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Abstract

The selection of printing parameters for 3D printing can dramatically affect the dynamic performance of components such as
polymer spur gears. In this paper, the performance of 3D printed gears has been optimised using a machine learning process. A
genetic algorithm (GA)-based artificial neural network (ANN) multi-parameter regression model was created. There were four
print parameters considered in 3D printing process, i.e. printing temperature, printing speed, printing bed temperature and infill
percentage. The parameter setting was generated by the Sobol sequence. Moreover, sensitivity analysis was carried out in this
paper, and leave-one cross validation was applied to the genetic algorithm-based ANN which showed a relatively accurate
performance in predictions and performance optimisation of 3D printed gears. Wear performance of 3D printed gears increased
by 3 times after optimised parameter setting was applied during their manufacture.

Keywords 3D printing - Nylon - Gears - Wear - Polymer gears - Machine learning

1 Introduction

For applications such as automotive and aerospace engineer-
ing, polymer gears have unique advantages over metal gears:
low cost and weight, high efficiency, quietness of operation,
functioning without external lubrication, etc. The performance
of 3D printed gear has been investigated previously.
According to Ye et al. [1], 5 different 3D printing nylon ma-
terials have been compared; result shows Nylon 618 has out-
standing performance compared with other nylon materials,
including 23% carbon fibre reinforced nylon filament. There
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are many investigations into the characteristics of wear and
thermal behaviour of injection-moulded gears. Mao et al. [2]
carried out an analysis of the friction and wear behaviour of
acetal and nylon gears including characterising the failure
mechanism and thermal analysis. The results showed the op-
erational time of polymer spur gears under different circum-
stances. Hu and Mao [3] investigated the effects of different
misalignments on the fatigue of polymer gears during use.
Hooke et al. [4] proved that increases in the surface tempera-
ture can dramatically increase the wear rate of the gear tooth.
Moreover, Gauvin et al. [5] carried out an investigation into
the maximum surface temperature experienced by polymer
gears without lubrication. Mao et al. [6] introduced a new
method to predict the surface temperature of acetal gears and
found the correlation between fatigue life and tooth size.
Additive manufacturing (AM) and 3D printing processes have
become increasingly popular; the applications of 3D printing
are usually suitable for relatively low production volumes,
small size parts and complex designs. It is generally under-
stood that 3D printing is cost effective if production volumes
are below 1000 units in comparison with plastic injection
moulding [7]. The technology has been applied in wide range
of industries, including the automotive industry, aerospace,
medical and architectural [8]. There was limited research on
dynamic performance of 3D printed polymer parts; however,
there are several investigations regarding the parameters
which affect the mechanical and thermal properties. Chacon
et al. [9] has investigated the effect of process parameters on
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mechanical performance of PLA in terms of on-edge orienta-
tion, layer thickness and feed rate. It has been shown that
higher printing speeds can increase the mechanical perfor-
mance of printed parts. Giovanni [10] carried out Taguchi’s
experimental design for fatigue analysis of PLA and claimed
that infill percentage had the most influence on fatigue life.
Kuznetsov et al. [11] claimed that printing temperature and
printing speed could dramatically dominate the mechanical
properties of the 3D printed part. Moreover, the thermal con-
ductivity of 3D printing filaments can also affect the
properties of the object [12], increasing or decreasing
the bonding quality between each layer during fused
deposition modelling [13, 14]. In order to understand
the complicated interplay between these different pro-
cess parameters and to select the most appropriate pa-
rameter set for the production of 3D printed gears, a
multiple regression process is required.

There was very limited research regarding of machine
learning associated with predicting performance of gears and
only some on its application to 3D printing processes. Fracture
behaviour of 3D printed material has shown dramatically dif-
ferent compared with other materials [15]. Deng et al. [16]
introduced optimisation methods to the multi-factor printing
of'a ceramic slurry by using artificial neural networks. Koeppe
et al. [17] used neural networks to analyse load distribution in
3D printed lattice cell structures. Delli and Chang [18] used
supervised machine learning to do real time monitoring of 3D
printing to eliminate printing time and waste. Those research
reports have provided valuable results in terms of static force
analysis and monitoring of the 3D printing; however, dynamic
analysis of 3D printed parts require further investigations. Li
et al. [19] has introduced a method using support vector ma-
chine to predict dynamic contact characteristics for helical
gears. Sun et al. [20] used neural networks to optimise and
predict a gear hobbing process to improve the efficiency and
reduce the cost. Sun et al. [21] used artificial neural networks
and support vector machines with genetic algorithms to mon-
itor the faults in gears. To find the correlation of 3D printing
process parameters and dynamic performance of polymer
gears would be a significant benefit to researchers both in
the fields of 3D printing and gear manufacture to increase
the efficiency of the 3D printing process and quality of the
resultant 3D printed spur gears.

Performing multi-parameter regression has many chal-
lenges, for example missing data and data noise, as well as
high dimensionality which impacts the ability to identify the
relations between parameters [22]. Through ordinary mathe-
matical solutions, it is computationally complex to solve
multi-target modelling, and targets often may not corre-
late. However, by using some baseline methods, such as
Gaussian processes, neural networks or support vector
machines, the complexity of the problem can be much
reduced [23].
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2 Methods and experiments

All 3D printing parameters were set as default and printed with
manufacturer-recommended printing temperature (250 °C), bed
temperature (30 °C) and speed (45 mm/s) apart from infill per-
centage, which was set to 60% for both printer systems. Under
initial setting which printing temperature was 245°C, printing
speed was 45°C, infill percentage was 60% and bed temperature
was 45°C gear running under 10 Nm torque and last around 16 h.
There are several stages required in order to complete dynamic
performance optimisation of 3D printed gears. First of all, the use
of a Sobol sequence was employed to generate Sobol random
parameters with multiple data points per parameter. The Sobol
sequence is a low discrepancy quasi-random sequence. Using
this method, a set of test data comprising of 50 points was gen-
erated, including a printing temperature range (230-275 °C),
printing speed range (20—75 mmy/s), infill percentage (20-80%)
and bed temperature range (30—70 °C). Bed temperature refers to
the temperature of printing surface which will affect the first few
layers during printing. Infill percentage represents how ‘hollow’
the gear is, with the aim of reducing the infill percentage and
hence reducing the weight and inertia during operation. Each
parameter was increased by factor of one, for example printing
temperature was increased from 230 to 275 °C and the Sobol
sequence covers the entire range, hence there was a total of 45
data points for printing temperature. Figure 1 shows the specifi-
cation of gears.

Furthermore, by applying a similar range for each parameter,
a small number of experiments could potentially provide insights
into the complex combination of each test data category, roughly
reducing a total of 45 x 45 x 40 x 60 = 5,940,000 possible com-
binations of 3D printing settings to a sample set of 50 chosen by
the Sobol sequence. Gears were produced using an Ultimaker 3
extended fused deposition modelling (FDM) system. Gears were
printed on a tufnol print surface due to superior adhesion between
the nylon and tufnol, eliminating the peel off during the 3D
printing process. A total of 100 gears were printed (50 matched
pairs) with an average printing time of around 6 h per gear
(depending on the setting of the parameters). After printing, gears
were mounted on a gear wear test rig subject to the gear perfor-
mance life cycle with 10 Nm torque. The tests included the
recording of the wear occurring at the gear tooth and showed
the different stages of gear operation until gear failure. The time
from commencing the test run on the test rig until the gear failure
was considered as the fatigue time. After acquiring the test data
for the printed gears, the 3D printing parameters were used as
input, and the corresponding gear life cycle data from test rig was
used as an output to create a neural network model of correlations
between input and output. The Gaussian process was also
employed to perform multi-parameter regression to find out the
approximate likelihood of output accuracy. By using the model
generated by the artificial neural network (ANN) and GP, a sub-
sequent sensitivity analysis was carried out to investigate the
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Fig. 1 a 3D printed nylon gear Module 2mm

cross section in simplified 3D. b

Specifications of gears Tooth number 30
Pressure angle 20°
Face width 15mm
Nominal backlash 0.18mm
Tooth thickness 3.14mm

(a)

relations of each multi-parameter. The process was shown in Fig.
1. Table 1 shows the result of the tests via the different Sobol
sequence settings.

2.1 Sobol sequence

The Sobol sequence is a method to sample data in a quasi-
random sequence, in which data was selected in a uniformly
random form. The Sobol sequence was first introduced by
Russian mathematician I.M Sobol [24]. According to
Savine, Sobol’s sequence could provide better evenness and
higher speed to fill the space within a hyper cube [25]. Sobol’s
sequence had over past 20 years of improvement of the algo-
rithm to capable applied to high dimension. Hence, Sobol’s
sequence became a best practice in different applications.
Sobol’s sequence was generated with Sobol’s generator fitted
in MATLAB; experiment data of each parameter was gener-
ated based on the algorithm of Sobol’s sequence. This code
below creates 50 vectors (4 components in each vector), ac-
cording to a 4-variate uniform distribution implemented
(approximately) using the Sobol sequence. Each component
in each vector is a number between 0 and 1. The command
above produces a matrix ‘X’ that lines up each of the vectors
as a column in the matrix X. There are therefore 50 columns
and 4 rows.

Temperature = 225 + X (1,:)*50

This takes the first component of each of the 50 vectors and
rescales it to get a temperature input value (between 225 and
275 K). Basically, use the first row X(1,:) of X.

Speed = 20 + X(2,:)*50

Same as above but use the 2nd row X(2,:) of X to get the
printing speed values (between 20 and 70 rpm).

BedT = 10 + X(3,:)*50
3rd row X(3,:) of X to get the bed temperature values

Infill = 20 + X (4, )50

Contact ratio 1.65

(b)

4th row X(4,:) of X to get the infill values
Input(:, 1) = Temperature’

Create a matrix called ‘Input’” and make the first column as
the 50 temperature values by typing the above (you
need to transpose the vector of temperature values by
using a prime, i.e. ').

Input(:,2) = Speed’

Second column of input is the speed value.
Input(:,3) = BedT’

Third column of input is the bed temperature values.
Input(:, 4) = sInfill’

Fourth column of input is the infill values.

2.2 Test rig

The test rig was designed to test the gear wear whilst the gears
were meshed and running. Details of the test rig employed
have been discussed in previous paper [1, 2]. 3D printed gears
can be tested in much the same way as metal gears, using a
back to back test configuration where the gears are loaded by
winding in the torque to a prescribed level [2]. A torque of
10 Nm was added to the gears, with each test gear operated
until failure. A motor was used to drive gears with an exter-
nally applied torque, with the reaction force between gear
teeth were equivalent to the bearing block and loading arm
(Fig. 2). This loading method permits large amounts of wear
without significantly affecting the applied torque (Fig. 3).

2.3 Artificial neural networks
Artificial neural networks simulate the physiological structure
and mechanism of the human brains in order to solve complex

problems. It is a machine learning process which is distinctly
different from common methods such as signal reasoning and
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Table 1 Input parameters generated by the Sobol sequence and output from test rig

Testing number

Printing temp (°C)

Printing speed (m/s)

Bed temperature (°C)

Infill percentage (%)

Test result, gear fatigue time (hours)

O 0 9 N L AW N~

A A A D B B D B PR D W W LW W W W LW WL LW NN RN DN RN N NN DN = o e e e e e e e e
O 0 1 N L A WD = O O 0NN R WD =IO 0 0N R WD = O 0 0NN RN = O
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230
253
264
241
247
269
258
236
238
261
272
250
244
267
255
233
234
257
268
245
251
274
262
240
237
260
271
248
243
265
254
231
232
255
266
243
249
271
260
238
241
263
274
252
246
269
257
235
234

25
50
38
63
44
69
31
56
41
66
28
53
34
59
47
72
48
73
36
61
30
55
42
67
33
58
45
70
39
64
27
52
38
63
26
51
32
57
45
70
29
54
41
66
48
73
35
60
37

30
50
60
40
55
35
45
65
43
63
53
33
68
48
38
58
64
44
34
54
49
69
59
39
51
31
41
61
36
56
66
46
54
34
44
64
39
59
69
49
62
40
32
52
47
67
57
37
41

20
50
35
65
28
58
43
73
61
31
76
46
54
24
69
39
44
74
29
59
37
67
2
52
71
41
56
26
78
48
63
33
55
25
70
40
62
32
77
47
28
58
43
73
21
51
36
66
79

0.04
20
11.11
30
1.94
24.69
9.32
21.03
15.57
10.1
30.18
20.6
10.12
6.66
12.9
0.36
12.77
36.8
1.65
16.66
2.88
20.16
2.67
10.32
12.24
1.96
7.28
0.06
21.24
27.78
25.71
0.39
252
11.38
8.4
1.76
5.16
4.17
34.49
15.67
0.07
14.79
3.06
30.45
0.04
12.77
16.38
32.77
25
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Table 1 (continued)

Testing number  Printing temp (°C)  Printing speed (m/s)

Bed temperature (°C)

Infill percentage (%)  Test result, gear fatigue time (hours)

50 256 62 61

49 25.41

logical thinking approaches [26]. ANN is an appropriate
method for solving incomplete associative memory, defect
characteristic pattern recognition and automatic learning
[27]. There are three main reasons that ANN was selected
for this research; first of all, the calculation speed of the
ANN is significantly computationally cheaper than other
methods [28]. Secondly, ANN has strong fault-tolerant
ability to minimise the uncertainty during the experi-
ments. Thirdly, ANN is adept in addressing problems
with multi-parameter regression, which is hard to solve
with purely numerical methods [29]. Back-propagation
(BP) training algorithm is the most frequently used
ANN training method [30].

2.3.1 Back-propagation networks

The principles of the back-propagation networks The detailed
stages of BP training method are the following: (1) The sam-
ple data for training are input to the network. (2) Data moves
forward from input stage to each hidden layer until the output
stage, then the output data is generated. (3) The difference
between input data and output data is compared, and if the
differences are larger than expected, they will be transferred
back to the hidden layer. (4) The weight of each neuron is
adjusted based on the deviation via the steepest descent meth-
od that means calculating the minimum value (maximum val-
ue) of the loss function along the gradient descent (ascent)
direction and the deviation transited to the input layer. (5)
The value proceeds forward again and after repeated iteration;
the error constantly diminishes. (6) The training process is

over when the gap between the input value and output value
is smaller than the expected value.

Figure 4 shows the structure of the ANN model. The ANN
model in this paper was carried out based on MATLAB neural
network toolbox. Moreover, there is a loop fitted in the model
aimed to select optimised hidden number of neural from 1 to
20. Result shows 5 hidden sizes providing less error. The
ANN model in this paper is composed of 4 input layer nodes,
5 hidden layer nodes and 1 output layer nodes. The initial
parameters of ANN, such as the connection weights between
input layer, hidden layer and output layer, and threshold value
of hidden layer and output layer have large influence on the
predictive performance. Due to the small number of training
data, best validation performance could occur at epoch 1 as
shown in Fig. 5.

2.4 Genetic algorithm

For the traditional ANN predictive models, without combin-
ing optimization algorithms, the initial parameters are deter-
mined randomly, which is inefficient or prone to converging
to local optima, slow convergence speed, overtraining, sub-
jectivity in the determining of model parameters and often
pose a convergence problem [31]. The optimised algorithm
GA is able to optimise the initial parameters of machine learn-
ing models to increase the estimating accuracy and accelerate
the convergence speed of the ANN models [32, 33].

Genetic algorithm (GA) is a parallel random search optimisa-
tion algorithm to simulate the genetic mechanism of natural GA,
and biological evolution GA can conduct efficient heuristic

Adding more test
r Print data
—* temperature |
Soble sequence (230°C-275°C) Using Ultimaker 3 Training 4
generate 50 3D —» extended to print 50 parameter as input ,
printing data's for —— EHBURE speed | pair of gears life cycle as output

each printing (20mm/s-75mm/s)

parimeter Infill percentage

(20%-80%)

Using wear test rig to
run fatigue test to
generate life cycle

Bed temperature

(20°C-70°C) data's.
Optimisation of

3D printing Sensitivity analysis via
process based on Garson’s algorithm

ANN model.

Fig. 2 Schematic of 3D printing optimising process

to generate ANN
and Gaussian
process model.

S i

Evaluation
satisfied ?
R? > 90%
T
Yes No

Apply genetic
algorism and
leave one cross
validation

e N
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Fig. 3 Schematic of wear test rig

1. Driver gear 8. Pulley

2. Driven gear 9. Motor

3. Pivot block 10. Motor

assembly. controller

4. Driven shaft 11. Weight

5. Universal 12.LVDT

couplings.

6. Driving shaft 13. Centre
spacer

7. Conical clutch 14. Pivot

search and parallel computing [34]. It introduces the biological
evolutionary principle of ‘survival of the fittest’ in the coded
tandem population formed by optimisation parameters and
chooses individuals according to the fitness function of the indi-
viduals and the operations of selection, cross and mutation to
make the individuals with high fitness value be retained; the
individuals with low fitness be eliminated [35]. The new gener-
ation would inherit the information of the previous generation
and be superior to the previous generation. This iteration is re-
peated until the predetermined expired criterion is met [36].
The basic operations of the GA are divided into:

2.4.1 Select operation
The selection operation refers to the selection of individuals

from the old generation to the new generation [37]. The prob-
ability that the individual is selected from the old generation to

Fig. 4 Schematic structure of
ANN model

the new generation is related to the fitness value of the indi-
vidual. The better the individual fitness value, the higher the
probability of being selected [38].

2.4.2 Cross operation

The cross operation refers to the selection of two individ-
uals from the old generation to produce new individuals by
randomly exchanging and combination of the chromosomal
locations of the two old individuals [39].

2.4.3 Mutation operation
The mutation operation refers to the selection of an individual
from the old generation and choosing a point in the chromosome

of the individual to mutate to produce a new individual. The
basic process of GA is shown in Fig. 6.

] xnp = Wann® xnn
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Best Validation Performance is 0.043 at Epoch 1

Error Histogram with 20 Bins
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Fig. 5 Performance validation of ANN
. . L. . Initialize Population
The detailed method of applying GA in improving the |
performance of ANN is following: the GA is used to opti- v

mise the initial parameters of ANN. Each particle in GA
contains all information of the initial parameters of the
ANN model. According to the fitness function of the indi-
viduals and the operations of selection, cross and mutation
to make the individuals with high fitness value be retained,
the individuals with low fitness are eliminated. This itera-
tion is repeated until the predetermined expired criterion is
met. The initial parameters of the particle with the highest
fitness are assigned to the ANN model. The objective func-
tion (fitness function) is the R-squared. The crossover co-
efficient of the GA algorithm is 0.2, the mutation coeffi-
cient is 0.2, the size of population is 100 and the maximum
iteration number is 100.

0.60

I <l
| Fitness Evaluation [

Termination
Criterion?

—+| Output Optimal Results |

Fig. 6 Schematic of GA process
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Fig. 9 Performance of different 45
models compared with test result 40
35

Gear opreational time (Hours)

—a— Test result -

2.5 Leave-one-out cross validation

Leave-one-out cross validation is a method which evaluates
the performance of a machine learning algorithm, which in
this case is an ANN. As a technique, it can increase the pre-
diction accuracy by increasing the training data point to and
decrease the test data point to 1. Hence, leave-one-out cross
validation could eliminate the randomness of dividing in-
stances into for training and testing. By changing the ratio of
training and testing of AAN, it could maximised the training
algorithm to provide a better understanding of model and
clearer pattern of the Sobol sequence [40]. Due to the small
amount of data, it is workable to maximise the number of the
training data.

2.6 Garson’s algorithm

Based on the established machine learning models, the sensi-
tivity analysis of the input parameters is conducted by
adopting Garson’s algorithm. In 1991, Garson proposed
Garson’s algorithm [41, 42], later modified by Goh, for deter-
mining the relative importance of the input parameters to the
output parameter [39, 41, 43], the equation of Garson’s

50.0
45.0
40.0
35.0
30.0
25.0
20.0
15.0
10.0

5.0

0.0

Fig. 10 Sensitivity response
contributes to result

Sensitive analysis percentage
(%)

Test numbers

ANNmodel = GA based ANN Leave one cross validation applied

algorithm is shown in Eq. 1; the results of the sensitivity anal-
ysis by using Garson’s algorithm is shown in Fig. 9.
L

1

N
(1wawals 5, 1)

L N
2 (\WziW./k!/ 2 \Wr:/|)

Rij = (1)

where Rjjis the relative importance of input parameters,
W,;,Wjare the connection weights of the input layer hidden
layer and the hidden-output layer, i=1,2....N, k=1,2...M
(N and M are the numbers of the input parameters and output
parameters).

3 Result and discussion

Figure 7 shows the performance of each model fitting with
original test data. Figure 7a shows the linear fitting between
the ANN model and test data given a Pearson product-
moment correlation coefficient of 0.85326 and R square of
0.728. It shows high correlation related to the original test data
[44, 45]. However, to optimise the performance, it is possible

45.3

22.2 23.90
8.6
Printing Printing Speed Bed Temperature  Infill Persentage
Temperature sensitivity sensitivity sensitivity
sensitivity

Input Paremeters
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Fig. 11 3D printing process
optimisation by ANN simulation

Simulated opreational time

1000
2000

to increase the accuracy of the prediction model. Hence, the
GA-based ANN (Fig. 7b) has been applied to the model which
yields closer agreements between the measured and predicted
values of gear fatigue time. R? increases from 0.728 to 0.8
when the GA is applied; moreover, Pearson’s » increased by
nearly 5%. This result could be explained by the fact that the
proposed ANN-based predictive model accuracy in this case
was increased with GA optimisation. Furthermore, the initial
target was to achieve an R-squared value greater than 0.9;
hence, the GA-based ANN can provide a relatively satisfac-
tory result. However, optimisation and prediction accuracy
can be further increased by applying leave-one cross
validation.

Figure 4c shows the model applied with both GA and
leave-one cross validation, Pearson’s » and R? dramatically
increase from 0.83 to 0.97 and 0.728 to 0.956, respectively.
Hence, a model with applied leave-one cross validation was
selected as the final model to carry out further analysis.

Figure 5 shows the result of optimisation performed by
GA, which is used to optimise the ratio between w and 6 in
order to improve the accuracy of the ANN. The solid plot
represents the average error corresponding to the real test data.

56.2 57
51.66
49.44
| |
1 2 3 4

Test numbers

() [=a)
(=] (=]

£
o

Opreational time (Hours)
= ~ w
o o o

=]
h

Fig. 12 5 tests using optimisation setting for 3D printed gears
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MR (A
Simu!atILn 7532: 52.07h
Print temp: 250°C
Printing Speed :70 m/s
Bed Temperature: 25°C
Infill Persentage : 80%

: 0§ 8 § 3

3000
4000

§ &8 B & ¢

Simulation numbers

In the GA optimisation process, 200 iterations were selected
due to the decrease in computational time and convergence
towards an optimised solution. Each iteration has a population
of 50. The plot on the solid line represents the average error
corresponding to the test data, and the dotted line represents
the best fit corresponding to the test data from the wear test rig.
It is shown that average error was decreased from around 23 to
10%; moreover, best fit was improved from 10 to less than
5%, respectively. Hence, it can be shown that applying GA
can increase the efficiency and accuracy of the ANN regres-
sion model (Fig. 8).

Figure 9 shows the comparison of the prediction of each
model and test performed by wear test rig. Compared with
evaluation methods such as Pearson’s » and R-squared, it is
shown that leave-one cross validation applied to the GA-based
ANN model provides better accuracy compared with a con-
ventional ANN model and the GA-based ANN model. Hence,
as a result, leave-one cross validation applied to the GA-based
ANN model can provide an efficiently and relatively accurate
model to carry out the prediction of performance of 3D printed
nylon spur gears with different manufacturing parameters.

The model reveals (Fig. 10) that printing temperature con-
tributes to the performance of a printed gear by around 22% in
terms of weighting. Printing speed has around a 23% influ-
ence on the performance. Bed temperature contributes an
8.6% influence on the final result, showing a reduced impor-
tance compared with the rest of the parameters. Hence, by
using Garson’s algorithm, it is possible to identify the most
influential parameter regarding gear performance is infill per-
centage. Conceptually, this result makes sense as it is possible
that by increasing infill percentage, the rigidity of gear under
loads is increased.

In order to explore the power of the model in predicting
optimal gear performance and outputting the 3D printer pa-
rameters required, a simulation was carried out. Figure 8
shows the simulation of 14,256 combinations of different
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parameters. In this simulation, printing temperature is in-
creased from 230 to 275 °C by 5 °C each step. Hence, there
are 10 data points created for printing temperature instead of
50. Printing speed was increased from 20 to 75 mm/s by
5 mm/s each step. Hence, there are 12 data points generated.
Bed temperature is increased from 30 to 70 °C with 5 °C each
time, with 9 data points required for the analysis. Infill per-
centage was increased from 20 to 80%, with 12 data points. As
mentioned earlier, there are more than 5 million combinations
that could be used in generating test input data; howev-
er, errors in the 3D printing process and errors in the
test rig could counter the tolerance of the setting, hence
a gap between parameters by factor of 5 could provide
relatively accurate results. Simulation was carried out by
leave-one cross validation—applied GA-based ANN mod-
el. Simulation number 7532 showed 52.07 h of potential
gear performance with 3D printer settings of a printing
temperature of 250 °C, printing speed of 70 mm/s, bed
temperature of 25 °C and infill percentage of 80% as
shown in Fig. 11.

Validation of this model result was performed by producing
a 3D printed gear using the same settings suggested by the
ANN optimisation. A total of 5 pairs of gears were printed and
tested on the wear test rig, with the results shown in Fig. 12.
The results showed that the 5 tests yielded an average perfor-
mance of 51.46 h, which was very close to the ANN simula-
tion value of 52.07 h. Hence, optimisation simulation could be
considered as a valid simulation.

Previous paper has carried out the analysis of 5 different
nylon 3D printing materials. There are 5 different materials
that have been printed and tested including Nylon 618, Nylon
645, alloy 910 onyx and Markforged nylon filaments. Nylon
618 3D printed gear provided best wear performance among 5
different 3D printing filament materials. Research shows that
the different mechanical performance between nylon fila-
ments was caused by differences in crystallinity and unique-
ness of the FDM process. Another outstanding behaviour of
Nylon 618 was shown in SEM (scanning electron microsco-
py); result shows dramatically different wear behaviour for the
3D printed gears when compared with the literature reports of
injection-moulded gears. Furthermore, Nylon 618 material
has outstanding thermal performance of gears during wear
tests and together with SEM, which was used to analyse gear
failure mechanisms. The performance results showed that
gears 3D printed using Nylon 618 actually performed better
than injection-moulded Nylon 66 gears when low to medium
torque was applied. Associating with the result of optimal 3D
printer setting, it is believed that by improving the manufactur-
ing procedure, the performance of Nylon 618 was further
enhanced. By applying machine learning method to
manufacturing 3D printed gears could dramatically increase
the mechanical behaviour of 3D printed part in a highly dy-
namic criterion.

4 Conclusion

In this paper, a set of experimental data has been designed by the
Sobol sequence, providing relatively higher tolerance and cover-
ing a much larger range of input data with minimal test data being
required. Four 3D printing parameters were selected via specific
requirements of polymer gears which require rigidity and light
weight. A prediction model of 3D printed gears has been carried
out with three models including an ANN model, a GA-based
ANN model and a leave-one cross validation—applied GA-
based ANN model. The results show that all models provide
relatively accurate predictions and provide satisfactory fitting to
the test data. A leave-one cross validation—applied model pro-
vides the strongest correlation with test results, with Pearson’s
equal to 0.97 and R* equal to 0.956, respectively. Moreover, by
simulating an experiment, the printing parameters have been
optimised to increase the performance of the 3D printed polymer
gears. The results suggest an optimised setting of the 3D printer
as follows: printing temperature is equal to 250 °C, a printing
speed of 70 mm/s, a bed temperature of 25 °C and the infill
percentage is 80%. The operational time of the resultant 3D
printed polymer gear was increased more than 3 times compared
with the gears produced using the default print settings.
Sensitivity analysis performed by Garson’s algorithm indicated
that infill percentage has the most influence on the performance
of'a 3D printed gear, and bed temperature has the least influence
on the test result.

5 Limitations and future scope

Due to the unique characteristic of the ANN process, true
correlation between each parameter was not fully studied.
Moreover, more data points added to the model could increase
the accuracy of the simulation. There are several possible di-
rections based on this research. Firstly, to carry out the study
of the polymer molecular structure to explain the influence of
different parameter settings. Secondly, to investigate several
other 3D printed materials in order to understand the correla-
tion between different materials and creating model to predict
the performance of gears produced by using different mate-
rials and elicit the required print parameters.
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