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Abstract
Metal additive manufacturing (MAM) has found emerging application in the aerospace, biomedical and defence industries.
However, the lack of reproducibility and quality issues are regarded as the two main drawbacks to AM. Both of these aspects
are affected by the distribution of defects (e.g. pores) in the AM part. Computed tomography (CT) allows the determination
of defect sizes, shapes and locations, which are all important aspects for the mechanical properties of the final part. In this
paper, data-constrained modelling (DCM) with multi-energy synchrotron X-rays is employed to characterise the distribution
of defects in 316L stainless steel specimens manufactured with laser metal deposition (LMD). It is shown that DCM offers
a more reliable method to the determination of defect levels when compared to traditional segmentation techniques through
the calculation of multiple volume fractions inside a voxel, i.e. by providing sub-voxel information. The results indicate that
the samples are dominated by a high number of small light constituents (including pores) that would not be detected under
the voxel size in the majority of studies reported in the literature using conventional thresholding methods.

Keywords Additive manufacturing · Laser metal deposition · X-ray computed tomography (XCT) ·
Data-constrained modelling (DCM) · Defects

1 Introduction

Additive manufacturing (AM) is defined as “a process
of joining materials to make objects from 3D model
data, usually layer upon layer, as opposed to subtractive
manufacturing methodologies” (ASTM F2792-12a). The
main difference between the AM processes is the method
of producing individual layers [1–3]. Metal additive
manufacturing (MAM) uses a laser or an electron beam
to melt metal powder or wire as feedstock to build parts,
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commonly with steel, aluminium and titanium alloys [4,
5], and has found applications in the biomedical [6, 7]
and aerospace [8, 9] industries. Other fields that have
introduced MAM include automobile, energy and defence
industries [10, 11]. In particular, 316L stainless steel (SS)
has been well-established in additive manufacturing due to
its corrosion resistance, excellent mechanical properties and
very good processability [12–14]. As outlined by various
authors [4, 5, 15, 16], the advantages of AM include the
ability to build complex features (free form capability),
hollow (unsupported) structures (weight savings) and high
precision parts with a lower number of manufacturing
steps and high buy-to-fly ratios; tool-less manufacturing,
just-in-time manufacturing and reduction of lead time;
multimaterial manufacturing, remanufacturing and repair of
damaged, worn-out or corroded parts.

There are a number of challenges for AM to establish
itself as a core technology. In this context, quality and
repeatability are regarded as the two main drawbacks
of AM [15, 17–20]. Both of these aspects are affected
by the porosity level and distribution in the part. The
presence of porosity deteriorate the mechanical properties
[21, 22], especially fatigue performance [23, 24]. Thus, the
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manufacture of parts with high density is typically the initial
aim in AM process optimisation [5]. A variety of methods
are available for the detection of defects after the part has
been produced and can be classified into two categories:

(1) Destructive methods: such as cutting, grinding and
polishing of the part, which is then analysed using
optical or scanning electron microscopes [25, 26]. This
approach, besides not being economically favourable
and being time-consuming, is limited to some sections
of the specimen [27]. Ahsan et al. [28] emphasises
that optical and scanning electron microscopy are
very good techniques for microstructure analysis but
have the drawback of only providing information
on discrete planes. Consequently, since porosity is
not uniformly distributed, the cross-section could be
selected at a region that is free of pores, for example,
and therefore not representative of the entire part.
Furthermore, the specimen preparation, i.e. grinding
and polishing, may affect the sizes and shapes of pores
due to metal smearing [26, 29].

(2) Nondestructive methods: such as density measure-
ments using the Archimedes method or gas pycnome-
try [26, 30], ultrasonic methods [31, 32] and computed
tomography (CT) [15, 33]. The most common non-
destructive methods for the evaluation of porosity in
AM samples are the Archimedes method and CT [34,
35]. The Archimedes method allows the determina-
tion of the density of the part by measuring the mass
of the part in air and in a fluid of known density.
From the determined density and the nominal den-
sity of the material, an average porosity value can be
determined for the whole sample [26, 36]. Spierings
et al. [27] suggest that this is the most reliable, eco-
nomic and fast procedure for porosity quantification.
On the other hand, du Plessis et al. [35] discussed some
of the problems associated with the method, such as
the attachment of air bubbles on the surface resulting
in lower density, open porosities could be filled with
water and affect the measurement, inclusions could
increase the measured density and the assumed nom-
inal density may be incorrect for alloys with varying
compositions.

Size, shape and location of pores play a significant
role on the mechanical properties and part performance.
Therefore, the overall porosity (Archimedes method or
pycnometry) does not provide sufficient information to
characterise the influence of porosity [29, 34, 35, 37]. De
Chiffre et al. [38] highlighted CT as the only method for
nondestructive analysis of internal features and porosities.
Since the introduction of microcomputed tomography
(μXCT) by Flannery et al. [39] in 1987, the method has
evolved to a quantitative technique [40] and has found

widespread application in materials science [41–43]. A
tutorial review on X-ray microtomography is available
in Landis, Keane [44], wherein the authors emphasise
that the technique is complementary to high-resolution
metallographic analysis and lower resolution ultrasonic
imaging.

Microcomputed tomography has become an important
tool in AM, especially considering its ability to manufacture
complex internal features and its high precision [34, 35].
Despite the progress in the application of CT in AM, the
resolution in X-ray tomography is limited by the voxel
size and is affected by several factors such as blurring
from a finite X-ray source, scatter of X-ray photons,
beam hardening and mechanical errors from tilting during
imaging [45]. Maskery et al. [29] showed that the choice
of thresholding method highly influences the pore sizes
and shapes. The authors state that manually adjusting the
automatic threshold by 5% changed the mean porosity
by 10%; consequently, they argue robust image analysis
procedures for the thresholding should be adopted. Cai et al.
[36] point out that the resolution of the XCT imaging is
limited by both the voxel size and the specimen size (small
specimens allow higher resolution to detect smaller defects).
They note that global thresholding and locally adaptive
segmentation produce very different porosity results and
suggest a number of image processing steps before applying
the thresholding. Salarian, Toyserkani [46] demonstrated
that the nano-CT detects a larger amount of pores since
pores smaller than 216 μm3 are not detected by the micro-
CT, this resulted in a slightly smaller density, which is
argued as critical for demanding applications. The nano-CT
also allows better determination of edges of pores, providing
a more accurate segmentation.

From the previous discussion, some issues are yet
to be addressed in order to improve the potential of
computed tomography in detecting defects in metal AM:
(1) the limited resolution of the scans, (2) lack of
thresholding robustness (i.e. different results due to the
effects of colour thresholding and CT artefacts and
noise), (3) incapability of differentiating between pores
and inclusions for conventional segmentation techniques.
In order to address some of these issues, synchrotron-
based microtomography (μSXCT) can be used. Among the
microtomography techniques, it provides the best speed,
spatial resolution and signal-to-noise ratio as a result of
the high intensity, monochromatic, practically parallel and
tunable beams [47–49]. The energy tunability, in particular,
can be used to perform multi-energy CT, offering the
possibility to distinguish material compositions with similar
attenuations for a single energy [50, 51].

Conventional thresholding techniques cannot distinguish
features smaller than a voxel size [27, 29, 45, 46, 52]. In
these studies, a pore with the size of a voxel could be
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generated by noise; thus, most studies consider a lower pore
size cutoff of at least 2 × 2 pixels (2 × 2 × 2 voxels). This
cutoff is even higher for the determination of pores shapes.
DCM (data-constrained modelling), on the other hand,
enables more accurate determination of the composition of
a sample, providing more detailed information and allowing
to calculate materials distributions below CT resolution, i.e.
inside a voxel [50, 51, 53]. As discussed in Trinchi et al.
[51], using one or more CT datasets at different energies,
DCM takes advantage of the energy-dependent material
properties to generate voxels that are not single valued (as
in traditional segmentation), but instead consist of multiple
compositions, including pores.

The nonlinear optimisation in DCM is equivalent to
adjusting the volume fractions of each composition in the
voxels in order to minimise the difference between the
theoretical and measured linear absorption coefficients and
to maximise the Boltzmann distribution probability [53,
54]. Consequently, it is possible to accurately determine the
distribution of pores and inclusions in the sample by taking
into account even those that are smaller than the imaging
resolution. DCM has been applied to a number of studies
in materials characterisation, such as oil and gas reservoir
rocks [55, 56], corrosion inhibitors [57] and cold-sprayed
titanium parts [58].

The paper is organised as follows. A description on
the sample preparation, imaging procedures (including
both multi-energy synchrotron CT and conventional CT),
hardness testing and SEM/EDS analysis is provided in
Section 2. In Section 3, the levels and distributions of
defects in the samples by both CT techniques are discussed.
These distributions are then correlated with the hardness
and chemical compositions of the samples. In Section 4, we
draw some conclusions on the results presented. Finally, this
is followed by acknowledgements and references.

2Methodology

2.1 Sample preparation

In this study, laser metal deposition was employed to build
parts with 316L SS powder. In LMD (Fig. 1), a part is
built by melting a surface with a laser and simultaneously
applying the metal powder through a coaxial or multi-jet
nozzle [1, 2, 5]. The powder composition is given in Table 1.
The sieve analysis reveals the powder size to be in the range
36–125 μm, with average size of 70 μm.

Two samples with cylindrical shape and size of 2 mm
(diameter) × 6 mm (height) were machined for analysis.
Sample 1 was taken in the core of the part, where the
deposition process was well-established and the resulting
material expected to be uniform. The corresponding

Fig. 1 Laser metal deposition [1]

deposition conditions as recommended by the manufacturer
are summarised in Table 2. Only the laser power was
adjusted during the deposition process to maintain the
building rate and the shape of the build (the feedback sensor
available in the machine was deactivated). For comparison,
sample 2 was machined within the disposable first layers of
the build intended to anchor the 316L part to the substrate,
where both the proximity of the mild steel substrate and a
higher laser power (990 W) are expected to produce a less
consistent material.

2.2 Synchrotron CT: image acquisition,
reconstruction and DCM

The imaging was performed at the Imaging and Medical
beamline (IMBL) at the Australian Synchrotron. The
synchrotron X-rays passed through the sample, hitting a
scintillator, which converted the X-rays to visible light
captured by the Ruby detector. The sample to detector
distance was 28.5 cm and the resulting pixel size is 5.97 μm.
For each respective energy, 3600 images were generated
by scanning the samples 180◦ with an angle step of 0.05◦.
Before and after the imaging for each energy, 100 dark field
images and 100 flat field images were also taken.

Table 1 Chemical composition of 316L powder

Element Specification (%)

Chromium 16.9

Nickel 13.0

Molybdenum 2.6

Manganese 1.5

Silicon 0.8

Carbon 0.006

Iron Balance
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Table 2 AM build parameters

AM technology Laser metal deposition (LMD)

Machine DMG Mori Lasertec 65 3D

Laser power 850 W

Laser velocity 880 mm/min

Laser spot size 1.6 mm

Layer thickness 1 mm

Substrate Mild steel, 150 × 150 × 25 mm3

Mass flow rate 7.7 g/min (powder) and 6 L/min (argon)

The projection images were imported into X-TRACT
[59]. They were then pre-processed using trimming to
reduce the raw images to the areas corresponding to the
sample, flat field correction and dark current subtraction
for background correction, a polar filter size of 9 for ring
artefact removal, and phase retrieval using the Paganin’s
algorithm [60]. For the phase-retrieval step, the δ/β ratio
(δ and β are the real and imaginary parts of the complex
refractive index, respectively) was calculated based on the
material composition and corresponding X-ray energy to
minimise edge enhancement without loss of resolution,
resulting in 219 for 70 keV and 315 for 90 keV. After
pre-processing, the data was reconstructed using a standard
filtered backprojection (FBP) parallel-beam algorithm [61].

In multi-energy CT, the energies are selected to maximise
the contrast between the different phases in the sample,
i.e. minimise the linear dependence between the CT
datasets, and therefore maximise noise tolerance [51, 57].
The penetration of the 60 keV X-rays was found to be
below 30% in the mid regions of the samples; hence,
to accomplish higher contrast the 70 keV and 90 keV,
reconstructed datasets were imported into DCM. In order
to minimise artefacts from the CT, the topmost and
bottommost layers were excluded and 850 reconstructed
slices from each energy were considered. Furthermore, the
experimental attenuation of 316L SS was lower than the
theoretical attenuation. Hence, the measured attenuation
was multiplied by 1.18 and 1.15 for the 70 and 90 keV
datasets, respectively.

In DCM, three groups have been determined based on
the EDS analysis and the attenuation values normalised
to the bulk material (μnorm): (1) pores and silicon oxide
(μnorm ≈ 0.1): pores and SiO2; (2) bulk material (316L SS);
(3) manganese and chromium oxides and carbides (μnorm ≈
0.5): Cr2O3, MnO, Cr23C6 and Mn23C6.

For each of these groups, an equivalent molecular
formula and average density are calculated assuming the
same proportion for every one of the elements in the group.
These are then defined as three channels in DCM (each
channel in DCM is an internal holder for data values). It is
noteworthy that even though data from the first group will

be referred to as pores, it may actually incorporate silicon
inclusions since porosity and low attenuation inclusions
(light constituents) cannot be distinguished in CT.

As described in [53, 54], for each of the ith voxels in the
sample, the nonlinear optimisation consists of minimising
the objective function in (1), subject to the constraints in (2):

Ti =
∑

ε

[
μp(ε)v

p
i + μb(ε)vb

i + μo(ε)vo
i − μi(ε)

]2 + Ei

(1)

{
0 ≤ v

p
i , vb

i , vo
i ≤ 1

v
p
i + vb

i + vo
i = 1

(2)

where v
p
i , vb

i and vo
i represent the volume fractions

of pores/low attenuation inclusions, bulk material and
oxides/carbides, respectively; μp(ε), μb(ε) and μo(ε) are
the linear absorption coefficients of pores/low attenuation
inclusions, bulk material and oxides/carbides, respectively,
for each of the energies (ε1= 70 keV and ε2= 90 keV);
μi(ε) is the total linear absorption coefficient at the voxel
for the respective energy; and Ei is the phenomenological
interaction energy. The linear absorption coefficients were
μp(ε1)= 0.288 cm−1, μb(ε1)= 6.690 cm−1 and μo(ε1)=
3.891 cm−1 for 70 keV and μp(ε2)= 0.238 cm−1, μb(ε2)=
3.793 cm−1 and μo(ε2)= 2.291 cm−1 for 90 keV, based on
the density values available in [62].

2.3 Conventional CT: image acquisition,
reconstruction and thresholding

The samples were imaged using Skyscan 1275 X-ray
microtomography from Bruker at a voxel size of 6 μm and
100 kV. In order to reduce the beam hardening artefact, a
copper filter of a 1-mm thickness was used. The sample was
rotated 360◦ at a rotation step of 0.4◦ and a number of 4
frames being acquired for each step in order to reduce noise.

Images were reconstructed using NRecon. The images
were pre-processed during reconstruction through a beam-
hardening correction of 30% (as suggested by the standard
recipe from Bruker) and a filter of 9 (same as the filter
analysed for the synchrotron CT) for ring artefact removal.
For the porosity analysis, the reconstructed slices were
imported into CTan. Firstly, a range of 800 slices that do
not contain clear visual artefacts from the CT were selected
for each sample. After that, circular regions of interest were
selected at the uppermost and undermost slices for each
sample, which were then interpolated to create a cylindrical
volume of interest inside the sample.

The most common thresholding techniques for analysis
of porous media are (global/local) manual thresholding,
Otsu’s thresholding and adaptive thresholding, as discussed
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in Iassonov et al. [63]. These three methods were then
employed in the sample after a non-local mean 3D filtering
and an unsharp mask filtering, as suggested by [36,
46] in similar metal additive manufacturing studies. The
mean filter removes noise while preserving significant
features and the unsharp mask filter enhances edges without
overly exaggerating the noise and partially corrects for the
smoothing in the tomographic reconstruction [64]. For the
manual thresholding, the dataset was segmented into bulk
material and pores using a threshold of 170. This value was
selected to show the best similarity with the inclusions and
pores that can be clearly visualised in sample 2. The same
value was applied to sample 1.

A second instrument for conventional microtomography
with a voxel size of 4 μm was used to evaluate the effect of
smaller voxel size in the accuracy of detecting the porosity
distribution and to validate the results obtained with DCM.
The samples were imaged using a GE Phoenix v|tome|x
240 kV. Images were reconstructed and analysed using
VGStudio MAX 3.0. The VGDefX algorithm was employed
since it is more sophisticated than the “only thresholding”
algorithm and allows for grey value variations, noise
reduction and detection of open pores. In this analysis,
automatic surface determination and then an autothreshold
were used. Once again, a filtering step was added to remove
noise and ring artefact and streak artefact removal were also
employed. In the detection of porosity, a minimum size of 8
voxels was considered.

2.4 Hardness test and SEM/EDS analysis

Before proceeding with hardness testing, the samples were
prepared using a Struers–Hexamatic machine with a long
method for high alloy steels. It consisted of grinding with
SiC foil #220, fine grinding with MD-Largo, three diamond
polishing steps (MD-Mol, MD-Nap and MD-Chem) and
cleaning at the end of each grinding and polishing step.

For the hardness measurement, a TI950 Triboindenter
(Hysitron) with a Berkovich3 tip was used with the polished
samples. The parameters were peak force of 10,000 μN
and dwell time of 10 s (same time for loading and
unloading), resulting in a depth of penetration (hc) of
approximately 330 nm. For sample 1, 25 indentations in
the centre of the sample along the Z-direction were made,
while 50 indentations were used for sample 2 in order to
more accurately analyse the non-uniform distribution of
inclusions and porosity in this specimen.

A Philips XL30 scanning electron microscope (SEM)
equipped with an Oxford XMAX20 detector was used to
perform energy dispersive X-ray spectroscopy (EDS) anal-
ysis with the AZtec software. EDS allows determining the
chemical composition of the polished samples and evaluat-
ing possible compositional changes during manufacturing,

particularly for the inclusions formed during AM. The
parameters were accelerating voltage of 30 kV and spot size
of 5.

3 Results and discussion

3.1 Multi-energy synchrotron CT and DCM

After the nonlinear optimisation in DCM, the 3D images
of the samples are shown in Fig. 2. Display intensities
have been adjusted for better visibility. Light constituents
(pores and silicon inclusions) are displayed as green, bulk
material as blue and oxides and carbides as red. For sample
1 (Fig. 2a), CT suggests grain growth in the build direction
with the light constituents mainly distributed along the grain
boundaries. The presence of elongated grains (epitaxial
growth) roughly parallel to the build direction is a result of
the steep temperature gradient created by the directed local
heat source [2], i.e. the heat conduction in the build direction
is typically higher than in the build plane (unidirectional
heat transfer and cooling) [1, 5]. In addition, the existence
of Si along the grain boundaries has also been reported
in [65] and might be related to thermal segregation. For
sample 2 (Fig. 2b), the manganese and chromium carbides
and oxides are found concentrated in four regions, with
light constituents appearing as clouds around them. The
distances between these four regions are approximately
0.9 mm, i.e. the layer thickness. Therefore, inclusions can
be associated with the oxidation that developed during the
fabrication of the sample since the layers were exposed to
air during cooling. Notice that these inclusions were only
present for the layers in the proximity of the build plate and,
consequently, can be attributed to the influence of the mild
steel in the building process.

Fig. 2 3D visualisation of samples 1 (a) and 2 (b) in DCM. Light
constituents (pores and silicon inclusions) are displayed as green, bulk
material as blue and oxides and carbides as red
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To analyse the distribution of defects based on the
compositional map provided by DCM, C++ plugins were
developed in Microsoft Visual Studio. These plugins were
then incorporated into the computation method in DCM.
The first of these plugins determines the average distribution
of light constituents in each layer. The uppermost and
undermost fifty layers were removed from this analysis
since they have shown high concentration of defects which
are attributed to artefacts from the CT. Figure 3 shows that
sample 1 (grey line) has a lower level of light constituents,
with these being uniformly distributed along the sample. In
contrast, sample 2 (black line) shows that light constituents
are mostly concentrated in four locations, corresponding to
the regions in which inclusions occur.

One important parameter in quantitative analysis of
defects is the defect size. As discussed earlier, traditional
segmentation methods assign a single particular value for a
voxel and therefore no features (e.g. pores) can be reliably
found under the voxel size. DCM, on the other hand,
determines partial volume fractions for each voxel, which
allows the determination of defect sizes below the voxel
size. The only restriction here is the noise in the CT data.
In order to account for the noise, the defect sizes are
determined only if they correspond to at least 10% of the
volume fraction of the voxel.

In the quantification of sizes and shapes of light
constituents, an arbitrary value of 0.30 was chosen for
the connectedness parameter in the clustering analysis.
As described in Ren et al. [58], this means that light
constituents in neighbouring voxels are connected when
both of their volume fractions are above this value. Using
the threshold of 0.3, no light constituent clusters were
found for sample 1 and, consequently, the determination
of light constituent shapes is not possible. However, 40
light constituents were found with a size ranging from 3 to
4 μm (those with volume fractions below 0.3). The light
constituent sizes histogram for sample 2 is shown in Fig. 4.
This figure shows that the majority of light constituents are
quite small, i.e. 99.5% of the light constituents are smaller

Fig. 4 Light constituent sizes for sample 2 using DCM

than 5 μm. Moreover, for sample 2630 clusters were found
and a plugin was developed to calculate their surface areas.
Then, it is possible to determine the sphericity S [52, 66],
which is given by the ratio of the surface area of a sphere
having the same volume V as the light constituent to the
surface area A of the light constituent, i.e.:

S = π1/3(6V )2/3

A
(3)

The sphericity S takes a value from 0 to 1, with 1 represent-
ing a perfect sphere and lower values indicating irregularly
shaped light constituents. The sphericity histogram for sam-
ple 2 is shown in Fig. 5. Two distributions are shown: the
grey one represents the sphericity for all defect clusters and
the black one represents the sphericity only for a volume
threshold equivalent to 5 voxels. It is clear that, while the
small light constituents have a quite spherical shape (S ≈
0.75), the largest light constituents have an irregular shape
(S ≈ 0.45).

These findings are in agreement with previous studies
reported in the literature [29, 45, 66, 67], i.e. the light
constituents (including pores) are not uniformly distributed
over the sample, with large light constituents being
elongated in the x–y-plane, which is believed to be
related to the layerwise manufacturing process in additive

Fig. 3 Light constituent
distribution in the build direction
for sample 1 (grey) and 2 (black)
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Fig. 5 Sphericity for pores in sample 2 using DCM. The grey
histogram represents all clusters and the black histogram only includes
clusters with volume above 5 voxels

manufacturing. The majority of light constituents are small
and spherical, while the few large light constituents (possibly
associated with lack of fusion) have irregular shape (low
sphericity or high aspect ratio). Cunningham et al. [37]
found that the large pores were concentrated at the surface
of the melt pool area. Using DCM, it is seen that the
majority of large, irregularly shaped light constituents are
located near the melting areas.

As reported in Slotwinski et al. [67], for sample 2, the
distribution of light constituents has significant variation
along the sample and there is more variability in the z-
direction (build direction) than in the x- and y-directions.
However, in Cai et al. [36], the porosity was uniformly
distributed in the build direction, which is the behaviour
exposed by sample 1. Therefore, it is evident that the
amount of light constituents varies among the samples due
to processing parameters. In this study, in particular, this
was associated with the location in regard to the build plate
and the influence of the mild steel in increasing the levels of
light constituent and inclusions.

3.2 Conventional microtomography

Firstly, we point out that it is not possible to distinguish
between inclusions and porosity using conventional (grey-
level) thresholding methods. For this reason, the pores
found with conventional thresholding will be referred to as
“detected pores”. The porosity values in the samples for
DCM and the other segmentation methods in this study

are shown in Table 3. This porosity corresponds to the
distribution of light constituents (low attenuation inclusions
and pores) in DCM and “detected pores” in conventional
thresholding. For the lab-based microtomography at 6 μm,
it is evident that the levels of porosity determined using
manual thresholding are much closer to the ones determined
using DCM. Indeed, Otsu’s thresholding and adaptive
thresholding did not show robustness in the analysis for
the 316L sample. As it can be seen in Fig. 6a–d, which
is a representation of the thresholding techniques on the
reconstructed slices for sample 2, the automatic Otsu
and adaptive thresholdings incorrectly determine a much
higher amount of porosity. Based on the aforementioned,
further analysis of individual objects, i.e. “detected pore”
sizes and sphericities, was only performed for the manual
thresholding.

The “detected pore’s” equivalent diameter and sphericity
histograms for both samples are shown in Figs. 7 and
8, respectively. In agreement with the results from DCM,
sample 2 shows a much higher porosity level. The
samples are dominated by small “detected pores” with
quite spherical shape, possibly associated with gas porosity
entrapped during powder production. However, sample 2
also contained large “detected pores”, mostly with irregular
shapes.

Due to the fact that grey level thresholding cannot
efficiently distinguish between pores and inclusions, it
is likely that inclusions have been lumped with pores,
resulting in the “detected pores” larger than 50 μm that have
been identified with conventional thresholding but not with
DCM. Furthermore, since a 6-μm voxel size was used, the
“detected pore” sizes below approximately 12 μm cannot be
considered reliable data. For this reason, only the “detected
pores” with size higher than 12 μm are considered for the
sphericity histogram in Fig. 8.

For the lab-based microtomography at 4 μm, the soft-
ware VGStudio MAX 3.0 offers two automatic thresholding
algorithms: “only thresholding” and “VGDefX”. Both of
these techniques are considered (Table 3), however, for
the reasoning presented in Section 2.3, the VGDefX algo-
rithm is selected for analysis of “detected pores” sizes
and shapes. With the VGDefX method, two autothreshold
modes are available: deviation and interpolation. The statis-
tics for the “detected pores” using these two modes with
standard parameters did not exhibit much variation. The

Table 3 Overall porosity values (%) obtained with DCM and different thresholding techniques

Software DCM CTan VGStudio MAX

Method Nonlinear optimisation Manual thresholding Otsu thresholding Adaptive thresholding VGDefX Only thresholding

Sample 1 0.019 0.000 48.829 11.471 0.004 0.001

Sample 2 0.281 0.381 40.276 10.607 0.306 0.205
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Fig. 6 a Reconstructed slice
817, b slice 817 with manual
global thresholding, c slice 817
with automatic Otsu
thresholding and d slice 817
with adaptive thresholding

3D visualisation of the porosity distribution is presented in
Fig. 9.

The “detected pore” sizes histogram is shown in Fig. 10.
Once again, we see that sample 1 is dominated by relatively
small “detected pores”, while sample 2 also has large
“detected pores”. In particular, the two largest “detected
pores” (> 200 μm) have very irregular shape, i.e. sphericity
of approximately 0.15 (Fig. 12). Comparison of Figs. 2 and
9 shows that the algorithm is unable to distinguish between
the inclusions and porosity in sample 2; consequently, the
interlayer “detected pores” are incorrectly determined to be
very large.

From the results, it is evident that DCM has provided
more reliable results for the CT scan at 6 μm. Instead

Fig. 7 “Detected pore” sizes for sample 1 (grey) and sample 2 (black)
with 6-μm CT scan

of reducing the area scanned in order to obtain a much
smaller voxel size that would allow the identification of
small light constituents (including pores), but could also
not reliably represent the porosity distribution in the whole
sample as in Salarian, Toyserkani [46], with DCM, it was
possible to distinguish a high number of light constituents
(including pores) below the scan resolution. These light
constituents could not be detected with the conventional
thresholding techniques, even when a lower voxel size
(4 μm) was employed. Because of the capacity to detect
small defects, the level of porosity obtained with DCM
for sample 1 (0.019%) is greater than the corresponding
values using CTan (0.000% for manual thresholding) and
VGStudio (0.004% with VGDefX).

Fig. 8 Sphericity for sample 1 (grey) and sample 2 (black) with 6-μm
CT scan
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Fig. 9 3D visualisation of samples 1 (a) and 2 (b) in VGStudio.
Bulk material is displayed in grey and “detected pores” are assigned
different colours based on their relative size

Du Plessis et al. [35] has suggested a “general rule” that
the minimum pore size that can be reliably identified is at
least three voxels wide, which would justify the fact that
no pores below 12 μm were found with the 4-μm voxel
size of the second lab-based CT. It is worth mentioning
that the inability to detect small pores has led Ziółkowski
et al. [52] to conclude that the majority of pores in the
samples considered were large and irregular. Notice that
a similar conclusion could have been drawn by solely
evaluating the latter scan (Figs. 10 and 11). However, we
point out that, while DCM allows the determination of light
constituent (including pore) sizes smaller than a voxel by
calculating an upper-bound for the diameter of the sphere
with equivalent volume, it is not possible to quantify light
constituent shapes (and consequently sphericity) at a sub-
voxel resolution. Therefore, a reasonable volume threshold
has to be determined above which surface area can be
determined.

Furthermore, DCM allows to differentiate between
oxides/carbides and light constituents (including pores).

Fig. 10 “Detected pore” sizes for sample 1 (grey) and sample 2 (black)
with a 4-μm CT scan

Fig. 11 Sphericity for sample 1 (grey) and sample 2 (black) with a
4-μm CT scan

Since the porosity level in the conventional CT scans also
incorporates the interlayer oxides and carbides, this resulted
in the porosity levels for sample 2 (0.381% for manual
thresholding with CTan and 0.306% with VGDefX) being
higher than the value determined with DCM (0.281%).

3.3 Archimedesmethod, hardness test and SEM/EDS
analysis

In order to obtain an overall value for the porosity in the
samples, the Archimedes method was used with a ± 0.1-mg
accuracy balance. The density of water was corrected based
on the temperature [68]. As recommended by [67], some
care was taken to ensure that air bubbles were not present
on the samples during measurements (e.g. distilled water),
the balance was re-zeroed before each measurement and the
enclosure was shut to prevent air currents from affecting
the measurement. However, in this study, the Archimedes
method has failed to determine reliable results for the
density measurements. This could be associated with the
small sample sizes (approximately 0.135 g and 0.136 g for
samples 1 and 2, respectively) and the presence of multiple
phases with different densities in the samples. Because the
buoyance force is too small, the variation between the mass
of the samples in air and the mass of the samples in water
is too small, resulting in extremely high density values (>
300 g/cm3) that are not a true representation of the AM part.

The hardness test reveals that sample 1 has a uniform
hardness, with values around 210 HV. In contrast, the
hardness in sample 2 increases along the build direction
from approximately 190 HV to 225 HV (Fig. 12). These
high hardness values are in agreement with those discussed
in the metal AM literature (Table 4) and result from the
fine microstructure of the material as a result of fast cooling
[2, 4, 5]. The increase in hardness for sample 2 could
be correlated with the level of porosity since, except for
the peaks of interlayer porosity, the porosity in the second
specimen decreases in the build direction (Fig. 3), which
could be responsible for the higher hardness observed [26].
It is important to note that the high levels of defects within
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Fig. 12 Hardness for sample 1
(blue) and sample 2 (red)

the layers in sample 2 did not directly translate into lower
hardness values at the corresponding locations.

A related point to consider is the effect of defects in other
mechanical properties. As discussed in the AM literature,
cracks have been shown to initiate at pre-existing voids,
and there is a strong correlation between the distribution
of defects and the fatigue performance [73, 74]. Using
finite element models (FEM), Neikter et al. [75] found
large stress concentrations close to the defects, which are
then more prone to initiation of cracks and fatigue failure.
Consequently, the higher level of porosity and inclusions in
sample 2, especially considering the irregular shape of the
large defects, may result in poor fatigue performance.

Since sample 2 exhibited a significant level of inclusions
between the layers, one of the interlayer regions was
selected for further analysis. EDS of this location (Fig. 13)
reveals that the inclusions are rich in silicon, manganese,
chromium and oxygen. The presence of oxide inclusions
rich in Si and Mn has also been reported in [65, 76,
77], whilst chromium oxide appeared in [78]. According
to Simonelli et al. [77], this is a consequence of the
high oxidation potential of these elements (especially Si
and Mn), as can be seen by the Ellingham diagram.
Chromium and manganese carbides are also observed in the
interlayer region, which are both well-established carbides
in steel [79]. Furthermore, immersed in the inclusions,

Table 4 Hardness for 316L stainless steel parts built with MAM

Reference Process Hardness (HV)

Mahmood and Pinkerton [69] LMD 175–210

Yadollahi et al. [70] LMD 150–227

Ziȩtala et al. [71] LENS 237–307

Yusuf et al. [14] SLM 237–262

Kurzynowski et al. [13] SLM 202–255

Liverani et al. [72] SLM 210–240

unmelted powder has remained (two of these are outlined
by the red arrows and circles in the Fe image). It is
noteworthy that EDS data comes in agreement with DCM
in the prediction of oxides and carbides, whereas with
conventional thresholding, those regions would probably be
associated with large lack of fusion pores.

Investigation of the samples with the SEM at higher
magnification reveals the presence of small spherical pores
with sizes below 12 μm uniformly distributed in the
specimens, which cannot be reliably detected with the CT
scan at 6 μm using traditional thresholding. Considering ten
randomly selected regions of approximately 30,000 μm2

(magnification of 1600) in the polished surface, on average,
0.5 pore between ∼ 5–12 μm was found in each region
in sample 2 (for sample 1, a single pore above 5 μm
was present in the whole polished surface), whereas on
average, 4 pores between ∼2-5 μm were found in each
region for both samples. Two of the pores below 12 μm in
sample 2 are shown in Fig. 14 with approximate sizes of
2.5 μm and 10 μm. EDS analysis shows that they have high
concentration of oxygen and, therefore, are a result of gas
porosity, possibly associated with the low-packing density
of metal powders or as a consequence of gas atomisation
[37, 80]. In Fig. 14, the EDS images for the 10 μm pore
are exposed; from them, it is seen that the void is also rich
in silicon and manganese due to their strong affinity with
oxygen. The same behaviour was exhibited by the 2.5-μm
pore.

It is important to point out that even though DCM allows
the determination of defect sizes below CT resolution, with
the noise threshold of 0.1 for the minimal volume fraction of
light constituents (including pores) in the voxel, the smallest
light constituent that can be detected is 3.44 μm. Thus, in
order to study the light constituents below this limit (as the
2.5 μm pore shown in Fig. 14), a higher resolution scan
would be required. As a matter of fact, considering the
noise threshold of 0.1, the smallest volume feature (Vmin)

Int J Adv Manuf Technol (2020) 106:1601–16151610



Fig. 13 EDS analysis of interlayer inclusions in sample 2

Fig. 14 EDS analysis of small pores in sample 2
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that can be detected is 0.1x3, where x is the voxel size.
Consequently, the smallest equivalent spherical diameter
(Dmin) that can be detected with DCM is as follows:

Dmin =
(

6 · Vmin

π

)1/3

⇒ Dmin ≈ 0.5759x (4)

This is an obvious improvement from the smallest defect
size detectable with traditional thresholding techniques.

4 Conclusion

In this paper, we have demonstrated that the use of DCM
enhances the performance of quantitative analysis of defects
in nondestructive testing using computed tomography. The
method allows the determination of sub-voxel volume
compositions and, consequently, the determination of defect
sizes below CT resolution. It outperforms traditional
thresholding algorithms even when performed with CT
datasets at higher resolution (lower voxel size), providing
a reliable method to determine the correct level of light
constituents (as porosity) in additively manufactured metal
parts. In contrast, we show that care must be taken when
employing automatic thresholding techniques provided by
different 3D visualisation and analysis software since these
have indicated lack of robustness in the presence of low
levels of porosity or material compositions with similar
attenuations.

Using CT, one of the samples reveals a quite uniform
distribution of defects with the light constituents (including
pores) being small and spherical and, consequently, uniform
mechanical properties. In contrast, the second sample had a
high amount of interlayer inclusions (oxides and carbides)
with light constituents being correlated with regions in
which inclusions were also present. Some of these light
constituents (including pores) were large and with irregular
shape; therefore, they can act as stress concentration areas,
are more susceptible to initiation of cracks and reduce
fatigue life of the part. This behaviour was a result of
oxidation occurring during cooling of the layers since
the melting area is only shielded from the environment
during powder deposition and was more pronounced in
the proximity of the mild steel build plate, resulting in
decreased hardness for lower heights.

Acknowledgments The authors acknowledge the facilities, and the
scientific and technical assistance, of the RMIT Microscopy &
Microanalysis Facility, at RMIT University. We thank Romar
Engineering and the Imaging and Medical beamline (IMBL) at
the Australian Synchrotron for the sample preparation and image
acquisition, respectively. The authors would also like to thank
Sherry Mayo for assistance in synchrotron CT data acquisition, Joe
Elambasseril for support with the conventional CT scans, Clement Chu
for help in computational code implementation, and Tony Murphy for
useful discussions.

Open Access This article is distributed under the terms of the
Creative Commons Attribution 4.0 International License (http://
creativecommons.org/licenses/by/4.0/), which permits unrestricted
use, distribution, and reproduction in any medium, provided you give
appropriate credit to the original author(s) and the source, provide a
link to the Creative Commons license, and indicate if changes were
made.

References

1. Brandt M (2016) Laser additive manufacturing: Materials, design,
technologies, and applications. Woodhead Publishing

2. Dutta B, Froes FH (2016) Additive manufacturing of titanium
alloys: state of the art, Challenges and Opportunities. Butterworth-
Heinemann. https://doi.org/10.1016/C2015-0-02470-4

3. Gibson I, Rosen DW, Stucker B (2010) Additive manufacturing
technologies: rapid prototyping to direct digital manufacturing.
Springer, New York. https://doi.org/10.1007/978-1-4419-1120-9

4. Frazier WE (2014) Metal additive manufacturing: a review. J
Mater Eng Perform 23(6):1917–1928. https://doi.org/10.1007/
s11665-014-0958-z

5. Herzog D, Seyda V, Wycisk E, Emmelmann C (2016)
Additive manufacturing of metals. Acta Mater 117:371–392.
https://doi.org/10.1016/j.actamat.2016.07.019

6. Sing SL, An J, Yeong WY, Wiria FE (2016) Laser and electron-
beam powder-bed additive manufacturing of metallic implants:
a review on processes, materials and designs. J Orthop Res
34(3):369–385. https://doi.org/10.1002/jor.23075

7. Tan XP, Tan YJ, Chow CSL, Tor SB, Yeong WY (2017) Metallic
powder-bed based 3D printing of cellular scaffolds for orthopaedic
implants: a state-of-the-art review on manufacturing, topological
design, mechanical properties and biocompatibility. Mater Sci
Eng C 76:1328–1343. https://doi.org/10.1016/j.msec.2017.02.
094

8. Arcella FG, Froes FH (2000) Producing titanium aerospace
components from powder using laser forming. JOM 52(5):28–30.
https://doi.org/10.1007/s11837-000-0028-x

9. Uriondo A, Esperon-Miguez M, Perinpanayagam S (2015) The
present and future of additive manufacturing in the aerospace sec-
tor: a review of important aspects. Proceedings of the Institution of
Mechanical Engineers, Part G: Journal of Aerospace Engineering
229(11):2132–2147. https://doi.org/10.1177/0954410014568797

10. Zhao C, Fezzaa K, Cunningham RW, Wen H, De Carlo
F, Chen L, Rollett AD, Sun T (2017) Real-time mon-
itoring of laser powder bed fusion process using high-
speed X-ray imaging and diffraction. Scientific Reports 7(1).
https://doi.org/10.1038/s41598-017-03761-2

11. Zhou X, Wang D, Liu X, Zhang D, Qu S, Ma J, London G, Shen
Z, Liu W (2015) 3D-imaging of selective laser melting defects in
a Co-Cr-Mo alloy by synchrotron radiation micro-CT. Acta Mate-
rialia 98:1–16. https://doi.org/10.1016/j.actamat.2015.07.014

12. Bayode A, Akinlabi ET, Pityana S (2016) Characterization of
laser metal deposited 316L stainless steel. In: Lecture Notes in
Engineering and Computer Science, pp 925–928

13. Kurzynowski T, Gruber K, Stopyra W, Kuźnicka B, Chle-
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Larsson S, Jonsén P, Puyoo G (2018) Defect characterization
of electron beam melted Ti-6Al-4V and Alloy 718 with X-
ray microtomography. Aeronautics and Aerospace Open Access
Journal 2(3):139–145

76. Gorsse S, Hutchinson C, Gouné M, Banerjee R (2017)
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