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Abstract
This paper presents methods for damage detection in machined material on the basis of time series measured during milling
of glass-fiber–reinforced polymer (GFRP). Recurrence methods and different types of entropy have emerged as useful tools
for detecting subtle non-stationarities and/or changes in nonlinear signals. In this research, a recurrence plot, recurrence
quantifications, an approximate entropy, and sample entropy are used. By identifying changes in the cutting force measured
during the composite milling process, the damage occurrence has been detected. Firstly, the damage has been modelled as
the intentionally introduced hole with different diameters and depths in order to estimate the size detectable damages and to
select proper recurrence measures as damage indicators. Next, the experiments with the real damage have been performed
and the damage indicators have used.

Keywords Damage detection · Recurrence · Entropy · Nonlinear time series

1 Introduction

1.1 Composite defects and their detection

The machinability problem of steel (hard materials) and
composite materials is becoming more and more important
because production times are dramatically reduced due to
the much higher cutting parameters. The machinability can
be difficult to predict because machining has so many
variables. Generally, the machinability has been mainly
assessed based on tool wear (tool life), cutting forces,
power consumption, and surface finish. The prediction
of cutting forces during micro-milling based on the chip
thickness accumulation phenomenon is presented in [1].
The authors proposed a force model including the micro-end
milling kinematics, geometric errors of the machine tool–
toolholder–mill system, elastic and plastic deformations
of workpiece correlated with the minimum uncut chip
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thickness, and flexibility of the slender micro-end mill.
Moreover, their study includes the instantaneous area of
cut. This team’s next paper [2] presents analysis on
metrological relations between instant tool displacements
and surface roughness during precise ball end milling.
The new method describing the working part vibration of
ball end mills is proposed. The prediction of the surface
topography and optimization of the cutting parameters
for obtaining desired surface roughness are shown in [3].
Grossi et al. [4] described milled surfaces under machining
vibration (chatter). Analytical formulations to compute
surface quality are proposed.

Machining composites is different from machining
metals due to interaction with the cutting tool and is a
complex problem. Generally, composites are associated
with two or more different material components. Usually,
the composites have better performance from any of the
initial ones. The common set is the dispersion of the
reinforcement in a matrix which is stronger than the matrix.
However, the higher properties of a composites occur
when they are properly designed. The most used composite
materials are reinforced with fibers and therefore can be
highly anisotropic. The fiber component is very important
and is usually responsible for the improvement of the
matrix, and can be obtained via a wide range of methods,
including wet layup, spray-up, preimpregnated (prepreg)
layup, and others.
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The damages or defects in the composite materials can be
inadvertently produced during the manufacturing process or
in the course of normal use. The manufacturing process and
normal use cause a wide range of imperfections. They can
be located in an external or internal structure. The external
damages especially large (macroscopic) can be visually
inspected, such as dimensions, finish, and warpage. The
most important defects are deaminations (separations within
plies of a laminate), inclusions (foreign matter embedded),
porosity and voids (entrapped air and gas bubbles), impact
damage, fiber misalignment (distortion of the plies), fiber
wrinkling, fiber buckling, fiber breakage, core crushing, etc.
[5, 6].

In general, we have two basic methods for the detection
of defects and damages: destructive and non-destructive.
The main disadvantage of destructive method is that the
tested materials cannot be further used. Nevertheless, to
derive the size and position of defects, these methods
are widely used [7]. Tensile, bending, and impact test-
ing are some examples of destructive methods. The non-
destructive testing is a solution to assure safety without
destroying the components. Visual, ultrasonic, thermogra-
phy, radiographic, electromagnetic, and acousto-ultrasonic
are some common non-destructive methods. One of the
most used non-destructive methods is ultrasonic inspection
from which a two-dimensional map is received [8]. Ultra-
sound pulses are reflected by interfaces between materials
of different properties. In the case of defects, this can cause
a discrete reflection or transmission loss [9]. The most
commonly test is the C-scan map of the structure [10]. Gen-
erally, ultrasound methods are very sensitive to most types
of defects commonly found in composites. However, these
methods are useful if the response on a defective struc-
ture must be significantly different from that on a sound
structure. One of the newer methods is laser ultrasound gen-
eration, but the cost of its use is high. The radiography
inspection like neutron radiography (NR) or X-ray radiogra-
phy (XR) is used for detecting the fiber breaking, resin-rich,
or starved areas [11]. Optical and thermal methods are lim-
ited by the depth of penetration and more expensive than
classic ultrasound methods. Another method is the low-
frequency vibration test. This method for the sandwich
structures [12–14] is usually applied.

1.2 Nonlinear time series method

All earlier mentioned methods are based on the structural
analysis and ineffective when defects arise during the
manufacturing process. The different kinds of surface
and structural defects or damages may appear during the
machining process. Therefore, the method which would
allow detecting damages directly during the manufacturing
process would be very helpful and useful.

The interesting advanced technique is the nonlinear
time series analysis (NTSA). This was primarily because
most experimental time series were one-dimensional scalar
measurements. The millstone of the NTSA were papers of
Takens and Packard [15, 16], which reconstruct the full
dynamics of a complicated nonlinear system from a single
time series. The reconstruction, if properly done, can be
extremely useful because it guarantees to be topologically
identical to the full dynamics. Nonlinear concepts began to
be increasingly applied to complex systems from different
fields. The well-known NTSA methods are as follows:
Lyapunov exponent, information dimension, correlation
dimension, entropy, Poincare map [17–19], and recurrence
plots. Most of these methods are based on investigating
the evolution of trajectories in the phase space. The NTSA
can be applied in different engineering aspects; one of the
most promising is structural health monitoring (SHM) [20].
This is possible because the damage changes the material
properties. The SHM method is based on the observation
of a system response from sensors and is trying to catch
damage-sensitive features which are statistically analyzed.

One of the most interesting NTSA method is the recur-
rence plot (RP) method which has greater sensitivity to
changing dynamics than other methods. RP is the graphi-
cal representation of the recurrence states of a dynamical
system. The statistical analyses of the recurrence structure
are collectively referred as recurrence quantification anal-
ysis (RQA) and they form the core of RP techniques. A
crucial advantage of RP techniques over other nonlinear
methods is that they perform reasonably well even when
the length of the nonlinear time series is very short (even
50–100 data points) and in cases when the underlying sys-
tem is not sufficiently deterministic have proven useful in
characterizing their behavior [21]. Therefore, the RP and
RQA methods may be used in all types of signals including
periodic, non-stationary, and chaotic [22].

The recurrence methods are very popular in different
engineering branches. One of the uses is the monitoring
of chatter detection during the machining process [23].
The authors analyzed the nonlinear time series obtained
with increasing speed of milling process. They noticed that
the RQA parameters (particulary determinism) could be
used to improve diagnostics and invent a chatter feedback-
control procedure in the milling operation. Kecik et al.
[24, 25] have studied the stability of a high-speed milling
process of nickel superalloys. Their results show that the
best parameters to classify the kind of motion and find the
stability border are the divergence and the longest line.

Recurrence methodologies have also been used in
damage detection and damage analysis. Iwaniec et al. [26]
use the RQA method to analyze the change in dynamics
between cracked and uncracked metal and aluminum plates.
Nichols et al. [27] used multivariate RQA techniques to
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dynamical change analysis induced by a cut on the plate. A
recurrence-based entropy to construct a data-driven model
of ball bearing degradation is analyzed by Qian et al. [28].
Investigation of the corrosion of metal surfaces by RP and
RQA methods to distinguish different types of corrosion
dynamics is presented in papers [29, 30]. They showed that
the RQA parameters can be used for corrosion detection.

1.3 Motivation

Inspired by many successful applications of the RP and
RQA methods, this paper is intended to make use of recur-
rence methodology and study damage detection basis on the
milling forces. This paper is a continuation and significant
extension with new elements of our paper [31], where we
have studied the possibility of damage detection. Some of
the promising recurrence quantifications as damage indica-
tors have been selected. However, in previous our paper, we
analyzed the influence of only the damage diameter.

In this paper, we expanded our research and we analyze
both the diameter and depth of the damage. Moreover, two
new methods based on entropy analysis have been added.
The goal here is to extend the use of RP, RQA, and entropy
to detect damage in a composite structure.

2 Recurrence and entropy analysis

2.1 Phase space reconstruction

The analysis of phase space trajectories is a basic concept of
nonlinear data analysis. Recurrence plot (or recurrence dia-
gram) is a graphical tool based on phase space reconstruc-
tion which begins with a time-delay embedding of the data.
The dynamics of the nonlinear system can be described by
measured data consisted of one time series. This means that
the phase space of a dynamical system can not be obtained
from the measurement directly. The literature studies prove
that it is possible to reconstruct the entire dynamics of a
system from a relatively small number of analyzed data
[32]. This is because the different degrees of freedom of a
dynamic system interact with each other; the combination of
all other components is concealed in each observable quan-
tity through the main state vector components. Takens’ the-
orem [15, 18] allows the formation of N-dimensional vector
X(i) from the nonlinear time series. Assuming that the mea-
sured data are x(1), x(2), x(3), ..., x(n), the reconstructed
vector X(i) is defined as:

X(i) = {x(i), x(i + d), ..., x(i + (m − 1)d)},
i = 1, 2, ..., N − (m − 1)d, (1)

where m and d are called embedding dimension and
embedding delay, and i is a point in the reconstructed

m-dimension space. Embedding parameters d and m are
crucial to reveal the underlying dynamics of a complex
system. The most often used method is the Average Mutual
Information Function (AMI) for computing d [33], and the
False Nearest Neighbors (FNN) method for m [34]. One
chooses the first minimum location of the AMI function as
d . Second, the percentage of FNN function is calculated for
each m value. The parameter m is assumed to be found for
the first percentage of FNN function dropping close to zero.
Both methods are described in papers [33, 34] and in our
paper [31].

2.2 Recurrence plot

Based on the measured time series from the real process,
the reconstructed vector can be obtained from Eq. 1.
Introducing the threshold ε then a two-dimensional matrix
can be obtained by comparing the distance between the
vectors [35, 36, 38, 51]:

RPi,j (m, ε) = H(ε − ||X(i) − X(j)||), i, j ∈ N, (2)

where:
ε is the threshold,
‖ · ‖ is a norm (usually Euclidean or maximal),
H(·) is the Heaviside function.
ε depends on dynamic changes, representing the specific

length scale of focus. Usually, it is relative to the standard
deviation [39]. The norm parameter determines the size
and shape of the neighborhood surrounding each reference
point. The distance between the X(i) and X(j) states
defines whether each state is recurrent or not. If the distance
is smaller then ε at the time a black point is scored. After
all vectors are processed, the recurrence diagram is drawn.
The RP plot consists of single dots and diagonal lines, as
well as vertical and horizontal lines, and even bowed lines.
If the analyzed signal is deterministic, then the RP shows
lines parallel to the main diagonal.

2.3 Recurrence quantification analysis

The recurrence diagram is a rich qualitative description of
the nonlinear dynamics. However, the quantitative analysis
is difficult and requires more advanced techniques. Zbilut
andWebber [36, 37] described statistics of the RP plot based
on the line structures and point density. They introduced
a series of recurrence parameters: recurrence rate (RR),
determinism (DET ), and entropy (ENT ). The RP method
was further extended by Marwan et al. [40] with the
introduction of additional quantifications, such as laminarity
(LAM) and the trapping time (T T ). In 2000, Gao and Cai
[41] introduced recurrence times of the first (T 1) and second
(T 2) types. Moreover, Marwan et al. [42] propose the
clustering coefficient (CC) and the transitivity (T RANS).
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Mathematically, these indicators are calculated based on
equations listed in Table 1. RR, DET , ENT , and Lmax

variables are based largely on the lengths, number, and
distributions of diagonal lines. Physically, RR means the
density of recurrence points in the RP plot. Determinism
is the ratio of recurrence points that form the diagonal
structure to all recurrence points. DET characterizes the
predictability of a time series. Entropy is the Shannon
entropy of the probability distribution of the diagonal lines.
This parameter can be used to estimate the complexity of the
dynamics system. The information about vertical lines can
be analyzed by LAM , T T , and Vmax . Laminarity reflects
vertical structure points and indicates the laminar phases.
T T contains information about the amount and the length
of the vertical structures, and Vmax measures the longest
vertical line.

The total procedure of the RP and RQA in Fig. 1 is
shown. The measured nonlinear signal is normalized. Each
time series was subjected to the process of normalization by
a common method: normalizes the signal to mean (−) and
standard deviation (σ ).

Next, the embedding parameters (d and m) and threshold
(ε) have been calculated/estimated and the phase space has
been reconstructed. RP and RQA methods can be used for
all types of nonlinear signals.

2.4 Entropy-based complexity measures

The entropy has emerged as an appropriate complexity
measure in the study of nonlinear time series in many
fields of science, information theory, statistical mechanics,
chaos theory, and neural networks [43]. The change of
entropy is inversely related to the change of free energy.
In the literature, we can meet different types of entropy:
Shannon, minimum and maximum, Renyi, sample, spectral,
approximate, and others [44]. Two commonly used methods
are the approximate entropy (ApEn) and the sample
entropy (SampEn) providing a statistic to assess complexity
from the noisy short-length data [45]. ApEn entropy was
developed by Pincus [46] as a measure of regularity to
quantify levels of complexity within a time series.

The approximate entropy is defined as:

ApEn(m, ε, N) = φm(ε) − φm+1(ε), (3)

where the probability of pattern of length φm(ε) and the
correlation sum Cm

i (ε) are estimated from:

φm(ε) = 1
N−(m−1)d

N−(m−1)d∑

i=1
lnCm

i (ε),

Cm
i (ε) = 1

N−(m−1)d

N−(m−1)d∑

j

H(|Xi, Xj | − ε). (4)

Table 1 Quantification of recurrence plots [36, 39, 41]

Quantification Equation Description

Recurrence rate (RR) 1
N2

∑N
i,j=1RPi,j (m, ε) Percentage of darkened points

Determinism (DET )
∑N

l=lmin
lP (l)

∑N
i,j=1RPi,j (m,ε)

Percentage of points forming diagonal lines

Entropy (ENT ) -
∑N

l=lmin
P (l)ln(P (l)) Entropy of the probability distribution of diagonal lines

Laminarity (LAM)
∑N

v=vmin
vP (v)

∑N
v=1vP (v)

Fraction of recurrence points forming vertical lines

Trapping time (T T )
∑N

v=vmin
vP (v)

∑N
v=vmin

P (v)
Average length of vertical lines

Longest diagonal line (Lmax ) max({li; i = 1, ..., Nl} Length of the longest diagonal line

Longest vertical line (Vmax ) max({vi; i = 1, ..., Nv} Length of the longest vertical line

Averaged diagonal line (L)
∑N

l=lmin
lP (l)

∑N
l=lmin

lP (l)
Length of average diagonal line

Recurrences time (T 1) |{i, j : xi , xj } ∈ Ri}| Time distances of recurrence points in vertical direction

Recurrences time (T 2) |{i, j : xi , xj } ∈ Ri, xj �∈ Ri}| Time distances of recurrence points in vertical direction

Recurrence time entropy (RT E) − 1
lnVmax

∑Vmax

v=1 Hv(v)lnHv(v) Measure quantifies the extent of recurrences

Transitivity (T RANS)
∑N

i,j,k=1RPi,j RPj,kRPk,i
∑N

i,j,k=1RPi,j RPk,i

A quantitative measure of dynamical complexity

P(l) and P(v) represent the distribution of the lengths of diagonal and vertical lines, respectively. Nl and Nv are numbers of diagonal and vertical
lines in the RP. Ri are the recurrence points which belong to the state xi , the Hυ(v) is distribution
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Fig. 1 The framework of recurrence analysis

The term |Xi, Xj | is a measure of the maximum distance
between Xi and Xj . The computation of ApEn requires
the selection of embedding parameters m, d , and threshold
ε (like in phase space reconstruction). Generally, we can
say that the ApEn measures the logarithmic likelihood that
two points (Xi, Xj ) that are close in an m-dimensional
space remain close in an (m + 1)-dimensional space. The
disadvantages of ApEn are that it is strongly dependent on
the signal length and is often lower than expected for short
records and additionally lacks relative consistency [47, 48].

To overcome the disadvantages of ApEn, the sample
entropy was proposed [49] by Richman et al. In order to
calculate the SampEn, the probability φm(ε) and φm+1(ε)

that two sequences match for m points is computed by
counting the average number of vector pairs:

φm(ε) = 1

N − md

N−md∑

i=1

Cm
i (ε). (5)

Then, the SampEn can be calculated as:

SampEn(m, ε, N) = −ln
φm(ε)

φm+1(ε)
. (6)

Sample entropy is independent of the length of time series
and usually displays relative consistency under various
conditions [47].

3 Experiment

3.1 Milling test

The milling processes have been conducted on machin-
ing center Avia VMC800HS, equipped with Heiden-
hain control. The experiment was performed using Ken-
nametal cutter with a diameter of 20 mm and symbol of

20A02R028A20ED10 (dedicated for composites). The cut-
ter has indexable inserts covered by polycrystalline diamond
(manufacturer’s grade KD1410). The insert parameters
were as follows: insert included angle 75°, clearance angle
15°, rake angle 0°, and corner radius 0.4 mm. The insert
sizes are as follows: thickness 3.75 mm, width 6.75 mm, and
length 12.04 mm. In the research, the end milling of slots
was applied.

The cutting speed was set to 250 m/min (high-speed
machining) and the cutting depth ap=2 mm, while the
feeding rate 0.2 mm/blade. The machining process was
done under dry condition. Vibration signals were acquired
using 3D Kistler dynamometer (type 9257B) connected to
a dedicated charge amplifier (Kistler 5070). The Dynoware
data acquisition card (5697A) with the Dynowave software
was used for data acquisition. Data was acquired at
a sampling frequency of 10 kHz. Moreover, no signal
filtration/processing was applied. The milling center photo
and scheme of the measuring system in Fig. 2a and b are
shown.

The machining material was a glass-fiber–reinforced
polymer with epoxy resin. This type of material was
chosen due to its wide application in the aviation industry
(e.g., the aircraft stabilizers or slats). The main reasons
for GFRP application are the high stiffness of the fibers,
non-corrosivity, high tensile strength, lightweight, and high
strength to weight ratios.

The GFRP workpiece material has a thickness of 15 mm
and consists of fifty prepreg sheets oriented in configuration
0°÷90°. The temperature, humidity, and the amount of
impurities in the controlled room were maintained at a
preset level, namely at temperature range of 18÷30 °C,
humidity up to 60%, and the amount of impurities not
exceeding 104 particles per 1 m3. All milling tests
were carried out in one clamping, which ensured similar
conditions (i.e., stiffness, damping).
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Fig. 2 Photo of milling test (a)
and scheme of the measuring
system; 3D dynamometer,
charge amplifier, data
acquisition module. and PC with
the Dynowave software (b)

(a) (b)

3.2 Damagemodelling

The purpose of this paper is to evaluate the size of the
detectable damages from the nonlinear time series of milling
forces. The holes of different diameters and depths have
been drilled to simulate discrete real damages in GFRP
material. The scheme of machining of composite plate with
the intentionally introduced damages in Fig. 3 is shown. The
damages were introduced in two forms. Firstly, the damages
(through-holes) with different diameters of 0.8 mm, 1 mm,
1.2 mm, and 1.5 mm were drilled (test no. 1). The second
test (no. 2) was based on the holes with constant diameter
(2 mm) and different depths of 0.5 mm, 1.0 mm, 1.5 mm,
and 2.0 mm.

In order to conduct RP and RQA analyses, the cutting
forces in the feed direction (× direction, see Fig. 2a)
have been measured. We analyze the different experimental

signals; therefore, the normalizations of the signal to mean
and standard deviation have been applied [39]. The detailed
description of this procedure can be found in paper [31].
Figure 4a and b show the feed cutting force measured from
test nos. 1 and 2.

The blue color means the real milling force signal
measured by the dynamometer (Fx); the red color is the
milling signal after normalization (F ). The normalization
reduces the problem of a vibration center shift. The dashed
lines show position of the damages (holes). Upon analyzing,
it can be seen that for test no. 1 (Fig. 4a) the cutting force
in the damage position is increased, and the differences are
visually observed for all damage diameters. The increase
of milling force is due to disorder at the structural milling
signal caused by holes (provably the cutter blades hit the
hole). However, for damage with different depths (test no.
2, Fig. 4b), the milling force is increased only for depths

Fig. 3 Scheme of milling process with the intentionally introduced damages. The first test was with the different damage diameters; the second
test with the different damage depth. The cutter diameter and the cutting depth were assumed d=20 mm and ap=2 mm
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Fig. 4 Experimental measured cutting forces from milling test no. 1 (a) and no. 2 (b). The blue color means direct milling force, while the red
color shows normalized cutting forces. The amplitude force jumps show the damage location (dashed lines). As we can see, only the higher
damages are clearly visible

1.5 mm and 2 mm. This means that damage depth is very
important and its detection from cutting force signal needs
more advanced methods.

4 Results and discussion

4.1 Recurrence diagram analysis

Based on the cutting signals, the phase space is recon-
structed and the recurrence plots are drawn. The first steps
were estimation of embedding dimension and embedding
delay using AMI and FNN methods. These parameters for
both tests are the same. A lot of methods could be used to
select the threshold, which strongly influences the RP dia-
gram and RQA results. We assumed a common approach
and assumed this as 0.2 of the standard deviation. The RP
diagrams of test no. 1 (different hole diameters) and test no.
2 (different hole depths) in Fig. 5a and b are shown.

From both pictures, it can be seen that the density
of recurrence points and vertical or horizontal lines in
the RP plots are similar. The RP is mainly composed of
long diagonal lines and empty spaces. The diagonal lines
indicate the periodic behavior, while the empty spaces
correspond to the damage positions. Moreover, the vertical
and/or horizontal lines represent time segments that remain
unchanged or change very slowly, and they are typical
behaviors of the state of the laminar. Note that we evidently
observe the empty spaces for all different holes (Fig. 5a).
This means that all the damage diameters are clearly visible
in the recurrence structure, and all damages can be easily
detected by recurrence methods. However, the RP diagram
obtained for the different damage depth reveals that the
biggest damages are visible (1.5 mm and 2 mm). This
suggests that the damage smaller than 1.5 mm is rather

difficult to detect directly from the RP plot and needs more
advanced recurrence analysis. The RP and RQA analyses
have been performed using CRP Toolbox for Matlab [50].

4.2 Recurrence quantitative analysis

The recurrence plots exhibit different structures which can
be quantitatively described by recurrence quantifications
(measures). One of the more effective RQA technique is
the “moving windows” which yield time-dependent RQA
measures [51]. The moving window of size δ shifted with
a step δi over the studied time series. Finally, we obtain
time-dependent RQA results in the form of a periodogram.
Of course, the “moving windows” analysis uses the same
embedding dimension, delay, and threshold as before.

The statistics of RR, DET , LAM , ENT , T T , L, Lmax ,
Vmax , T T , T1, T2, RT E, and T RANS for test no. 1 and no.
2 are shown in Fig. 6 (for different damage diameters) and
Fig. 7 (for different damage depths).

As has been shown, the statistical parameters of the
RQA analysis effectively detects dynamical changes in the
signals. Analysis of Fig. 6 indicates sudden changes in
the cutting force at the damage positions. This means that
damages will lead to a perturbation of the signal, which can
be observed by the RQA analysis. For example, the RR

quantification is on the level of 0.01 (constant value), but
in the damages positions drop significantly to about 0.001
(ten times) (Fig. 6a). Similarly, other indicators significantly
decreased their value. This indicates that practically all
recurrence measures could be used as damage indicators.
However, the most significant difference is observable
for the following: RR (Fig. 6a), DET (Fig. 6b), ENT

(Fig. 6c), LAM (Fig. 6d), VMAX (Fig. 6f), T 1 (Fig. 6g), T 2
(Fig. 6h), RT E (Fig. 6k), and T RANS (Fig. 6l). All results
obtained for the different diameters show that all holes can
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Fig. 5 Recurrence plots
obtained from test no. 1 (a) and
no. 2 (b). The upper figures
show normalized cutting force
signals applied for recurrence
analysis. Note that RP diagrams
are symmetric; therefore, both
axes have the same meaning
(horizontal and vertical lines).
The empty spaces mean the
damage location. The RP
matrixes obtained for m = 5,
d = 17, and ε = 0.2 of the
standard deviation of the
amplitude values

be detected by RQA methods. Referring it to the cross-
sectional area, we can indicate that we are able to detect the
damage which is at least 4% of the cross-section area of the
cutter. Smaller damages (holes) could not be tested due to
technological reasons.

However, for the damages with different depths (and
constant diameters of 2 mm), the situation is changed
(Fig. 7). The damage about the smallest depth (0.5 mm)
is rather very difficult to detect. Only at the least depth of
1 mm or more is it possible to detect. The damaged cross-
section area possible to detect is about 5% of the cross-
section area of the cutter. In this case, the best recurrence
measures are the following: RR (Fig. 7a), DET (Fig. 7b),
ENT (Fig. 7c), LAM (Fig. 7d), T 1 (Fig. 7g), T 2 (Fig. 7h),
RT E (Fig. 7k), and T RANS (Fig. 7l). Other recurrence
indicators show too small changes to be used to detect
damages (LMAX in Fig.7e, VMAX in Fig.7f, L in Fig.7i, and
T T in Fig.7j). Upon comparing both results (Figs. 6 and 7),
we can conclude that the depth of damage is crucial; the
recurrence measures decrease if the hole depth is smaller.

In order to estimate the RQA measure level for damage
detection, the optimal values based on the critical values
(red dashed lines in Figs. 6 and 7) have been proposed.
Because the damage depth strongly influences detection,
it was assumed that the optimal recurrence quantification
consists of 70% damage depth and 30% damage diameter.
These optimal values are listed in Table 2, and will be used
later for the real damage detection.

Concluding the above, it can be said that the RQA
method can be successfully applied to damage detection
from the time series. The recommended RQA measures are
RR, DET , ENT , LAM , T 1, T 2, RT E, and T RANS.

Two similar recurrence quantifications were selected in
[27], where two of the metrics RR and DET showed a

greater sensitivity to damage. The DET was selected in
the spindle speed control to eliminate the vibration chatter
in [23]. The chatter vibration detection by RR, DET ,
Lmax , Vmax , and LAM is shown in paper [25]. However,
compared with [26], the results are different, where T T ,
Vmax , and L were the best RQA measures indicating
changes in determinism and also parameters that could
possibly distinguish between the undamaged and cracked
plates. Note that in mentioned papers, not all recurrence
quantifications were analyzed.

The proposed method was checked for other materials
(carbon fiber–reinforced polymer) and different ranges of
parameters in PhD thesis [52] and papers [53–55].

4.3 Entropy analysis

Entropy is a measure of complexity and randomness of a
nonlinear signal, describing the rate of information creation.
Therefore, it can be used for nonlinear time series. In
Figs. 8a and b, ApEn (red line) and SampEn (blue line)
entropy are shown. The analysis has been performed for the
same embedding parameters as recurrence methodology:
m = 5, d = 17, and ε = 0.2 of the standard deviation of the
amplitude. Moreover, the same technique “moving window”
was applied.

The SampEn entropy results show its ability to distin-
guish between different systems’ dynamics in the damage
positions. The value of SampEn for the damage increases
time twice (to 0.5). Similarly, like recurrence methods,
the SampEn entropy can detect all holes with different
diameters (through-hole), and only damages with 1.5 mm
and 2 mm depths. Both critical values of the SampEn are
similar and equal (0.38 (different diameters) and 0.35 (dif-
ferent depths)). Using the same algorithm as for recurrence
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Fig. 6 Statistical results of RQA
analysis obtained from
recurrence diagram in Fig. 5a.
The embedding parameters are
m = 5 and d = 17, and the
window sliding technique
parameters were δ = 300,
δi = 1. The depth of cut was
ap = 2 mm. Changes in the
RQA values can be used as the
damage indicators
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Fig. 7 Statistical results of RQA
analysis obtained from
recurrence diagram in Fig. 5b.
The embedding parameters are
m = 5 and d = 17, and the
windowing sliding technique
parameters were δ = 300,
δi = 1. The damage diameter
was a constant of 2 mm.
Changes in the RQA values can
be used as the damage indicators
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Table 2 Suggested critical and
optimal recurrence
quantifications for damage
detection

RQA Critical value (diameter) Critical value (depth) Optimal value

RR 0.004 0.004 0.004

DET 0.694 0.600 0.628

ENT 0.902 0.759 0.802

LAM 0.037 0.173 0.132

T 1 17.58 23.30 21.584

T 2 15.64 37.90 31.222

RT E 0.081 0.118 0.107

T RANS 0.038 0.144 0.112
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Fig. 8 Approximate and sample entropy values computed from the cutting force signal including different damage diameters (Fig. 4a) (a) and
different damage depths (Fig. 4b)(b). The SampEn is capable of detecting defects

(a) (b)

Fig. 9 Real impact damage of GFRP material (a) and the recurrence diagram obtained from the milling time series (b)
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Fig. 10 Selected statistical results of RQA analysis of real damage detection: RR (a), DET (b), ENT (c), LAM (d), T1 (e), T2 (f), RTE (g), and
TRANS (h). The embedding parameters are m = 5 and d = 17, and window moving technique parameters: δ = 300, δi = 1
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analysis, the optimal value of the SampEn is 0.36. Unfor-
tunately, the ApEn cannot be used for damage detection in
both cases (especially in the test no. 2).

4.4 Real damage detection

In order to check the proposed methods, an experiment
milling test of the GFRP material with the real damage
has been performed. The photo of the damage in Fig. 9a
is shown. The macroscopic damage probably appeared
as a result of impact of an object, caused one of the
most common in-service defects, and had approximately
diameter about 1 mm × 0.6 mm and depth 0.6 mm. The
milling test was performed with the same parameters as the
“hole” tests.

As we can see at the normalized cutting force, the
damage is not observed (see Fig. 9b). Therefore, to detect
damage, RP, RQA, and entropy analyses have been applied.
The RP from the milling force with the real damage in
Fig. 9b is shown. Upon analyzing, we can find the unclear
(empty) structure about i = 4300 − 4600 data points. It
is probably caused by a disturbance in the signal that is
not visible in the course of the milling force. The RQA
analysis was performed using only the proposed recurrence
indicators in the previous section. The RQA results in
Fig. 10 are shown. The red line means the optimal value
indicator level.

Upon analyzing all recurrence indicators, we can say
that detection of the real damage is more difficult because
its shape is more complicated. In this case, the damage is
relatively shallow; therefore, only recurrence indicatorsRR,
DET , andLAM can detect it. Other indicators rather do not
show changes in their value in relation to the average value.
Note, that also the Shannon entropy (ENT ) (Fig. 10c)
disappoints. Therefore, the analysis of other entropy seems
to be even more interesting.

The ApEn and SempEn entropy results in Fig. 11
are shown. The highest SampEn peaks correspond to the
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Fig. 11 SampEn and ApEn entropy calculated from the signal with
the real damage. The parameters of entropy analysis are the same as in
Section 4.3

damage position. The optimal value SampEnOPT is a bit
too low (green line); therefore, the optimal improved value
SampEnIMP (the pink line in Fig. 11) of 0.41 is proposed as
the damage indicator. Again, the ApEn entropy course is on
the similar level; no significant differences are observable
(as in earlier analyses). Upon comparing both entropy, we
can clearly confirm that only the SampEn as the damage
indicator can be applied.

Measures derived from the RP, RQA, and entropy
analyses have been shown to possess sensitivity to changing
dynamics. Therefore, these methods can be used for the
damage detection.

5 Conclusion and summary

In this paper, the different damage detection methods,
namely the recurrence plot, the recurrence quantification,
the approximate entropy, and the sample entropy, are
proposed for damage detection basins of the milling time
series. The obtained results in this work are a significant
development and complement of the research presented in
paper [31]. Accordingly, it has demonstrated more analyses
including influence of damage depth and entropy analysis.
Moreover, the milling tests on the composite material with
the real damage have been performed.

The damage was modelled as the hole with the
different diameters and depths. This allowed estimating
the size of detectable defect. It has been shown that the
proposed method is sensitive enough to determine the
damage location, especially if the damage is significant
in size (at least 4–5% of the cutter cross section). The
obtained results show that the damage depth is crucial for
detection. The damage with significant depth and different
diameters is generally easy to detect by most recurrence
quantifications. As a result, the optimal values of recurrence
quantification are proposed. It is shown that the best
recurrence qualifications are RR, DET , and LAM . These
selected recurrence quantifications agree with results in
[27]. Additionally, the SampEn entropy can be also used
as a damage indicator. Its optimal improved value is at
the level of 0.41. Note, in the case of SampEn entropy,
the optimal value should be improved about 15%. The
experiment with the normal life damage confirmed that the
proposed recurrence indicators and SampEn are well and
can be used in practice.

The proposed method has been proven to work well for
structural health monitoring of composite structures and can
be implemented directly during milling the process (needs a
short time series). Moreover, it can also be applied to other
machining processes.

There are few questions, however, which need to be
solved in future works: damage located inside the material
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(invisible) or developing more detailed optimal values of
recurrence quantification and entropy level. These problems
will be analyzed in the next steps.
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