Skip to main content

Advertisement

Log in

Fuzzy decision-making in laser-assisted joining of polymer-metal hybrid structures

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

A fuzzy decision-making approach was developed to optimize laser-assisted joining process of polymer-metal hybrid structures. A systematic approach based on Design of Experiment was adopted to identify and explain the effect of each process parameter, i.e. laser energy and laser power, on the response variables, i.e. maximum operating temperature and shear strength. Then, a combined fuzzy-genetic algorithm model was developed to find the best input parameters’ combination capable to satisfy the requirement of the best processing performances, in terms of appropriate range of operating temperature and highest shear strength. The use of genetic algorithms involved the choice of the best nominal regression model and the optimisation of the fuzzy numbers. This enabled to account most of the experimental data in combination with the smallest uncertainty level. Experimental results showed the success of the joining process ensuring sufficient adhesion of the hybrid structure over time, with shear strength of almost 29 MPa by using a laser power of 150 W and energy of 2 kJ. Moreover, the fuzzy process maps enable the selection of the process parameters with the aim of achieving desired process output along with the lowest uncertainty level. In addition, it also provides the amount of uncertainty of the model. The results indicated that a low laser energy level of 2250 J and a laser power in the range 120–140 W would provide the optimal solution in terms of operating temperature (i.e. between 343 and 520 °C), shear strength (i.e. greater than 26 MPa) and uncertainty level (i.e. membership level greater than 0.9).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Lambiase F, Genna S (2018) Laser assisted joining of AA5053 aluminum alloy with polyvinyl chloride (PVC). Opt Laser Technol 107:80–88. https://doi.org/10.1016/j.optlastec.2018.05.023

    Article  Google Scholar 

  2. Troughton MJ (ed) (2009) Mechanical fastening. In: Handbook of Plastics Joining, Second edn. Elsevier, pp 175–201. https://doi.org/10.1016/B978-0-8155-1581-4.50020-2

  3. Oplinger DW (1998) Mechanical fastening and adhesive bonding. In: Handbook of Composites. Springer, Boston, pp 610–666. https://doi.org/10.1007/978-1-4615-6389-1_29

    Chapter  Google Scholar 

  4. Kweon J-H, Jung J-W, Kim T-H, Choi J-H, Kim D-H (2006) Failure of carbon composite-to-aluminum joints with combined mechanical fastening and adhesive bonding. Compos Struct 75:192–198. https://doi.org/10.1016/j.compstruct.2006.04.013

    Article  Google Scholar 

  5. Huang Y, Meng X, Wang Y, Xie Y, Zhou L (2018) Joining of aluminum alloy and polymer via friction stir lap welding. J Mater Process Technol 257:148–154. https://doi.org/10.1016/j.jmatprotec.2018.02.043

    Article  Google Scholar 

  6. Lambiase F, Paoletti A, Grossi V, Di Ilio A (2017) Friction assisted joining of aluminum and PVC sheets. J Manuf Process 29:221–231. https://doi.org/10.1016/j.jmapro.2017.07.026

    Article  Google Scholar 

  7. Huang Y, Meng X, Xie Y, Li J, Wan L (2019) New technique of friction-based filling stacking joining for metal and polymer. Compos Part B Eng 163:217–223. https://doi.org/10.1016/j.compositesb.2018.11.050

    Article  Google Scholar 

  8. Frick T, Schkutow A (2018) Laser transmission welding of polymers – irradiation strategies for strongly scattering materials. Procedia CIRP 74:538–543. https://doi.org/10.1016/j.procir.2018.08.118

    Article  Google Scholar 

  9. Chatterjee S, Mahapatra SS, Bharadwaj V, Upadhyay BN, Bindra KS, Thomas J (2019) Parametric appraisal of mechanical and metallurgical behavior of butt welded joints using pulsed Nd:YAG laser on thin sheets of AISI 316. Opt Laser Technol 117:186–199. https://doi.org/10.1016/j.optlastec.2019.04.004

    Article  Google Scholar 

  10. Engelmann C, Eckstaedt J, Olowinsky A, Aden M, Mamuschkin V (2016) Experimental and simulative investigations of laser assisted plastic-metal-joints considering different load directions. Phys Procedia 83:1118–1129. https://doi.org/10.1016/j.phpro.2016.08.117

    Article  Google Scholar 

  11. Rodríguez-Vidal E, Sanz C, Lambarri J, Quintana I (2018) Experimental investigation into metal micro-patterning by laser on polymer-metal hybrid joining. Opt Laser Technol 104:73–82. https://doi.org/10.1016/J.OPTLASTEC.2018.02.003

    Article  Google Scholar 

  12. Chueh Y-H, Wei C, Zhang X, Li L (2020) Integrated laser-based powder bed fusion and fused filament fabrication for three-dimensional printing of hybrid metal/polymer objects. Addit Manuf 31:100928. https://doi.org/10.1016/J.ADDMA.2019.100928

    Article  Google Scholar 

  13. Ozlati A, Movahedi M, Tamizi M, Tartifzadeh Z, Alipour S (2019) An alternative additive manufacturing-based joining method to make metal/polymer hybrid structures. J Manuf Process 45:217–226. https://doi.org/10.1016/J.JMAPRO.2019.07.002

    Article  Google Scholar 

  14. Ponticelli GS, Lambiase F, Leone C, Genna S (2020) Combined fuzzy and genetic algorithm for the optimisation of hybrid composite-polymer joints obtained by two-step laser joining process. Materials (Basel) 13:283. https://doi.org/10.3390/ma13020283

    Article  Google Scholar 

  15. Rao RV (2007) Decision making in the manufacturing environment: using graph theory and fuzzy multiple attribute decision making methods. In: Springer Series in Advanced Manufacturing, First edn. Springer London Ltd, pp 3–5

  16. Abhishek K, Chatterjee S, Datta S, Mahapatra SS (2017) Integrating principal component analysis, fuzzy linguistic reasoning and Taguchi philosophy for quality-productivity optimization. Mater Today Proc 4:1772–1777. https://doi.org/10.1016/j.matpr.2017.02.019

    Article  Google Scholar 

  17. Elishakoff I, Ferracuti B (2006) Four alternative definitions of the fuzzy safety factor. J Aerosp Eng 19:281–287. https://doi.org/10.1061/(ASCE)0893-1321(2006)19:4(281)

    Article  MATH  Google Scholar 

  18. Guarino S, Ponticelli GS (2017) High power diode laser (HPDL) for fatigue life improvement of steel: numerical modelling. Metals (Basel) 7. https://doi.org/10.3390/met7100447

  19. Chatterjee S, Mahapatra SS, Mondal A, Abhishek K (2018) An experimental study on drilling of titanium alloy using CO2 laser. Sadhana - Acad Proc Eng Sci 43:131. https://doi.org/10.1007/s12046-018-0903-1

    Article  Google Scholar 

  20. Lambiase F, Genna S, Kant R (2018) Optimization of laser-assisted joining through an integrated experimental-simulation approach. Int J Adv Manuf Technol 97:2655–2666. https://doi.org/10.1007/s00170-018-2113-8

    Article  Google Scholar 

  21. Lambiase F, Genna S, Kant R (2018) A procedure for calibration and validation of FE modelling of laser-assisted metal to polymer direct joining. Opt Laser Technol 98:363–372. https://doi.org/10.1016/j.optlastec.2017.08.016

    Article  Google Scholar 

  22. Chatterjee S, Mahapatra SS, Bharadwaj V, Choubey A, Upadhyay BN, Bindra KS (2019) Drilling of micro-holes on titanium alloy using pulsed Nd:YAG laser: parametric appraisal and prediction of performance characteristics. Proc Inst Mech Eng Part B J Eng Manuf 233:1872–1889. https://doi.org/10.1177/0954405418805604

    Article  Google Scholar 

  23. Coroiu AM (2015) Fuzzy methods in decision making process - a particular approach in manufacturing systems. IOP Conf Ser Mater Sci Eng 95:012154. https://doi.org/10.1088/1757-899X/95/1/012154

    Article  Google Scholar 

  24. Yusoff N, Anamul Hossain KM, Altab Hossain M, Parandoush P, Mohammed Sifullah A (2014) Fuzzy Logic Modeling of Silicon Nitride (Si3N4) Laser Cutting. Aust J Basic Appl Sci 8:7–11

  25. Ponticelli GS, Guarino S, Giannini O (2018) A fuzzy logic-based model in laser-assisted bending springback control. Int J Adv Manuf Technol 95:3887–3898. https://doi.org/10.1007/s00170-017-1482-8

    Article  Google Scholar 

  26. Ponticelli GS, Guarino S, Tagliaferri V, Giannini O (2019) An optimized fuzzy-genetic algorithm for metal foam manufacturing process control. Int J Adv Manuf Technol 101:603–614. https://doi.org/10.1007/s00170-018-2942-5

    Article  Google Scholar 

  27. Zadeh LA (1965) Fuzzy Sets. Inf Control 8:338–353

    Article  Google Scholar 

  28. Rodger JA (2014) Application of a fuzzy feasibility Bayesian probabilistic estimation of supply chain backorder aging, unfilled backorders, and customer wait time using stochastic simulation with Markov blankets. Expert Syst Appl 41:7005–7022. https://doi.org/10.1016/j.eswa.2014.05.012

    Article  Google Scholar 

  29. Salicone S (2007) Measurement uncertainty. Boston, Springer. https://doi.org/10.1007/978-0-387-46328-5

    Book  MATH  Google Scholar 

  30. Lambiase F, Genna S (2018) Experimental analysis of laser assisted joining of Al-Mg aluminium alloy with polyetheretherketone (PEEK). Int J Adhes Adhes 84:265–274. https://doi.org/10.1016/j.ijadhadh.2018.04.004

    Article  Google Scholar 

  31. Zorko D, Kulovec S, Duhovnik J, Tavčar J (2019) Durability and design parameters of a steel/PEEK gear pair. Mech Mach Theory 140:825–846. https://doi.org/10.1016/j.mechmachtheory.2019.07.001

    Article  Google Scholar 

  32. Lambiase F, Paoletti A, Grossi V, Genna S (2017) Improving energy efficiency in friction assisted joining of metals and polymers. J Mater Process Technol 250:379–389. https://doi.org/10.1016/j.jmatprotec.2017.08.005

    Article  Google Scholar 

  33. Montgomery DC (1991) Design and analysis of experiments. Wiley, Chichester

    MATH  Google Scholar 

  34. Acherjee B, Kuar AS, Mitra S, Misra D (2015) Laser transmission welding of polycarbonates: experiments, modeling, and sensitivity analysis. Int J Adv Manuf Technol 78:853–861. https://doi.org/10.1007/s00170-014-6693-7

    Article  Google Scholar 

  35. Liu H, Wang K, Li P, Zhang C, Du D, Hu Y et al (2012) Modeling and prediction of transmission laser bonding process between titanium coated glass and PET based on response surface methodology. Opt Lasers Eng 50:440–448. https://doi.org/10.1016/j.optlaseng.2011.10.010

    Article  Google Scholar 

  36. Verotti M, Di Giamberardino P, Belfiore NP, Giannini O (2019) A genetic algorithm-based method for the mechanical characterization of biosamples using a MEMS microgripper: numerical simulations. J Mech Behav Biomed Mater 96:88–95. https://doi.org/10.1016/j.jmbbm.2019.04.023

    Article  Google Scholar 

  37. Dumont-Fillon D, Hannebelle M, Van Lintel H, Chappel E (2016) Design of a passive flow regulator using a genetic algorithm. Procedia Eng 168:1016–1019. https://doi.org/10.1016/j.proeng.2016.11.329

    Article  Google Scholar 

  38. Alberdi R, Khandelwal K (2015) Comparison of robustness of metaheuristic algorithms for steel frame optimization. Eng Struct 102:40–60. https://doi.org/10.1016/j.engstruct.2015.08.012

    Article  Google Scholar 

  39. Dao SD, Abhary K, Marian R (2017) A bibliometric analysis of genetic algorithms throughout the history. Comput Ind Eng 110:395–403. https://doi.org/10.1016/j.cie.2017.06.009

    Article  Google Scholar 

  40. Alimardani M, Toyserkani E (2008) Prediction of laser solid freeform fabrication using neuro-fuzzy method. Appl Soft Comput 8:316–323. https://doi.org/10.1016/j.asoc.2007.02.002

    Article  Google Scholar 

  41. Hanss M (2002) The transformation method for the simulation and analysis of systems with uncertain parameters. Fuzzy Sets Syst 130:277–289

    Article  MathSciNet  Google Scholar 

  42. Hanss M (2005) Applied fuzzy arithmetic: an introduction with engineering applications, Springer-Verlag, pp 99–126

  43. Ismail H (2018) Statistical modeling, linear regression and ANOVA, a practical computational perspective. Lulu.com, pp 466

  44. Miller RG, Brown BW (1997) Beyond ANOVA: basics of applied statistics. First edn. Chapman & Hall/CRC, pp 164–240

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gennaro Salvatore Ponticelli.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Genna, S., Lambiase, F. & Ponticelli, G.S. Fuzzy decision-making in laser-assisted joining of polymer-metal hybrid structures. Int J Adv Manuf Technol 108, 61–72 (2020). https://doi.org/10.1007/s00170-020-05379-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-020-05379-7

Keywords

Navigation