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Abstract
The misalignment of steel strips in relation to the roller table centerline still is an impairment for the rolling mill production
lines. Nowadays, the strip position correction remains largely in the purview of human analysis, in which the strip steering
is traditionally a semi-manual operation. Automating the alignment process could reduce the maintenance costs, damage to
the plant, and prevent material losses. The first step into the automatization is to determine the strip position and its referred
error. This study presents a method that employs semantic segmentation based on convolution neural networks to estimate
steel strips positioning error from images of the process. Additionally, the system mitigates the influences of mechanical
vibration on the images. The system performance was assessed by standard semantic segmentation evaluation metrics and
in comparison with the dataset ground truth. The results showed that 97% of the estimated positioning errors are within
a 2-pixel margin. The method demonstrated to be a robust real-time solution as the networks were trained from a set of
low-resolution images acquired in a complex environment.
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1 Introduction

Steel strips are manufactured from cast slabs, which undergo
several times between a pair of work rolls with decreasing gaps
until the achievement of the intended thickness reduction [20,
21, 39, 40]. In Steckel mill lines, during the hot rolling process,
the strips are driven by the roller table in the rolling direction.
However, the rolling procedure is susceptible to impel the strips
perpendicularly to this direction, which could induce misalign-
ment. For instance, the unaligned strips are prone to collide
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with the side guides and mill structure [4, 11]. As the 20-ton
strips are rolled at 10 m/s, the collisions are an impairment for
the production lines, provoking material losses and damaging
the mill structure and equipment. Annually, the material loss
due to collisions and equipment failure expenses are about one
million euros [11].

Traditionally, the process of correcting the alignment of the
strips is semi-manual. In this process, a human operator
observes the strip position through real-time images of the
process, which are acquired from analog cameras settled
over the mill structure. From the content of the images,
the operator deduces whether the strip presents deviation
from the roller table centerline. Per this information, the
operator attempts to recenter the strip by a manual command,
which adjusts the gap between the extremities of the work
rolls asymmetrically and steers the strip on the direction of the
larger gap difference [4]. The realignment correction proce-
dure requires a reaction time that might exceed the human
capability, becoming susceptible to failure due to the high lon-
gitudinal speed of the strips. In addition, a manual command
can lead to inadequate control, as it is an imprecise tool [9, 11].

Automating the steel strips alignment process in Steckel
mill lines could reduce the maintenance costs, damage to
the plant, and prevent material losses [4, 11]. The first step
through the process automatization is to determine the strip
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positioning error, which could be accessed from the images
of the process.

The available literature presents a considerable number
of studies with solutions for metalworking. These include
the detection of defects in metal casting [5, 10], recognition
of slab identification [22], prediction of mechanical
properties [38], bearing fault diagnosis [14, 19, 29, 35,
41], and steel defect identification [25, 28, 31]. On the
other hand, there are only a few works that apply image
processing to measure the strip position in a rolling mill
process. From the best of the knowledge of the authors,
only two studies could be found. The first applies traditional
image processing applying Bezier curves to measure the
strip centerline in a rolling process [4]. This study was
performed in a dataset with limited size. The second study
applies morphological operations in processed images to
calculate steel strip positioning error [9]. However, the work
lacks validation from a ground truth set.

In this paper, a novel method to access the strip
positioning error is presented. The system employs semantic
segmentation based on convolution neural network (CNN)
to extract the strip portion of the images of the process,
infers the strip position, and estimates the positioning error
in relation to setpoint images. Moreover, an analogous
approach is performed to attenuate the influences of the
camera mechanical vibration to the images. It consists
of applying a CNN-based semantic segmentation method
to identify the position of a static mill component that
appears on the images. This position is latter selected as the
reference point of the strip relative position.

The system performance was assessed by standard
semantic segmentation evaluation metrics and in compar-
ison with the positioning error signal derived from the
dataset ground truth. The method proved to be a robust real-
time solution as the networks were trained from a set of
low-resolution images acquired in a complex environment,
containing steam and variable luminance.

The remainder of this paper is divided into the following
sections: “Theoretical basis,” “Methods,” “Results and
discussion,” and “Conclusions”.

2 Theoretical basis

2.1 Process description

The rolling mill process consists of the thickness reduction
of steel slabs from successively passing it through a pair of
work rolls with a decreasing gap. The Steckel mill process
differs from the traditional rolling by the presence of coiler
furnaces in either side of the rolling stand, as illustrated in
Fig. 1, which reheat the strips while wounding upon their
drums. This process allows the product to reach lengths

approximately equal to 600 m [11, 20]. The carbon steel
heating produces an oxide layer over the strip, which is
removed before each pass of the strip through the work rolls
by high-pressure water, in a process denominated descaler,
originating heavy steam.

During a few steps of the process, the side guides align
the strip in relation to the roller table centerline before the
rolling operation. From this position, the strips are moved
by the roller table in the rolling direction. Moreover, the
rolling induces the strips to move perpendicularly to this
direction, according to the illustration present in Fig. 2a.
This fact tends to cause a strip misalignment, which could
lead to collisions and, consequently, process losses [11].
Nowadays, the strip position correction remains largely
in the purview of human analysis [4]. The realignment
process is executed by an operator, which judges the
strip misalignment from real-time images of the process.
The operator attempts to compensate for the undesirable
direction of the movement tilting the work rolls with a
manual command. This procedure creates an asymmetrical
gap between the work rolls, inducing higher reduction
forces on the side of the smaller gap and lower forces on the
opposite side. Therefore, the wedging effect will steer the
strip in the direction of the larger gap, which corresponds
to the direction of the desired position [11], as shown by
Fig. 2b.

2.2 Semantic segmentation

Semantic segmentation is a pixel-wise categorization, which
gathers pixels belonging to the same class [24, 28, 30].
Regarding digital image processing, the method is best
applied as an emulator for human pattern identification [28].
Compared to the traditional image segmentation, semantic
segmentation based on convolution neural network has
demonstrated considerable advantages [28] and has been
applied to many tasks such as medical applications [2,

Fig. 1 Steckel reversible rolling mill with coiler furnaces. 1: rolling
stand, 2: coiler furnace, 3: winding drum of the coiler furnace, 4: work
roll, 5: backup roll, 6: descaler jets, 7: steel strip. Source [1, 20]
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Fig. 2 Strip misalignment during rolling and correction through roll
tilting [11]. a Strip movement directions. b Effects of roll tilting. The
procedure creates an asymmetrical gap between work rolls, in which
the high reduction forces steer the strip in the direction of the larger
gap

26, 27, 42], in autonomous driving [6, 8, 12, 32], object
detection [13, 37], and pose estimation system [33], to
name a few. The semantic segmentation architecture usually
consists of an encoder-decoder task [3, 15, 23]. The first
part, composed of convolution and max pooling operations,
extracts high-level features by mapping the input to a
lower dimension representation [23, 36]. On the other hand,
the architecture of the decoder, commonly composed of
transposed convolutions and up-pooling layers, expands
the high-level features, recovering the feature map size
compatible with the input layer size [28].

3Methods

This work adopted supervised learning to estimate the
positioning error of steel strips in a Steckel mill line.
The method employs hybrid semantic segmentation to
estimate the strip position through images of the process
and calculates their positioning error in contrast to values
derived from setpoint (or reference) images. Additionally,
the system mitigates the influences of mechanical vibration
on the process videos. A concise explanation of the adopted

methodology is presented in the flowchart of Fig. 3, and
further clarification is exposed in the section remainder.

The dataset is composed of RGB images, which were
acquired from an analog camera installed over the mill stand
entrance, on the operator side, with a sample rate of 30 fps.
From the acquired images, the algorithm gathered the
images of interest according to the activation command of
the descaler and strip tracking signals. During the descaler
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process, the heavy steam content present on the region
between camera and strip makes the image manipulation
unfeasible. Also, during part of the acquisition time, the
strip is not positioned on the field of view of the camera.
Therefore, the images captured in both circumstances
will not be processed by the positioning error estimation
algorithm.

Succeeding the dataset selection, the centralization
command signal of the side guides is used to categorize the
images of interest into position setpoint images or images
under analysis. When the signal is active, the images are
classified into setpoint images, since the side guides ensure
the strip centralization, as aforementioned in Section 2.1.
The system stores the reference image and estimates the
strip position of both categories. The positioning error is
then calculated by comparing the actual image strip position
and the position of the last detected setpoint image.

3.1 Regions of interest

An example of the images of the process used as the system
input is presented in Fig. 4a. As highlighted on the figure,
the images contain a portion of the strip aligned to the
image bottom edge, side guide elements, and parts of the
mill structure. Therefore, to reduce the image complexity, a
region of interest for strip position estimation (ROI1) was
elected, lowering the number of mill components present on
the image.

The impacts of the rolling process cause unwanted
camera vibration, which is unavoidable as the camera is
placed 6 m above the strip. This fact can be observed in
the image present in Fig. 5a, which shows parts of the mill
structure of two consecutive frames. From this figure, it is
perceptible that the distance between the mill structures and
the horizontal dashed line varies in a considerable amount.
Empirical observations revealed that the mill structures
adjacent to the strip present an irrelevant relative movement
in relation to the strip. Hence, to avoid interference from
the camera vibration effects on the estimated values, the
mill structure parts visible on the images of the process
were used as a strip position reference. These structures
are present in the region of interest 2 (ROI2), indicated in
Fig. 4b. In ROI2, the mill parts delimit a polygon, which
centroid is used as the mentioned position reference. This
polygon and its centroid are highlighted in Fig. 5b.

3.2 Labeling

The ground truth labeling of each region of interest was
created by manual annotation utilizing the Image Labeler
Matlab app. Pixels belonging to the reference polygon or
strip portion were assigned to the intensity value 1, and
pixels belonging to the background were assigned to value

Side guide

Steel strip

Region of interest 1

(ROI1)

Region of interest 2

(ROI2)

Fig. 4 Example of the images of the process used as the system input.
a Location of the side guides and steel strip on the image. b Elected
regions of interest used to estimate the strip position (ROI1) and to
reduce the effects of the camera vibration (ROI2)

2. In the total, 1390 labels were created for each region of
interest, as the selected dataset comprises 1390 704 × 480-
px RGB images.

The images were acquired in a complex environment.
The remaining elements from the descaler process, such
as water over the strip and steam content on the strip
location and surroundings, compromise the image quality.
The water creates unpredictable patterns over the strip, as
can be perceived in Fig. 6-2b, 2c, 1b, and 1c. On the other
hand, the steam content blurs the acquired images. Figure 6-
2a, 2c, and 1a show some of these blurring particularities.
Another complication is the strip incandescence, resulting
from the strip high temperature, which reflects over the side
guide structures present on ROI1. These structures mirror
the strip color and could be easily mistaken as strip portions,
similar to the effects indicated in Fig. 6-2b, 1a, 1b, and 1c
by white arrows. The labeling process was handled carefully
by considering these occasions, to avoid misclassifications.

2850 Int J Adv Manuf Technol (2020) 110:2847–2860



Fig. 5 Example of camera vibration. a Distance from the mill
structures to the image bottom edge and the horizontal dashed line
resulted from camera vibration; b Centroid of the polygon used as the
camera reference position of the strips on the images instead of the
image bottom edge

In cases that portions of the strip were covered by steam,
the labeling considers that the strip location is parallel to the
image bottom.

3.3 Semantic segmentation

In the present work, two semantic segmentation approaches
based on CNN operations were applied to detect, inde-
pendently, the strip portion present in the ROI1 and the
polygon delimited by the mill components present in ROI2.
Three architecture configurations were investigated for each
region of interest (ROI). The architectures differ from each
other by the number of encoder/decoder layers, varying
between 1, 2, or 3 pairs. Figure 7 illustrates the largest
network in terms of the number of layers (three encoders
and three decoders) applied to each ROI. The encoder part
consists of downsampling layers, which include convolu-
tion and max pooling operations. In contrast, the decoder
architecture comprises upsampling layers, which consists of
transposed convolutions. After each convolution and trans-
posed convolution layer, the Rectified Linear Unit (ReLU)
activation function was applied. Adam optimizer and a
learning rate of 0.001 were selected as optimization parame-
ters. Moreover, the influence of the number of filters in each
operation was also ascertained. The number of filters could
hold values from the set {2, 4, 8, 16, 32, 64}. Hence, eighteen
architectures were explored altogether for each ROI.

The encoder-decoder architecture is followed by a
pixel classification layer, which enables a pixel-level
classification and is composed of convolution and a Softmax

Fig. 6 Example of complex
elements on the acquired
images. Images 1a, 2a, and 2c
are blurred due to the steam
content, and remaining water
from the descaler process can be
perceived in images 1b, 1c, 2b,
and 2c as unpredictable patterns
over the strip. The reflections of
the strip incandescence over the
side guide structures are
indicated by white arrows

a

21

b

c
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Fig. 7 Schematic illustration of
one of the semantic
segmentation architectures
designed for a ROI1 and b
ROI2. 1: Downsampling layer 1,
2: Downsampling layer 2, 3:
Downsampling layer 3, 4:
Upsampling layer 3, 5:
Upsampling layer 2, 6:
Upsampling layer 1, 7: Pixel
Classification Layer. c Legend

layer. This last convolution operation combines the input
feature maps down to the number of classes. Hence, this
layer is configured with kernel size and the number of
classes equal to 1 and 2, respectively. The further layer
configurations are presented in Table 1, in which the layer
nomenclatures refer to those introduced in Fig. 7.

Concerning the dataset, it was initially composed of 1390
images, which was split into training and test datasets on the
proportion of 1112 to 278 images, respectively.

3.4 Positioning error estimation

The CNN predictions of the ROI1 were refined via
morphological operations and outlier exclusion to adjust
misclassifications induced by the presence of complex
elements in the image. Details about these elements are
mentioned in Section 3.2 and exemplified in Fig. 6.
The probabilistic mask of the strip, obtained from the
segmentation, was binarized. From the image, the connected
components were identified and deleted, except for the
larger connected component. This operation keeps the strip

area and eliminates smaller and disconnected elements
erroneously classified as part of the strip portion, such as
steam content and mill components that reflect the strip
incandescence. Afterward, the possible holes in the strip
area, mostly caused by water over the strip and fluctuation
in the incandescence intensity, were filled by a flood-
fill operation. From the resulting binary image, the pixel
locations of the top edge of the strip portion were employed
to estimate the strip position. Then, an outlier removal
with a threshold between 40 and 60% was utilized to
prevent interference from possible irregular edges. The strip
position in relation to the image bottom edge (YImStrip, for
the actual image, and YStpStrip, for the setpoint image) was
determined as the average of the remaining values.

Similarly, the improvement of the ROI2 polygon por-
tion predicted by semantic segmentation was performed
via morphological operations, which included the applica-
tion of flood-fill, erode, and dilate. The flood-fill operation
fills holes in the polygon prediction originated by mis-
classification. The erode and dilate functions separate mill
components, other than the desired polygon, into smaller
and disconnected components. Thus, a greater connected
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Table 1 Models parametrization

Model ID Architecture Number
of
filters

Kernel
size

Downsampling Upsampling

Layer 1 Layer 2 Layer 3 Layer 3 Layer 2 Layer 1

Pooling
/ stride

Pooling
/ stride

Pooling
/ stride

Upsam-
pling
factor

Upsam-
pling
factor

Upsam-
pling
factor

1 1 2 3x3 2/2 – – – – 2

2 1 4 3x3 2/2 – – – – 2

3 1 8 3x3 2/2 – – – – 2

4 1 16 3x3 2/2 – – – – 2

5 1 32 3x3 2/2 – – – – 2

6 1 64 3x3 2/2 – – – – 2

7 2 2 3x3 2/2 2/2 – – 2 2

8 2 4 3x3 2/2 2/2 – – 2 2

9 2 8 3x3 2/2 2/2 – – 2 2

10 2 16 3x3 2/2 2/2 – – 2 2

11 2 32 3x3 2/2 2/2 – – 2 2

12 2 64 3x3 2/2 2/2 – – 2 2

13 3 2 3x3 2/2 2/2 3/3 3 2 2

14 3 4 3x3 2/2 2/2 3/3 3 2 2

15 3 8 3x3 2/2 2/2 3/3 3 2 2

16 3 16 3x3 2/2 2/2 3/3 3 2 2

17 3 32 3x3 2/2 2/2 3/3 3 2 2

18 3 64 3x3 2/2 2/2 3/3 3 2 2

component selection keeps the polygon area and exclude the
disconnected elements. The mill structure reference position
in relation to the image bottom edge (YImc, for the actual
image, and YStpc, for the setpoint image) was calculated
from the centroid of the remaining component.

The illustrations presented in Fig. 8 show an example
of an image under analysis, Fig. 8a, and a setpoint image,
Fig. 8b. Besides, the figures also present the reference
systems used to derive the strip positions and further strip
positioning error. The global coordinate system (XOY )
is used to derive the strip position in relation to the
image bottom edge (YImStrip, for the actual image, and
YStpStrip, for the setpoint image). On the other hand, the
local coordinate system (xcy) aims to mitigate the camera
vibration influences over the strip position estimation by
providing a static reference position in relation to the
process environment. This coordinate system has its origin
at the centroid of the polygon composed by the mill
components (c), and it is located apart from the X-axis in
YImc, for the actual image, and YStpc, for the setpoint image.
The strip position relative to this coordinate system can
be calculated by Eq. 1 (actual image) and Eq. 2 (setpoint
image). The strip positioning error is given by the difference
between both values (Eq. 3).

• Strip position of the actual image relative to the local
coordinate system (mill structure reference point)

yImStrip = YImStrip − YImc (1)

• Strip position of the setpoint image relative to the local
coordinate system (mill structure reference point)

yStpStrip = YStpStrip − YStpc (2)

• Strip positioning error

yerror = yImStrip − yStpStrip (3)

3.5 Representation of the positioning error in
physical units

On the periods when the strip is not positioned under the
camera one of the roller table rolls is visible. The diameter
of the roll can be measured on the image and is equal to
140 px, while its physical dimension is 400 mm. Therefore,
the resolution of the images is equal to 2.9 mm/px.

3.6 Performance evaluation

The proposed method is evaluated by comparing the
estimated values of strip position, y-coordinate of the mill
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Fig. 8 Schematic representation of the global and local coordinate
systems used to estimate the strip position relative to the mill
components of the a actual image and b setpoint image. In both figures,
XOY is the global coordinate system and xcy is the local coordinate
system

reference position, and positioning error to the expected
values, calculated from the ground truth images, by the
mean absolute error (MAE) and the standard deviation
(STD). The computational burden was also analyzed
through frame rate analysis to access the real-time viability
of the application, and the execution was carried out on a
NVIDIA GeForce GTX1080 GPU. Also, each architecture
evaluation was performed on the test sets by common
metrics, applied to evaluate semantic segmentation based
on convolution neural networks. These metrics are recall
(Eq. 4), Jaccard index (Eq. 5), F1 score (Eq. 6), and
specificity (Eq. 7), and they are determined from the pixel
predictions of the segmented mask, which are the values of
true positive (TP), true negative (TN), false positive (FP),
and false negative (FN) [7, 24, 28, 33, 34]

• Recall

Recall = T P

T P + FN
(4)

• Intersection-over-Union (IoU) or Jaccard index

IoU = T P

T P + FP + FN
(5)

• F1 score (F1)

F1 = 2 × T P

2 × T P + FP + FN
(6)

• True negative rate (TNR) or specificity

Specif icity = T N

T N + FP
(7)

4 Results and discussion

This paper presents an accurate and automatic strip
positioning error estimator for a rolling mill process. The
system as a whole is composed of a couple of distinct
steps, as discussed in Section 3. As a matter of fact, the
performance of each step can be evaluated separately. In this
section, the obtained results are discussed in the following
order: (i) steel strip edge and mill structure location
estimation and (ii) steel strip misalignment evaluation. The
results present on Section 4.1 are referring to the test set,
while analyses of Section 4.2 are based on both test and
training sets.

4.1 Steel strip edge andmill structure location
estimation

At the base of the developed system lies a semantic
segmentation neural network. The purpose of this step is
to classify each pixel in the current frame as an object
of interest (steel strip or mill structure component) or as
background. By performing this classification, it is possible
to reject most of the irrelevant information present in the
image. The results attained by the CNN model does not hold
much meaning for the final application on its own. Because
of that, the results of position estimation are presented
together. Results for the first region of interest are shown in
Table 2, while Table 3 shows results for the second region.
Both regions are judged by the same metrics. Moreover,
the first four results columns (recall, IoU, F1 score, and
specificity) refer to the segmentation step. In contrast, the
latter two (MAE and STD) relate to the position estimation
errors of the components.

The identification of the strip by the convolution network
is performed with very high accuracy. For all types of
architectures and numbers of convolutional filters, all four
considered metrics exhibit values above 99%. Since the
effectiveness of every model is virtually the same, the model
choice should be based on the remaining criteria. Before
turn to model accuracy, the computational burden of the
system must be assessed, since real, or at least quasi-real,
execution time is sought. The frame rate of the camera feed
is 30 fps. Therefore, it is a desirable model with a superior
execution rate, as this rate refers only to this intermediate
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Table 2 Performance evaluation of ROI1

Model ID Architecture No. of filters Recall [%] IoU [%] F1 [%] TNR [%] Frame rate [fps] MAE [mm] STD [mm]

1 1 2 99.7 99.1 99.6 99.0 53.7 5.0 5.2

2 1 4 99.8 99.2 99.6 99.0 51.1 4.3 4.8

3 1 8 99.8 99.4 99.7 99.3 40.8 3.4 4.0

4 1 16 99.9 99.3 99.7 99.1 26.1 3.7 4.3

5 1 32 99.8 99.4 99.7 99.3 7.8 3.7 4.1

6 1 64 99.8 99.3 99.7 99.2 1.6 3.6 4.2

7 2 2 99.8 99.1 99.6 98.8 42.5 4.8 4.9

8 2 4 99.8 99.3 99.7 99.1 52.5 3.8 4.7

9 2 8 99.8 99.4 99.7 99.2 40.0 3.7 3.8

10 2 16 99.9 99.3 99.6 98.9 24.5 4.3 4.4

11 2 32 99.9 99.3 99.7 99.1 6.1 3.7 3.9

12 2 64 99.9 99.4 99.7 99.1 1.6 3.4 3.9

13 3 2 99.8 99.2 99.6 99.0 41.2 5.2 4.6

14 3 4 99.8 99.4 99.7 99.3 47.1 3.7 4.2

15 3 8 99.9 99.4 99.7 99.1 38.5 3.9 3.6

16 3 16 99.9 99.4 99.7 99.0 23.9 4.2 3.4

17 3 32 99.9 99.4 99.7 99.2 5.4 3.8 3.3

18 3 64 99.9 99.5 99.7 99.3 1.6 3.4 3.3

step. The final execution frequency will be presented later
in this section. Taking this and the achieved strip estimation
accuracy, the elected model configuration, which better
balances both objectives, is Model 3. With architecture type
1 (one encoder/decoder pair) and 8 convolutional filters in

each layer, the model achieved mean absolute error of 3.4
(± 4.0) mm and frame rate of 40.8 fps.

For the identification of the mill structure, the segmen-
tation process yield very poor results. The main reasons
behind this inefficiency are twofold: there is a severe

Table 3 Performance evaluation of ROI2

Model ID Architecture No. of filters Recall [%] IoU [%] F1 [%] TNR [%] Frame rate [fps] MAE [mm] STD [mm]

1 1 2 13.5 13.4 23.7 99.8 38.9 157.3 18.7

2 1 4 49.7 48.7 65.5 99.8 121.2 8.1 8.9

3 1 8 57.1 56.6 72.3 99.9 126.1 6.4 9.9

4 1 16 68.0 67.5 80.6 99.9 118.3 5.3 4.4

5 1 32 68.1 67.5 80.6 99.9 95.4 5.8 4.4

6 1 64 75.0 74.1 85.1 99.9 73.7 4.5 4.1

7 2 2 47.9 45.9 62.9 99.5 143.7 7.5 9.8

8 2 4 52.2 51.3 67.8 99.8 140.6 5.8 10.7

9 2 8 64.3 63.6 77.8 99.9 132.8 5.0 4.4

10 2 16 71.3 70.2 82.5 99.9 119.3 5.2 4.2

11 2 32 77.1 76.0 86.3 99.9 97.3 4.6 4.0

12 2 64 72.8 72.3 84.0 100.0 71.0 4.1 3.8

13 3 2 17.5 17.4 29.6 99.9 144.3 126.1 15.8

14 3 4 70.0 69.4 81.9 99.9 137.0 5.5 4.8

15 3 8 75.4 75.0 85.7 100.0 129.3 5.1 4.5

16 3 16 79.7 79.1 88.3 100.0 113.0 4.2 4.1

17 3 32 84.5 83.4 91.0 99.9 93.6 5.6 4.4

18 3 64 80.4 79.9 88.8 100.0 67.2 4.2 3.8
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Fig. 9 Pairs of ROI1 containing
the acquired image, on the left,
and the semantic segmentation
prediction, on the right. The
black line over the prediction
image indicates the position of
the strip estimated by the
system. Pair 2b is blurred due to
the steam content. Remaining
water from the descaler process
can be perceived in pairs 1a, 1b,
and 2a. The reflections of the
strip incandescence over the side
guide structures are present in
pairs 1a and 1b

a

b

1 2

imbalance between the number of pixels in the reference
polygon and the background. Secondly and most impor-
tantly, the tonality of the reference pixels is not distinct from
other portions belonging to the background. These assump-
tions are confirmed by analyzing the results. The system
exhibits a negligible false positive rate and a high false neg-
ative rate, which translates to mediocre recall and IoU while
keeping a high specificity. In other words, the network tends
to classify background pixels as a region of interest wrongly,
but it does not misclassify background regions. Under these
circumstances, the reference polygon could still be suc-
cessfully identified after the morphological operations and
grouping in connected components. Therefore, the reference
position, which is derived from the polygon centroid, could
be estimated.

Regarding the frame rate, since the input size is relatively
small, all models are lightweight with execution rate
above the requirements of the system. The model selection
can be based solely in terms of average error and its
dispersion. The most suitable network was Model 12, with 2
encoder/decoder pairs and 64 filters in each layer, attaining
errors of only 4.1 (± 3.8) mm and frame rate of 71.0 fps.

The results of the position estimation of the strip, by
Model 3, and centroid, by Model 12, are also exemplified
by the samples presented in Fig. 9, for ROI1, and Fig. 10,
for ROI2. Both figures contain four pairs, from which we
can observe the input of the region of interest on the left
and the output on the right. The output image consists of the
input image overlaid by the segmentation classification and
the position estimated by the whole algorithm, including
the morphological operations mentioned in Section 3.4.

The position estimated is shown as a black line, for the
strip position, and a black dot, for the centroid position.
The system demonstrated robustness by correctly placing
the black line and black dot even when the segmentation
step provides insufficient results. The proposed method can
estimate the strip and centroid positions even in a complex
environment, such as the steam presence (Fig. 9 pair 2b,
and Fig. 10a, b, and d), mill structures reflecting the strip

Fig. 10 Pairs of ROI2 containing the acquired image, on the left, and
the semantic segmentation prediction, on the right. The black dot over
the prediction image indicates the position of the centroid estimated by
the system. Steam presence can be observed in pairs 1a, 1b, and 1c
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incandescence (Fig. 9 pairs 1a and 1b) and water presence
over the strip (Fig. 9 pairs 1a, 1b, and 2a).

The visualization of the expected and estimated values in
each frame, as well as the absolute difference between them,
are shown in Fig. 11. The top graph shows the results for
the steel strip, while the bottom one refers to the centroid
of the polygon. For more clarity, the images also present a
magnified view of a signal stretch. As it can be observed,
the estimations follow the expected values closely.

4.2 Steel strip misalignment evaluation

The goal of the present work is to determine the
misalignment of the hot strip during the rolling process. This
misalignment is assessed by the comparison between the
steel strip location after the mechanical vibration influences
are mitigated, and setpoint images. Graphical results of
the system can be observed in Fig. 12. In the first image,
Fig. 12a, it is shown the real deviance of the strip from
its desired position and the estimated one by the developed
system. The absolute difference between these quantities

is depicted in Fig. 12b, whereas a histogram portrays its
distribution in Fig.12c.

As can be observed in the histogram, the vast majority
of the data deviates from the desired value in less than
5 mm. In fact, this deviation corresponds to merely 2
pixels and 97% of the samples lies within this range. The
mean absolute error and standard deviation achieved by
the method were 2.06(± 1.7) mm. Moreover, the system is
capable of performing the strip misalignment estimation in
real-time, at a rate of 26.4 fps.

Although the manual operator performance cannot be
accessed due to lack of data, the available literature
presents studies of the human capability regarding reaction
time. Studies of visuomotor reaction time (VMRT), in
which participants executed a visuomotor reaction task in
response to visual motion stimuli, showed that badminton
players, table tennis athletes, and non-athletes presented
VMRT of 244.2 ms, 258.4 ms, and 273.6 ms, respectively
[16–18]. A rather distant approach for comparison, if a
human operator had a similar performance of a badminton
player, which corresponds to a reaction frequency of

Fig. 11 Graphical result of
position estimation in contrast to
the expected values for a steel
strip and b mill structure
components
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Fig. 12 Results regarding strip
position misalignment. a
Estimated strip position error
(yerror ) in relation to the
expected values. b Absolute
difference between estimated
and expected values. c
Histogram of the differences
between estimated and expected
values

4.460 fps, the system’s performance (26.4 fps) would
overcome the human operator. Additionally, the majority
of the data diverges from the expected value in less
than 5 mm, which is equivalent to less than 2 pixels
in the images. Considering that the strips are rolled at
10 m/s, it is reasonable to assume that the system also

outperforms the current manual operations in terms of
precision.

Therefore, the presented approach can successfully
estimate the steel strip misalignment with precision and
response time well beyond the current human operator
capabilities and, consequently, process specification.
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5 Conclusions

The system presented in this paper aims to estimate steel
strips positioning error. The method employs semantic
segmentation to estimate the strip location from images
of the process and to identify mill structure fixed parts
used to attenuate the influences of camera vibration
on the results. The identification of the strip by the
convolution network achieved high accuracy for all tested
models, in contrast to the mill structure, in which the
identification by the CNN accomplished considerable
results only for a few models. However, the application
of morphological operations refined semantic segmentation
predictions. As a result, the elected models achieved
the strip location and mill elements parts with mean
absolute errors of 3.4 (± 4.0) mm and 4.1 (± 3.8) mm,
respectively.

Additionally, the method can successfully estimate the
steel strip misalignment, presenting 97% of the estimated
values within a 2-pixel margin. Also, concerning the
positioning error, the mean absolute error attained by the
system is 2.06(± 1.7) mm. Regarding the execution time,
the method presented reduced computational cost per frame,
with an approximate frame rate of 26 fps. All thoughts
considered, the approach also proved to be a robust real-time
solution as the dataset is composed of low-resolution images
acquired in a complex environment. Future work will be
carried out for the integration of the developed solution in a
feedback control system designed to reject strip positioning
errors.
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