Skip to main content
Log in

A decoupled five-axis local smoothing interpolation method to achieve continuous acceleration of tool axis

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Five-axis machines are widely used in high-speed and high-precision machining of complex sculptured surfaces for the ability to adjust the tool orientation. But, most of the five-axis machining trajectories generated by computer-aided manufacturing (CAM) software are G01 blocks in the form of a large number of linear segments. The G01 blocks for surface machining show inadequacies as their high-order discontinuities. Although there are a lot of researches to deal with the discontinuities, there are still many problems such as smoothing error control, motion synchronization, kinematic constraints limitation. Besides, the kinematic constraints of the tool orientation motion are always neglected. In this paper, a two-step real-time decoupling local smoothing method is proposed for the problem of the five-axis tool path smoothing. The C2 continuity of the tool path is guaranteed within the error limited. Not only the kinematic constraints of tool tip motion but also the kinematic constraints of the tool orientation motion are considered. The continuous acceleration of each axis motion of the machine tool is realized through feed-rate scheduling by finite impulse response (FIR) filtering. Finally, through numerical simulations and experiments, compared with the existing method and G01 linear interpolation, it is verified that the proposed smoothing interpolation method has a higher computation efficiency and can improve the processing efficiency and surface quality of the tool path while satisfying the specified smoothing error constraints and kinematic constraints.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26

Similar content being viewed by others

References

  1. Erkorkmaz K (2015) Efficient fitting of the feed correction polynomial for real-time spline interpolation. J Manuf Sci Eng 137(4):044501. https://doi.org/10.1115/1.4030300

    Article  Google Scholar 

  2. Yuen A, Zhang K, Altintas Y (2013) Smooth trajectory generation for five-axis machine tools. Int J Mach Tools Manuf 71:11–19. https://doi.org/10.1016/j.ijmachtools.2013.04.002

    Article  Google Scholar 

  3. Li D, Zhang W, Zhou W, Shang T, Fleischer J (2018) Dual NURBS path smoothing for 5-axis linear path of flank milling. Int J Precis Eng Manuf 19(12):1811–1820. https://doi.org/10.1007/s12541-018-0209-6

    Article  Google Scholar 

  4. Zhang J, Zhang L, Zhang K, Mao J (2015) Double NURBS trajectory generation and synchronous interpolation for five-axis machining based on dual quaternion algorithm. Int J Adv Manuf Technol 83(9–12):2015–2025. https://doi.org/10.1007/s00170-015-7723-9

    Article  Google Scholar 

  5. Liu M, Huang Y, Yin L, Guo J, Shao X, Zhang G (2014) Development and implementation of a NURBS interpolator with smooth feedrate scheduling for CNC machine tools. Int J Mach Tools Manuf 87:1–15. https://doi.org/10.1016/j.ijmachtools.2014.07.002

    Article  Google Scholar 

  6. Tulsyan S, Altintas Y (2015) Local toolpath smoothing for five-axis machine tools. Int J Mach Tools Manuf 96:15–26. https://doi.org/10.1016/j.ijmachtools.2015.04.014

    Article  Google Scholar 

  7. Hu Q, Chen Y, Yang J, Zhang D (2018) An analytical C3 continuous local corner smoothing algorithm for four-axis computer numerical control machine tools. J Manuf Sci Eng 140(5). https://doi.org/10.1115/1.4039116

  8. Han J, Jiang Y, Tian X, Chen F, Lu C, Xia L (2017) A local smoothing interpolation method for short line segments to realize continuous motion of tool axis acceleration. Int J Adv Manuf Technol 95(5–8):1729–1742. https://doi.org/10.1007/s00170-017-1264-3

    Article  Google Scholar 

  9. Fan W, Lee C-H, Chen J-H (2015) A realtime curvature-smooth interpolation scheme and motion planning for CNC machining of short line segments. Int J Mach Tools Manuf 96:27–46. https://doi.org/10.1016/j.ijmachtools.2015.04.009

    Article  Google Scholar 

  10. Zhao H, Zhu L, Ding H (2013) A real-time look-ahead interpolation methodology with curvature-continuous B-spline transition scheme for CNC machining of short line segments. Int J Mach Tools Manuf 65:88–98. https://doi.org/10.1016/j.ijmachtools.2012.10.005

    Article  Google Scholar 

  11. Sun S, Lin H, Zheng L, Yu J, Hu Y (2016) A real-time and look-ahead interpolation methodology with dynamic B-spline transition scheme for CNC machining of short line segments. Int J Adv Manuf Technol 84(5–8):1359–1370. https://doi.org/10.1007/s00170-015-7776-9

    Article  Google Scholar 

  12. Sencer B, Ishizaki K, Shamoto E (2015) A curvature optimal sharp corner smoothing algorithm for high-speed feed motion generation of NC systems along linear tool paths. Int J Adv Manuf Technol 76(9–12):1977–1992. https://doi.org/10.1007/s00170-014-6386-2

    Article  Google Scholar 

  13. Hu Q, Chen Y, Jin X, Yang J (2019) A real-time C3 continuous local corner smoothing and interpolation algorithm for CNC machine tools. J Manuf Sci Eng 141(4). https://doi.org/10.1115/1.4042606

  14. Farouki RT (2014) Construction of rounded corners with Pythagorean-hodograph curves. Comput Aided Geom Des 31(2):127–139. https://doi.org/10.1016/j.cagd.2014.02.002

    Article  MathSciNet  MATH  Google Scholar 

  15. Yan Y, Zhang L, Zhang K (2016) Corner smoothing transition algorithm for five-axis linear tool path. Procedia CIRP 56:604–609. https://doi.org/10.1016/j.procir.2016.10.119

    Article  Google Scholar 

  16. Yang J, Li D, Ye C, Ding H (2020) An analytical C-3 continuous tool path corner smoothing algorithm for 6R robot manipulator. Robot Comput Integr Manuf 64. https://doi.org/10.1016/j.rcim.2020.101947

  17. Beudaert X, Pechard P-Y, Tournier C (2011) 5-Axis tool path smoothing based on drive constraints. Int J Mach Tools Manuf 51(12):958–965. https://doi.org/10.1016/j.ijmachtools.2011.08.014

    Article  Google Scholar 

  18. Bi Q, Shi J, Wang Y, Zhu L, Ding H (2015) Analytical curvature-continuous dual-Bézier corner transition for five-axis linear tool path. Int J Mach Tools Manuf 91:96–108. https://doi.org/10.1016/j.ijmachtools.2015.02.002

    Article  Google Scholar 

  19. Yang J, Yuen A (2017) An analytical local corner smoothing algorithm for five-axis CNC machining. Int J Mach Tools Manuf 123:22–35. https://doi.org/10.1016/j.ijmachtools.2017.07.007

    Article  Google Scholar 

  20. Beudaert X, Lavernhe S, Tournier C (2013) 5-Axis local corner rounding of linear tool path discontinuities. Int J Mach Tools Manuf 73:9–16. https://doi.org/10.1016/j.ijmachtools.2013.05.008

    Article  Google Scholar 

  21. Shi J, Bi Q, Zhu L, Wang Y (2015) Corner rounding of linear five-axis tool path by dual PH curves blending. Int J Mach Tools Manuf 88:223–236. https://doi.org/10.1016/j.ijmachtools.2014.09.007

    Article  Google Scholar 

  22. Huang J, Du X, Zhu L-M (2018) Real-time local smoothing for five-axis linear toolpath considering smoothing error constraints. Int J Mach Tools Manuf 124:67–79. https://doi.org/10.1016/j.ijmachtools.2017.10.001

    Article  Google Scholar 

  23. Tajima S, Sencer B (2019) Accurate real-time interpolation of 5-axis tool-paths with local corner smoothing. Int J Mach Tools Manuf 142:1–15. https://doi.org/10.1016/j.ijmachtools.2019.04.005

    Article  Google Scholar 

  24. Lee A-C, Lin M-T, Pan Y-R, Lin W-Y (2011) The feedrate scheduling of NURBS interpolator for CNC machine tools. Comput Aided Des 43(6):612–628. https://doi.org/10.1016/j.cad.2011.02.014

    Article  Google Scholar 

  25. Yang Z, Shen L-Y, Yuan C-M, Gao X-S (2015) Curve fitting and optimal interpolation for CNC machining under confined error using quadratic B-splines. Comput Aided Des 66:62–72. https://doi.org/10.1016/j.cad.2015.04.010

    Article  MathSciNet  Google Scholar 

  26. Sun Y, Zhao Y, Bao Y, Guo D (2015) A smooth curve evolution approach to the feedrate planning on five-axis toolpath with geometric and kinematic constraints. Int J Mach Tools Manuf 97:86–97. https://doi.org/10.1016/j.ijmachtools.2015.07.002

    Article  Google Scholar 

  27. Zhang Y, Zhao M, Ye P, Jiang J, Zhang H (2018) Optimal curvature-smooth transition and efficient feedrate optimization method with axis kinematic limitations for linear toolpath. Int J Adv Manuf Technol 99(1–4):169–179. https://doi.org/10.1007/s00170-018-2496-6

    Article  Google Scholar 

  28. Bharathi A, Dong J (2016) Feedrate optimization for smooth minimum-time trajectory generation with higher order constraints. Int J Adv Manuf Technol 82(5–8):1029–1040. https://doi.org/10.1007/s00170-015-7447-x

    Article  Google Scholar 

  29. Biagiotti L, Melchiorri C (2012) FIR filters for online trajectory planning with time- and frequency-domain specifications. Control Eng Pract 20(12):1385–1399. https://doi.org/10.1016/j.conengprac.2012.08.005

    Article  Google Scholar 

  30. Tajima S, Sencer B, Shamoto E (2018) Accurate interpolation of machining tool-paths based on FIR filtering. Precis Eng 52:332–344. https://doi.org/10.1016/j.precisioneng.2018.01.016

    Article  Google Scholar 

  31. Lu L, Zhang L, Ji S, Han Y, Zhao J (2016) An offline predictive feedrate scheduling method for parametric interpolation considering the constraints in trajectory and drive systems. Int J Adv Manuf Technol 83(9–12):2143–2157. https://doi.org/10.1007/s00170-015-8112-0

    Article  Google Scholar 

  32. Zhao H, Zhu L, Ding H (2013) A parametric interpolator with minimal feed fluctuation for CNC machine tools using arc-length compensation and feedback correction. Int J Mach Tools Manuf 75:1–8. https://doi.org/10.1016/j.ijmachtools.2013.08.002

    Article  Google Scholar 

Download references

Funding

The authors would like to thank the Important Science & Technology Specific Projects of Anhui Province, Nos. 17030901036 and the National Natural Science Foundation of China under Grant Nos. 51705120.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiang Han.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, Y., Han, J., Xia, L. et al. A decoupled five-axis local smoothing interpolation method to achieve continuous acceleration of tool axis. Int J Adv Manuf Technol 111, 449–470 (2020). https://doi.org/10.1007/s00170-020-05936-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-020-05936-0

Keywords

Navigation