
3.7 kW was investigated. A decrease of the coil temperature
by 10K results in an efficiency increase of 0.25% at 100% and
0.5% at 125% of the rated load.

According to DIN IEC 34, there are permissible maximum
temperatures at the hottest spots of the winding ends. The
temperature of the winding ends is the limiting thermal factor
when operating a motor [88, 89]. If maximum allowable tem-
peratures are exceeded, the motor potentially fails. High tem-
peratures also accelerate the aging of the materials used for
winding insulation. This increases the probability of motor
failure [90]. The correlation between motor lifetime and max-
imal winding temperature θW is shown in Fig. 13 according to
the four insulation classes of IEEE standard 117 [91]. Modern
high-performance spindles usually have insulation class F.

When using PMM spindles, the rotor heats up due to heat
flows from the bearings or the stator. Excessively high tem-
peratures can lead to demagnetization and thus to permanent
damage of permanent magnets. An irreversible degradation of
the magnetic properties is already observed at a temper-
ature of 130 °C [92]. High motor temperatures can
therefore completely jeopardize spindle operation and
result in spindle failure during operation.

3.4 Influence of heat on manufacturing time

Another important factor for high precision manufacturing is
the required time to achieve a thermally stable state. For the
given geometry and material data, the temperature evolution
θheat(t) during the warm-up period of a body can be described
by Eq. 5 according to [50].

θheat tð Þ ¼ θstat− θstat−θ0ð Þ � e− ɑ�A
ρ�V�c�t ð5Þ

The temperature development as a function of time θcool(t)
during the cooling period is calculated according to Eq. 6.

θcool tð Þ ¼ θstat þ θstat−θ0ð Þ � e− ɑ�A
ρ�V�c�t ð6Þ

For simplification purposes, a homogeneous heating and
cooling of the body is assumed. Heat transport by radiation
is neglected. In these equations, θstat is the body temperature at
the thermally stable time t = tstat and θ0 is its initial temperature
at t = 0. The convective heat transfer coefficient at the surface
A of the body with the volume V, the density ρ and the specific
heat capacity c is given by α.

A system is in a thermally stable state if, despite increasing
time, no significant temperature variation can be observed. A
commonly used value for this temperature alteration does not
exist. In practice, Δθlim = 0.1 or Δθlim = 1.0 K are often
assumed for the still permissible temperature change. The time
tstat, which is required to heat a body to a thermally stable
state, can be determined by converting Eqs. 5–7.

tstat ¼ −
ρ � V � c
α � A � ln θstat−Δθlimð Þ−θstat

θ0−θstatð Þ
� �

ð7Þ

Here,Δθlim is the individually definable value of tempera-
ture changes that are still permissible. In Fig. 14 (top), an
exemplary heating and cooling sequence for a C45 shaft with
a diameter of 50 mm and a length of 300 mm is shown. The

Fig. 12 Ratio of heat losses by type of loss according to [83]

Fig. 13 Correlations between motor lifetime and winding temperature
according to [91]

Fig. 14 Influence of convection on the time to reach a thermally steady
state
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shaft is heated from an initial temperature θ0 = 20 °C to θstat =
60 °C. Forced convective heat transfer caused by rotation is
assumed with α = 100 W/(m2·K). According to Eq. 7, a time
of about 45 minutes is obtained for heating and cooling when
a temperature limit value of Δθlim = 0.1 K is assumed. The
required times are significantly influenced by the value for α.
In Fig. 14 (bottom), the effect of varying α on the time re-
quired to reach a thermally stable state is shown. If α is dou-
bled, the required time for cooling tstat,cool is halved. From
these correlations, it becomes clear that the required time to
reach a thermally stable state depends on the tempera-
ture difference θstat − θ0. The greater this difference, the
longer the time required to reach a steady state.
Moreover, this time increases if the amount of heat
dissipated convectively from a system decreases.
Consequently, an increase in cooling performance en-
ables an earlier achievement of a thermally stable state.

To reduce the influence of instationary heat flow, warm-up
cycles are often used in practice [33]. The spindle rotates at
defined speeds according to a specified speed-time profile.
Machining of the workpiece does not begin until the warm-
up phase has ended. The higher the spindle temperatures, the
longer the warm-up cycle required to achieve a stable state.
This in turn reveals that the level of the resulting temperature
has a significant influence on the non-productive time of a
manufacturing process.

4 Cooling concepts for motor spindle
components

A large number of cooling strategies are available to reduce
undesired effects due to thermal loads. The following section
provides an overview of cooling concepts that have been de-
veloped or considered in recent decades. A distinction is made
between motor (4.1), bearing (4.2) and shaft cooling (4.3)
concepts. However, it must be noted that due to thermal cou-
pling of spindle components, variations of local temperatures
of one component inevitably also influence the temperature
field of other components [2].

4.1 Cooling of spindle motors

The existing concepts for cooling spindle motors differ con-
siderably in terms of their operation principle. In the follow-
ing, a distinction is made between passive (Section 3.1.1) and
active (Section 4.1.2) approaches. Passive approaches are
measures in which the body being cooled is not directly
cooled by an externally applied cooling media. In active
approaches, a cooling media is directly applied in such
a way that a corresponding reduction of the target body
temperature is achieved.

4.1.1 Passive motor cooling

Cooling solely by passive measures is conceivable, especially
for small motors with low torque and low bearing friction
losses (e.g., dressing or grinding spindles). In such cases, the
effect of convection to the surrounding air is often sufficient to
achieve a sufficient cooling effect. The cooling effect can be
augmented by increasing the surface area of the spindle hous-
ing or by adding lamellar structures to the housing [93]. Due
to the low heat transfer capacity of air and the prevalent lam-
inar flow conditions, however, the achievable temperature re-
duction is minor [94]. Due to the high thermal load on the
winding ends, measures to reduce these loads are usually im-
plemented already during the design phase of a motor. Such a
measure is the optimization of the winding cross sections and
winding number to reduce winding losses. In addition, the
stator slots and the winding ends can be thermally coupled
to heat sinks (e.g., cooling channel sleeves). The heat transfer
from the motor core can also be increased by applying casting
compounds with heat-conducting fillers and high dielectric
strength (e.g., powdered aluminum nitride). Another passive
measure is the use of thermally optimized sheet materials [10].

Heat transport also occurs throughout the motor air gap.
This heat transfer has a significant influence on the tempera-
ture within the drive [10]. Since the rotor of IM usually ex-
hibits higher absolute temperatures, heat is transferred from
the rotor to the stator. In the case of PMM, the heat transfer can
also occur inversely due to the generally lower rotor temper-
ature [95]. The heat transfer between the rotor and stator in-
creases significantly with increasing motor speed. Reducing
the air gap width from 0.6 to 0.3 mm only leads to marginally
increasing heat transfer [10]. With small air gap widths, how-
ever, additional losses are caused which increase with the
product of the number of stator slots and rotational speed
[96]. Measurements carried out on a 7-kW IM spindle with
a maximum speed of 36,000min−1 revealed that by increasing
the air gap width from 0.175 to 0.350 mm, additional losses
can be reduced by more than 5% during idling and by more
than 10% under load conditions. Consequently, there is an
optimum between the hysteresis losses resulting from
remagnetization and the current heat losses [10].

Heat losses can also be influenced by the type of supply.
During motor operation, magnetization losses occur in the
iron as a result of magnetic fluxes with frequencies of the
voltage harmonics and harmonics with the switching frequen-
cy of the inverter. In [97], it is shown that these losses can be
decreased by reducing the switching frequency and inverter
input voltage. When operating at rated power, on the other
hand, the total motor losses decrease with increasing
switching frequency of the inverter. The waveform of the
voltage curve is more favorable regarding the overall motor
losses. The low-order harmonics, which propagate significant
currents, become smaller. Particularly in the rotor, current

Int J Adv Manuf Technol



displacement effects do not have as much effect in this case. In
[98], the effect of supply pulses on the temperature field of a
PMM spindle with a maximum power of 17.5 kW and a max-
imum speed of 54,000 min−1 is investigated. A three-point
inverter with 64 kHz, a two-point inverter with 8 kHz, and a
two-point inverter with 16 kHz switching frequency are con-
sidered. When supplying with the two-point inverter (8 kHz),
temperatures of up to 100 °C occur in the rotor. When sup-
plied with the three-point inverter, only approx. 45 °C is
attained. In [10], current and voltage waveforms of different
frequency inverters are compared with each other. Compared
with an optimal sinusoidal supply, supplies with PWM, PAM,
and PAM-PWA signals lead ascendingly to increasing heat
losses in the rotor. The resulting increase in motor perfor-
mance, however, is at the expense of decreasing efficiency.
The effect of the supply on the thermal load on the spindle can,
however, be improved by using suitable filter techniques.
Such an approach has been patented in [99]. However, a quan-
titative evaluation of this principle is not known. Such supply-
technical approaches for decreasing heat losses are technolog-
ically largely depleted nowadays. The acquisition costs for
required high-performance converters are, however, high.
Therefore, mostly less performant but inexpensive converters
are used in practice.

A variety of passive cooling concepts for cooling conven-
tional electric IM using heat pipes can be found in the litera-
ture. Heat pipes are evacuated pipes containing a certain
amount of a liquid (usually deionized water). This liquid evap-
orates at the warmer end of the pipe and then condenses at the
colder end. As a result, heat is removed from the evaporation
area. The condensed liquid is returned to the location of higher
temperature by gravity, capillary, or centrifugal forces. The
thermal conductivity of heat pipes can be up to several poten-
cies higher compared with a geometrically similar, metallic
conductor [10]. Such approaches can be found in [100–107].
In [105], a concept with 36 heat pipes in the stator of a con-
ventional IM is analyzed. The motor power loss of the stator
and rotor is 7.5 kW and 3.5 kW, respectively. The heat trans-
ferred through the heat pipes is convectively dissipated by an
air-cooling device. In comparison to an identical air-cooled
motor, the winding temperature could be decreased from 90
to 40 °C. In [104], a concept for cooling a conventional IM
based on eight L-shaped heat pipes embedded in the stator is
presented. As heat sinks, lamellar heat exchangers are
mounted on the ends of the heat pipes. The heat exchanger
convectively dissipates the heat at the rear end of the motor
housing. This approach reduces the surface temperature of the
housing from 102.2 to 68.4 °C at a thermal motor load of 150
W. However, cooling of machine tool spindle stators using
heat pipes is not known. A reason for this is that conventional
electrical motors are frequently used in stand-alone applica-
tions. Cooling of motor spindles can generally be achieved
comparatively simply and efficiently by using obligatorily

existing auxiliary cooling units instead. A passive approach
for cooling the motor of a spindle is presented in [108, 109] by
integration of thermoelectric Peltier elements. A Peltier ele-
ment is an electro-thermal transducer that generates a temper-
ature difference when a current flows or generates a current
flow when a temperature difference occurs. In preliminary
tests, the temperature of a reference measuring point could
be reduced from 64.3 to 41.5 °C at a heat load of 200 W
[108]. These modules also allow temperature control in case
of changing induced heat flow rates.

Passive approaches generally have low operating and
maintenance costs. In addition, no additional energy or re-
sources are required. Additional space required for the inte-
gration of these concepts is not necessary or is marginal.
However, the main disadvantages of passive concepts are
the comparatively low cooling effect and limited adjustability
of the cooling performance. Due to the small amount of heat
that can be dissipated, active cooling measures must be ap-
plied to spindles with high thermal loads.

4.1.2 Active motor cooling

For active cooling, the use of water with anticorrosive additive
is particularly widespread. However, air and oil are also used
as cooling liquids [110]. The amount of heat that can be dis-

sipated by a flowing liquid Q̇ is determined by Eq. 8.

Q̇ ¼ c � ρ � V̇ � θfluid;out−θfluid;in
� � ð8Þ

Thereby, θfluid,out − θfluid is the difference between the tem-
peratures of the inlet and outlet flow of the fluid. The flow rate

V̇ is the product of the fluid flow cross-section Afluid and the
average flow velocity vfluid. Water-based cooling is generally
more effective due to its higher specific heat capacity [10,
111]. With a value of 41.2 kJ/(kg·K) at 20 °C, it is significant-
ly higher than the heat capacity of air (1.005 kJ/(kg·K)) or
special cooling oil (~ 1.9 kJ/(kg·K)). Nevertheless, the appli-
cation of cooling oil is particularly popular in the warm and
humid Asian area. This is due to the oil's lower susceptibility
to microbial contamination.

Air-based cooling of motor spindles is only applied if the
occurring heat losses are low [110]. These systems are partic-
ularly attractive for applications with high-cost constraints due
to their comparatively simple design and easy maintainability.
An advantage of air-based cooling systems is a considerably
lower requirement for space of peripheral equipment (e.g.,
cooling unit). In [112], a concept for cooling a motor spindle
by means of a wide jacket cooling flow is proposed (Fig. 15a).
The air flows around lamellar sheets of the stator. Although
this cooling concept was implemented industrially [115], it
was later enhanced by water cooling due to low heat dissipa-
tion [116]. In [113], active cooling of a motor spindle housing
is achieved using a fan mounted at the rear end (Fig. 15b).
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This fan supplies ambient air from the spindle rear to the front
through axial ducts in the spindle housing. With this concept,
the temperature at the rear can be significantly reduced.
However, as the air warms up, the cooling effect on the front
area of the housing is small. In addition, this approach leads to
an increased acoustic pollution due to turbulent airflow. With
the knowledge that a turbulent flow improves the heat transfer
properties of fluids, an approach was researched in [114] that
took advantage of the Coandă effect (Fig. 15c). This effect
describes the induction of a secondary fluid flow through the
flow of a primary fluid flow. A perforated silicone tube is
placed at several points around the spindle housing and com-
pressed air is passed through.With this approach, the thermal-
ly induced spindle growth can be reduced by about 30%.
However, a considerable airflow rate of up to 200 l/min is
required to achieve this effect.

In [117, 118], liquid-based approaches for cooling a PMM
with a rotor diameter of 11 mm and a maximum speed of
280,000 min−1 are researched. By introducing 12 axial channels
between the stator windings, the winding temperatures can be
reduced by about 60%. By implementing a water-based annular
gap cooling between the stator windings and the air gap, the
temperature is reduced by about 70%. If the winding temperature
is limited to 80 °C, this approach can achieve a performance
increase of about 100%. In [119], the sheetmetal plane of a stator
stack is cooled by a fluid flowing through channels. This ap-
proach reduces heat generation in the stator by approx. 80%.
Already in [10], such an approach for cooling of spindle motor
winding ends is described as conceivable. These attachments
provide a high potential for cooling. However, design effort
and associated additional costs for such cooling systems are high.
For this reason, closed cooling circuits with circulating liquids
are widely used for the active cooling of spindle motors nowa-
days. The stator is cooled from the outside by means of a jacket
flow (Fig. 16). The design and manufacturing of jacket cooling
systems is comparatively simple. Due to the immediate
proximity to the stator, heat can be dissipated sufficient-
ly. An optimal thermal coupling of the cooling channel
sleeve to the stator is important.

Apart from chemical or physical properties of the fluid as
well as the flow velocity, the maximum dischargeable amount
of heat depends on the geometric properties of the cooling
channel. The height and width of the flow cross-section and
its curvature have an influence [10, 110]. The heat transfer
from the cooling channel wall to the fluid is also influenced
microscopically by surface properties [10, 120, 121]. Many
investigations of the geometric aspects of the cooling channels
have been carried out as they offer a wide range of optimiza-
tion potential (e.g., [80, 121–133]. In these studies, efforts are
made to improve the efficiency of cooling by optimizing the
macro- and micro geometry of the cooling channels. A fractal
arrangement of cooling channels in the spindle housing results
in a cooling efficiency about two and a half times higher than
with spiral channel geometry [129]. The pressure to be applied
to transfer the fluid can also be reduced several times by a
fractal arrangement. In [121], the influence of the surface
roughness of the cooling channels is investigated. It is found
that the heat transfer coefficient between cooling body and
fluid can be more than doubled if a mean roughness depth
of Rz = 100 μm is applied instead of an ideally smooth sur-
face. Effects of flow velocity are investigated in [134]. It is
found that the effect of vfluid on the resulting temperature de-
creases regressively with increasing vfluid. However, this effect
is no longer significant at velocities of vfluid > 1.5 m/s.

Active measures generally require more energy as a result
of additional or larger aggregates. This also implies potentially
higher acquisition and maintenance costs as well as additional
space requirements. Moreover, additional design modifica-
tions are necessary, e.g., for the integration of cooling chan-
nels. Nevertheless, active cooling of spindle motors is the
most common method for heat dissipation due to its superior
cooling performance.

4.2 Cooling of bearings

Whether bearings need to be specifically cooled depends on
the application-specific requirements of the spindle. Bearings
are not cooled if sufficient spindle functionality can be

Fig. 15: Air-based concepts for cooling spindles. Jacket cooling a) [112], fan cooling b) [113] and Coandă effect c) [114]
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expected despite the occurring temperatures. In these cases,
the heat dissipation due to heat transport through thermally
coupled components or by convection is sufficient. In addi-
tion, there is always a self-cooling effect of the bearings
through convection during rotation. This effect is particularly
noticeable if the bearings rotate at high speeds [8]. The elim-
ination of an additional cooling structure reduces spindle
manufacturing costs.

Bearings can be passively protected from thermal influ-
ences of the motor by heat shields or labyrinth seals (Fig.
17). In some cases, heat shields are additionally provided with
cooling channels [10]. However, since bearing inner rings are
thermally indirectly coupled to the motor by the spindle shaft,
such measures do not provide complete thermal protection.

The bearing and motor heat losses occurring during opera-
tion of modern high-performance spindles are often consider-
ably high so that active cooling is required. The cooling of the
bearing outer rings by liquid flowing through the spindle
housing is the most commonly used cooling technique [8].
In practice, the front spindle housing is kept at a definable
temperature. The primary objective of cooling the bearing
on the housing side is to reduce the time required to achieve
a stationary temperature field. Targeted cooling of the rear
bearing is often not required, since the heating of the rear
spindle section usually has only minor influence on the time
required to reach a thermally stable state.

A further possibility for actively reducing the bearing temper-
ature is the adjustment of lubrication parameters. For high-speed
spindles, oil-air lubrication is often used. An airflow is injected
through a nozzle between the inner and outer ring of the bearing.
The airflow carries small oil droplets. The oil is previously
discharged from a lubrication unit into the airflow in definable

time intervals. Wu et al. [135] and Li et al. [136] examine the
effects of lubrication parameters on the temperatures of high-
speed bearings. In these studies, it is shown that the outer ring
temperature of an oil-air-lubricated bearing can be reduced by
about 5 K by reducing the oil flowrate from 0.08 to 0.02 ml per
lubrication cycle. An increase in the lubrication interval from 2 to
10 min leads to a quantitatively comparable temperature de-
crease. By increasing the air pressure from 0.3 to 0.5 MPa, the
temperature of the outer ring can be decreased by approx. 4 K.
By increasing the oil viscosity from 15 to 68 cSt, a quantitatively
similar effect is achieved. In [137] these variables are also varied
at a spindle speed of 30,000 min−1. By increasing the pressure
from 0.29MPa to 0.41MPa, a reduction of dθin/out of about 30%
can be achieved. A quantitatively similar effect is achieved by
increasing the lubrication interval from 0.2 to 90 s. However, the
effects of such bearing lubrication manipulations on the long-
term operation of the spindles are not investigated in these pa-
pers. The reduction of bearing temperature by variation of lubri-
cation parameters is economically interesting as no additional
equipment and maintenance costs occur. Nevertheless, the
achievable cooling effect is comparatively low.

A common method for active cooling of bearing is indirect
cooling by cooling the spindle shaft (see Section 4.3).
However, concepts in which the bearing inner rings are cooled
directly also exist. In [139, 138], a ring-shaped spacer is de-
scribed by which an oil-air-flow is guided onto the bearings
(Fig. 18). A similar concept was patented already in 1965
[140]. The spacer is installed between two bearing outer rings.
Hereby, dθin/out could be reduced by about 40% at a speed of
23,000 min−1. With undercooled air, it was even possible to
achieve negative values for dθin/out at lower speeds. A disad-
vantage of this concept, however, is the high demand for air
and a significant increase in the noise level. In addition, suf-
ficient air cleanliness must be ensured to prevent contamina-
tion of the bearings.

In general, the cooling of high-speed rotating components
by airflow is only effective to a limited extent. With increasing
relative velocity between rotating surfaces and the surround-
ing air, the impulse force of the air particles within the bound-
ary layer of the rotating surface increases. As a result, an air jet
directed at a rotating surface is tangentially deflected.
Consequently, the cooling effect decreases with increasing
rotational speed [141].

Fig. 16 Jacket cooling of a modern motor spindle

Fig. 17 Example for an application of a heat shield Fig. 18 Oil-air cooling by spacer [138]
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4.3 Cooling of spindle shafts

As already described in Section 3, a temperature increase of
rotating components leads to a variety of undesired effects. In
particular, the stiffness and the achievable maximum rotation-
al speed are limited. In O-arrangements, the preload generally
increases as a result of a temperature rise of the inner rings and
the shaft. This preload change must already be taken into
account during the design phase of a spindle. For this purpose,
the initial bearing preload is initially reduced so that a certain
preload limit value is achieved under maximal thermal and
mechanical load. As a result, spindle compliance is increased
over a wide operating range especially at lower speeds. By
cooling the shaft or the bearing inner rings, a higher initial
bearing preload and thus a lower compliance of the shaft-
bearing-system can be achieved. It is also possible to achieve
a higher maximum speed with the same or even higher initial
bearing preload. These correlations can be seen qualitatively
in Fig. 19. The cooling of the shaft is therefore an effective
measure to increase the performance of spindles. An example
of a passive design approach for cooling spindle shafts is the
application of labyrinth seals proposed in [10] (Fig. 17). Their
primary purpose is the protection against contamination of the
spindle. However, the design of the air gap geometry can also
be used to improve the heat transfer from the rotating system
to the housing [10]. Nevertheless, a quantitative evaluation of
the cooling effect of labyrinth seals is not known. Another
passive approach for cooling of rotating shafts is the applica-
tion of heat pipes. Before concepts for the integration of heat
pipes in motor spindles were considered, a number of similar
approaches for cooling conventional electric motors were de-
veloped (Fig. 20). There is a series of studies and patents in
which heat dissipation is achieved by means of lamellar heat
exchangers rotating with the shaft [100, 105, 142–149]. In the
patent application [143], an approach is shown in which a heat
pipe is inserted in the middle of an electric motor shaft (Fig.
20a). In [95, 150–154], the shaft has fluid-filled cavities. This
eliminates the actual heat pipe wall and thus additional

thermal resistances. In [152], cooling occurs within a spray
chamber sealed towards the motor. Coolant is sprayed directly
onto the shaft by a nozzle (Fig. 20b). In [150], a helical struc-
ture serves as a heat sink that conveys air through the engine
during rotation (Fig. 20c). This allows the available motor
power to be increased by 15% without an increase in winding
temperature. An approach combining a helical structure and
cooling fins on a motor shaft can be seen in [155]. In [151],
disc-shaped fins are installed at the front end and a fan at the
rear end of a motor. In the rear end, air is blown onto the shaft.
Hereby, a motor with a maximum speed of 13,500 min−1 and

Fig. 19 Qualitative illustration of the influence of shaft cooling on the
performance increase in spindles

Fig. 20 Cooling of motors by applying a heat pipe in the center of the
shaft. Heat sink by a rotating fins [143], b spray cooling [152], and c
helical cooling structure [150]
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a rotor power loss of 44 W is cooled. The rotor temperature
can thus be reduced from 130 to 98 °C.

Such shaft cooling systems were mainly developed or con-
ceived in the 1970s and 1980s and later transferred to appli-
cations in motor spindles. Judd et al. [156] investigated the use
of heat pipes for bearing cooling within the center of a ma-
chine tool spindle shaft at a maximum rotational speed of
2,778 min−1. The condensation zone of the heat pipe was
cooled with ice and water. A temperature decrease of around
50% was achieved. The cooling effect was found to be negli-
gible when environmental air was used instead. In [157], an
annular heat pipe within a shaft axis is used (Fig. 21a). The
heat pipe has inclining condensation zones using centrifugal
forces to support fluid return to the evaporation zone. With
this approach, the maximum shaft temperature was decreased
by around 40% at a maximum speed of 24,000 min−1. In [42,
158] a spindle with several eccentrically rotating heat pipes in
the spindle shaft is presented and investigated experimentally.
The maximum temperature of the spindle could be reduced by
35%. In [159, 160] the same authors present an alternative
approach in which a cavity of straight holes connected to each
other by annular channels and radial holes is manufactured
into the spindle shaft. This cavity is filled with fluid and is
evacuated afterwards. The experimental results in [160] re-
vealed a temperature decrease of the heat pipe evaporation
section from 99 to 57 °C (− 42%) for a heating load of
150 W and at a rotational speed of 1,000 min−1. An arrange-
ment of several eccentrically rotating heat pipes is also sug-
gested in the utility model [161] (Fig. 21b). Several heat pipes
eccentrically rotate within a gear-driven spindle. Between the
bearing locations, a lamellar cooling structure is located as a
heat sink. A cooling medium is streaming onto a lamella struc-
ture through openings in the housing. A technological evalu-
ation of this concept is not known. A further implementation
of a combination of heat pipes and lamellar cooling structures
can be seen in [27] (Fig. 21c). Here, 15 heat pipes rotate in the
front area of an IM spindle shaft. The considered spindle has a
maximum power of 11 kW. Heat is transported from the front
bearings to a fin-shaped heat exchanger in the middle of the
bearings. Heat from the motor and from the rear bearing is
conducted to a second heat exchanger system through further
eight heat pipes in the rear of the shaft. Contrary to the previ-
ouslymentioned concepts, however, non-rotating fins coupled
to a heat sink are used in this concept. Heat is transferred from
the rotating fins through an air gap of 0.2 mm (front) and
0.3 mm (rear). The heat is finally dissipated from the system
by conventional jacket cooling. As a result, spindle growth
can be reduced by 47% at a speed of 20,000 min−1. The tem-
perature difference dθin/out of the fixed bearing close to the
motor is reduced by up to 66%. In addition, the time required
to achieve a thermally stable state is reduced by an average of
56%. The latter concept does not require an additional coolant
supply, which must be sealed separately.

Although a significant decrease of thermal load is possible
through the introduction of heat pipes, such cooling concepts
are not known in commercially available spindles. The reason
for this are high costs due to required deep bores [162]. In
addition, the achievable cooling capacity is still low compared
with liquid-based concepts.

The described passive cooling measures provide particular
economic and ecological advantages. Due to the absence of
additional aggregates, the operating and maintenance costs of
these approaches are low. However, the cooling performance
and cooling adjustability of these approaches are low com-
pared with active concepts. Active shaft cooling systems are
applied when the expected heat load is particularly high or a
particularly high manufacturing accuracy is required. Cooling
is achieved by a fluid flowing through the shaft. The fluid is
therefore fed through a rotary joint into one or more cooling
channels within the shaft. There are also rotary joints that are
simultaneously used to feed cooling lubricants into the pro-
cess zone through the shaft. In Fig. 22, the design of such a
three-channel feedthrough is shown. The heated liquid is con-
veyed through the rotary joint or through an outlet in the
spindle housing back into the cooling unit. In the patent

Fig. 21 Concepts for cooling of spindle shafts with heat pipes according
to a [157], b [161], and c [27]
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specifications [163] (Fig. 23a) and [164], it is suggested that a
cooling fluid circulates through a threaded groove on the shaft
surface. In [165], this concept and its cooling effect, necessary
cooling oil pressure and the sealability by air seals is investi-
gated using fluid simulations. In this study, a modified cooling
concept is also investigated. Only the front area of the spindle
between the bearings is cooled (Fig. 23b). Axial bores are
located in the shaft through which the cooling oil passes.
This concept is also investigated in [166] with regard to its
cooling effect and is patented in [167]. Through this approach,
a decrease of spindle elongation by about 50% and a decrease
of the time to reach a thermally stable state by about 80% is
achieved with an oil flow rate of 3 l/min. However, in [165], it
is stated that this concept is clearly susceptible to leakage and
bubble generation in the cooling oil. In addition, a significant
increase in oil pressure required for cooling is necessary with
increasing speed. The utility model [168] presents a similar
concept. Here, however, cooling is done using gaseous media.
By means of gap seals, a pressure gradient is built up in the
front area of the spindle. This leads to a through-flow of the
shaft bores below the fixed bearings. However, an evaluation
of this approach is not known. In [169, 170] a concept is
described in which the spindle shaft is provided with several
axial cooling channels. The cooling fluid is fed into the shaft
by means of a rotary joint integrated into the spindle. This
concept allows the dynamic compliance of a 13.5 kW spindle
with a maximum speed of 42,000 min−1 in radial and axial
direction to be reduced by 16% and 70% respectively.

However, in this article the rotary joint is evaluated as a “crit-
ical key component” due to leakage. In [80, 171], a similar
shaft cooling principle is presented based on the patent in
[172] (Fig. 24a). By reducing the temperature difference be-
tween the inner and outer rings of an angular contact ball
bearing pair (7014E, O-arrangement), erad under load is sig-
nificantly increased [80]. It is pointed out that implementing a
rigidly preloaded arrangement by applying this cooling con-
cept is possible. In [171], the effects of cooling on the perfor-
mance increase of a motor are described. Increased torques are
achieved by an electrically favorable design of the sheet metal
sections. The resulting higher thermal load on the rotor is
reduced by means of shaft cooling. The necessary length of
an IM in relation to the torque is thus only 15% higher than the
required length of a PMM with a comparable torque of 800
Nm. Cooling of the shaft also reduces the total thermal growth
of the spindle by about 70%. In the patent specification [173],
an approach is shown in which oil is passed through the spin-
dle shaft (Fig. 24b). The temperature-controlled oil not only
acts as a coolant, but also lubricates the bearings simulta-
neously. The oil is guided through small bores in the bearing
inner rings into the bearing contact zone. Centrifugal forces
during rotation facilitate this transport. Using this concept,
dθin/out can be controlled. This technology is used to equip
motor spindles with particularly high thermal stability require-
ments. The spindle housing is cooled by a second cooling
circuit, but with the same oil. A disadvantage of this concept

Fig. 22 Assembly of a three-channel rotary feedthrough

Fig. 23 Shaft cooling according to [163] (a) and [165, 167] (b)
Fig. 24: Liquid-based concepts for spindle shaft cooling according to
[172] (a) and [173] (b)
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is the susceptibility to clogging of the lubrication channels in
the bearing inner rings by microscopic metal particles in the
oil. These particles can, for instance, contaminate the fluid
circuit as a result of a spindle crash. Moreover, the required
bearings with bores are expensive custom-made products.

Shaft cooling involving liquid media provides high cooling
performance. The adjustability of the cooling capacity is like-
wise high. Nevertheless, there is a number of disadvantages
associated with these concepts, e.g., necessary expensive deep
drilling operations for the channels. Bubble generation in the
coolant flow can cause the shaft to become unbalanced during
operation. In addition, such concepts are susceptible to leak-
age. Especially at high relative speeds between seal and
sealing surface, the sealing of rotary joints is difficult for dy-
namic reasons [10]. At low relative speeds between seal and
sealing surface, highly viscous liquids, in particular oil, are
used. Due to the high viscosity, the leakage flow can be re-
duced. However, machine cooling systems are often operated
with water-based liquids. As a result, an additional oil unit
may be required to cool the spindle shaft. The required energy
of such aggregates is considerable [174]. Depending on the
design of the rotary joint, liquids with a lower viscosity are
required at higher relative speeds. Otherwise, the required feed
pressure may increase significantly [165]. However, the lower
viscosity leads to an increased leakage flow. Leakage from
rotary unions is the second most common source of failure
when operating spindles [175]. As a result, the operation of
rotary joints can only be ensured by time-consuming mainte-
nance work, which results in machine downtime. Due to the
complex design of fluid-based shaft cooling systems and re-
quired peripheral equipment, the costs of these systems
amount to approximately 15–30% of the total spindle costs.

5 Future challenges

Irrespective of the cooling concept, a basic distinction can be
made between:

– spindles with devices for cooling the stator,
– spindles with devices for cooling the stator as well as for

temperature control of bearing outer rings, and
– spindles with additional liquid-based cooling of the shaft.

The extent of cooling measures depends on the application-
specific accuracy requirements of the spindle. If requirements
are low, the cost advantages of a spindle without a complex
cooling system prevail. The technological benefit achievable
with a cooling system is then deliberately neglected.
Commercially available modern high-performance spindles,
which are not equipped with fluid-based shaft cooling, gener-
ally have no device for targeted cooling of the shaft or the
bearing inner rings at all. However, there is also a series of

scenarios in which the requirements for manufacturing accu-
racy are neither very low nor very high. In such cases, the
question of the necessity of targeted shaft cooling from a
monetary point of view is often not easily answered. Due to
the high acquisition and follow-up costs of liquid-based shaft
cooling systems, decisions are often made not to additionally
cool the shaft in such cases. In marginal situations, however, a
non-existent shaft cooling can threaten the process ability of
the spindle. In such cases, the process parameters are softened
to reduce thermal loads. The theoretically available spindle
power is not utilized. The result is decreasing productivity.
Machine tool users must therefore calculate very precisely
whether the current and future economic situation requires
and permits the acquisition of a spindle with cost-intensive
cooling. Consequently, there is a technological-economic def-
icit between cost-effective cooling systems based on jacket
cooling and systems with liquid-based cooling of the spindle
shaft. In the future, this deficit will have an even greater im-
pact on manufacturing practice. In Sections 2 and 3, two sig-
nificant trends in manufacturing practice became apparent:
Demands for accuracy of the workpieces to be manufactured
are increasing (Fig. 1). However, a continuing trend towards
increasing power density and increasing maximum speed is
observed (Fig. 3). Taking into account the correlations shown
in Section 3, a corresponding conflict of objectives between
increasing machining accuracy, process efficiency, and in-
creasing thermal loads on the spindle is evident. As a result,
increasing technological potential for improving the efficiency
of manufacturing processes cannot be exploited due to limit-
ing thermal effects.

If manufacturing accuracies are to be maintained despite even
higher thermal loads, it is necessary to modify the design of
modern high-performance spindles and their operating strategies.
Essential instrument therefore are optimizations and new devel-
opments of concepts for the cooling of thermally exposed spindle
components. Due to the increasing power losses of the motor,
efficient concepts for the cooling of stator and rotor must be
further developed or brought into industrial practice. To achieve
higher speeds and higher initial bearing preloads, spindle bear-
ings and bearing concepts must be optimized. The optimization
of bearing cooling is an important factor in this respect.
Increasing the cooling capacity in the area of the bearing outer
rings, however, is not an appropriate approach. Instead, reducing
the temperature differences between the bearing inner and outer
rings must be achieved. The most promising approach for reduc-
ing the temperature difference is the cooling of the shaft and
bearing inner rings. In Section 4, existing and conceivable ap-
proaches were presented. For commercial applications, however,
only complex approaches based on fluid cooling are known.
Alternative concepts exist but they reveal significant deficits re-
garding achievable cooling performance, costs as well as energy
and resource efficiency. Consequently, cost-effective alternative
concepts for cooling the spindle shaft or the bearing inner rings
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must be developed. Therefore, the technological-economic defi-
cit between shaft-cooled and uncooled or outer-ring-cooled spin-
dles has to be narrowed or completely removed.

6 Summary

Technological advances in the fields of bearings, lubri-
cation, and the development of more powerful and effi-
cient motors have led to widespread market penetration
of motor spindles with roller bearings. Today, there are
noticeable trends towards higher maximum speeds and
motor power. Due to increased power density of motor
spindles, heat losses within the spindle increase. These
losses can cause a number of undesired thermal, ther-
mo-mechanical, and tribological effects. As a result, the
process capability of a spindle and thus the productivity
of a process can be reduced. To operate modern high-
performance spindles, it is therefore necessary to pro-
vide systems for cooling thermally exposed spindle
components. The measures to be taken and their extent
depend on the process-specific requirements of the spin-
dle system. In addition, there are various motives for
the development of cooling systems. These include the
need to keep absolute temperatures of the temperature
field low. The minimal temperature difference between
the inner and outer ring of a bearing must also be con-
sidered it is crucial to achieve higher speeds and imple-
ment more powerful motors. These motives have led to
research and development of a series of concepts for
cooling spindle components in recent decades. Such
concepts were presented in this article. The aspects ex-
plained as well as the most significant conclusions are
summarized in the following:

– A distinction was made between the cooling of motors,
bearings, and spindle shafts. In each case, a distinction
was made between passive and active approaches.

– It can be stated that passive measures have clear advantages
with regard to their acquisition and operating costs as well as
their resource efficiency. However, active cooling concepts
have become established in industrial practice due to their
fundamentally higher cooling potential.

– Fluid-based cooling systems with a closed cooling circuit
are widely used. These systems are used both for cooling
the stator and the bearing outer rings and for cooling the
rotor as well as the bearing inner rings. Indirect cooling of
these components by means of cooling channels in the
shaft is widely applied.

– Fluid-based shaft cooling systems are only used in cases
where particularly high demands are placed on process
stability and spindle reliability. High costs for these con-
cepts account for this. These costs can amount to up to

30% of the total cost of the spindle system. For this rea-
son, the majority of spindles on the market do not have
shaft cooling systems.

– If a spindle is not equipped with a shaft cooling
system, the rotating components of a spindle are
not specifically cooled. Such cooling is, however,
necessary to fully utilize the potential of modern
high-performance spindles. As a result, the perfor-
mance of a number of such spindles today is limit-
ed by the absence of the cooling of rotating
components.

In the future, it is probable that, as a result of the
trends towards higher spindle speeds and motor power,
raising the performance potential of spindles will not be
possible due to insufficient cooling of the rotating com-
ponents. In recent years, there has been a significant
increase in research and development activities in the
field of spindle cooling. However, efficient and more
cost-effective cooling concepts for the rotary compo-
nents must be developed and put into industrial practice.
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Nomenclature A, Surface; ae,Width of cut; Afluid, Flow velocity of fluid;
ap,Depth of cut; c, Specific heat capacity; CFRP, Carbon fiber reinforced
plastic; dT, End mill diameter; dθin/out, Temperature difference between
inner and outer bearing ring; e, Bearing clearance; eax, Bearing axial
clearance; erad, Bearing radial clearance; EM, Machining error; Fce,
Centrifugal force; Fcom, Combined preload; Fext, External force; Fpre,
Bearing preload force; Fpre,in, Initial bearing preload force; fz, Feed per
tooth; hl,ex, Average expected life hours; l, Length; lm, Measuring dis-
tance; Mgt, Gyroscopic torque; n, Rotational speed; NC, Numerical
Control; nz, Number of teeth; PM, Motor power; Q, Thermal energy; Q̇
, Heat flow; Ra, Arithmetic average roughness; Rz, Mean roughness
depth; rgr, i, Distance between bearing axle and bearing groove at inner
ring; rgr, o, Distance between bearing axle and bearing groove at outer
ring; rre, Radius of rolling element; rrw. i, Inner groove radius; rrw. o, Outer
groove radius; TCP, Tool center point; tstat, cool, Time to reach a colder
steady state; tstat, heat, Time to reach a warmer steady state; V, Volume; V̇
, Flow rate; vC, Cutting speed; vf, Feed velocity; vfluid, Flow cross-section
of fluid; α, Heat transfer coefficient; β, Contact angle; β0, Assembly
contact angle; βop, i, Operation contact angle at bearing inner ring; βop,
o, Operation contact angle at bearing outer ring; γ, Coefficient of thermal
expansion; γm, i, Coefficient of thermal expansion of inner bearing ring
material; γm, o, Coefficient of thermal expansion of outer bearing ring
material; γm, re, Coefficient of thermal expansion of rolling element
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material; θ, Temperature; θ0, Initial temperature; θb, i, Mean temperature
bearing inner ring; θb, o, Mean temperature bearing outer ring; θcool,
Temperature during cooling phase; θfluid,in, Temperature of inlet fluid;
θfluid,out, Temperature of outlet fluid; θheat, Temperature during warm-up
phase; θlim, Temperature limit value; θstat, Temperature at steady state; θW,
Winding temperature; κ, Bearing osculation; ρ, Density; χloss, Loss frac-
tion; ω, Angular velocity
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