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Abstract
Five-axis measuring systems (i.e. coordinate measuring machines equipped with articulated probe heads capable of continuous
indexation or five-axis machine tools with inspection probe mounted on a tilt and swivel head) are becoming more and more
popular, especially in industrial applications, since their usage speeds up the measurement process without significant loss in
accuracy. Widespread adoption of these systems necessitates development of viable and easy-to-use measurement uncertainty
estimation methods. This paper describes the experiments required for identification of errors of five-axis measuring systems
based on usage of LasrTracer system and measurements of ring standard. It also expounds the methodology for implementation
of virtual CMM-based simulation model for these systems giving the explanation on all input quantities used in the model along
with detailed mathematical explanations on uncertainty propagation procedure. Eventually, it presents the validation methodol-
ogy and the results of validation measurements performed in order to prove the correct functioning of developed model. Basing
on these results, the main conclusion drawn in the paper is that presented virtual model should be regarded as working properly
and producing metrologically correct values of measurement uncertainty for common metrological tasks known from GD&T
framework.
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1 Introduction

Uncertainty estimation for measuring systems is still a chal-
lenging task [1–4]. Among the developed solutions, simula-
tion methods show significant promise, since they are de-
signed to shorten the length of the quality control process
and enable automated evaluation of measurement uncertainty.
Although individual simulation methods are structured differ-
ently, the most common concept among them is the so-called
virtual machine, which enables simulation of multiple mea-
surement processes, including possible variability of errors
occurring during measurement. To this day, several different
virtual machines were developed and described in literature

[5, 6], primarily models of classic three-axis coordinate mea-
suring machines (CMMs) and three-axis machine tools
equipped with a contact probe. In [7], Ramus et al. presents
a virtual CMMmodel for five-axis CMM,where in addition to
three translational movements, two rotations were possible
due to the implementation of rotary and tilt stages. There is
also a significant number of publications devoted to error
models for five-axis machine tools [8–10], but these focus
mostly on machines with rotary or tilt tables. And there is
currently no virtual model for machines that utilize articulated
probe heads with continuous indexation capability or five-axis
machine tools with inspection probe mounted on a tilt and
swivel head, i.e. the so-called five-axis measuring systems.

Five-axis measuring systems have two basic advantages
associated with the function of articulated probe head, i.e.
shorter measurement time and improved repeatability.
Five-axis systems enable the performance of measurements
using rotational movements of the probe. In the case of certain
measuring tasks (mostly measurements of solids of revolu-
tion), this significantly reduces the duration of the measuring
process, as it eliminates the need to accelerate and decelerate
heavy components of the machine support system. Presently,
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only a handful of publications examine the issue of five-axis
measuring systems using probe heads with continuous articu-
lation, and neither of these focuses on uncertainty estimation.
Naturally, measurement uncertainty can be determined using
the calibrated workpieces method (CWM) [11–13]; however,
the reliance on time-consuming methodology seems
ill-advised in the case of a system designed to reduce the time
needed for quality control processes. For this reason, the au-
thors decided to conduct studies aimed at development of a
virtual machine model for a five-axis measuring system.

Previous work of the authors included the develop-
ment of methodology for describing the field of CMM
geometric errors based on residual error distributions
[14] and the formulation of a model for probe head er-
rors in touch-trigger probe heads used in five-axis coor-
dinate measuring systems [15]. This paper presents the
method for combining the two abovementioned models
to create a fully functional virtual model of a five-axis
measuring system and discusses its application for simu-
lating measurement uncertainty. The authors also present
results of verification measurements that prove the cor-
rect functioning of the presented model (in the scope of
uncertainty determination for common metrological tasks
from the GD&T framework). The same verification
method may also be used for testing correct installation
of the virtual model each time it is implemented on a
new CMM.

The virtual CMM discussed in this paper is the first
solution of its kind for five-axis coordinate systems that
use articulated probe heads with continuous indexation
capability, and in authors’ opinion, may also be easily
transferred to five-axis machine tools equipped with an
inspection probe (this paper only focuses on the appli-
cation of the developed model in five-axis CMMs, but
with certain modifications, it should also be possible to
use the presented methodology with machine tools). The
developed model allows for close to real-time analysis of
measurement uncertainty (the uncertainty of measure-
ment is given together with the result of a single mea-
surement immediately after its completion). The standard
methods for determining measurement uncertainty (cali-
brated workpieces method or multiple measurement
strategy) entail multiple repetitions of the evaluated mea-
surements [11, 16–18]. The number of repetitions de-
pends on the exact type of procedure used. Most com-
monly, the number of repetitions varies between 15 and
30. In the long term, the model presented in this paper
may contribute to a significant reduction in the time
required for estimating the uncertainty of measurements
carried out on five-axis measuring systems, and thus cut
down the cost of quality control of manufactured items
(which is a large part of total manufacturing costs) by a
factor of 30.

2 Implementation of the virtual five-axis
measuring system model

All measurements presented in this paper were performed on a
Zeiss WMM850S bridge coordinate measuring machine
equipped with a PH20 probe head. The measuring volume
of the machine has the dimensions of 1000 mm× 1200 mm×
500 mm.
The virtual model of a five-axis measuring machine is

based on two main modules [18]. The first module is respon-
sible for simulation of errors related to the kinematic system of
the machine, and the second module simulates the values of
probe head errors (Fig. 1) (input values for the model are
explained in Sect. 3 and graphically presented in Fig. 3).
The simulation must be possible to perform for points mea-
sured at any position and approach direction in the measuring
volume of the machine. Since the functioning of the
abovementioned modules is based on experimentally deter-
mined errors at chosen reference points, the first necessary
steps for the implementation of the virtual model are associ-
ated with identification of their values and variability.

The first stage in implementing the model consists in de-
termination of residual errors of the kinematic system. The
process is carried out experimentally using the LaserTracer
interferometric system. The measuring volume of the machine
is described by a grid of reference points. Themodel presented
herein uses a grid based on 9 points, which form the nodes of
the grid (detailed operating principles of this model are de-
scribed in [14, 19]). Eight points are located in the vertices of
the cuboid, whose edges are equal to half the axis length of the
measuring machine coordinate system, and the final ninth
point is located at the intersection of the cuboid spatial diag-
onals, that is, in the centre of the measuring volume (let Xmax,
Ymax, Zmax denote the length of coordinate system axes, the
coordinates of centre point are given as 0.5·Xmax, 0.5·Ymax,
0.5·Zmax). After determining the structure of this grid, the
measurements take place. The measuring machine is fitted
with a retroreflector in place of the standard probe and per-
forms 14 approaches from different directions to each node of
the grid. Since the LaserTracer system is only capable of mea-
suring the distances, while the calculation of residual errors is
based on the coordinates of reference points, the entire se-
quence has to be repeated four times, each time with a differ-
ent position of the LaserTracer system. This approach enables
the use of a multilateration technique described in [14, 20] to
obtain the point coordinates from measured lengths. As a re-
sult of this experiment and the representation of residual er-
rors, it is possible to determine the mean value of differences
between the programmed and obtained values for each point
coordinate (x, y, z) and standard deviations of their reproduc-
tion denoted as s(X), s(Y), s(Z). It must be noted here that the
CAA (computer-aided accuracy) matrix of the machine (if
available) has to be switched on during the described
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measurement. The matrix is formed using data obtained
through measurements of machine geometric errors, which
are performed at chosen reference points distributed within
the measuring volume of the machine. Once the obtained data
is uploaded to the machine controller, it is then possible to
correct particular errors for any point in the measuring
volume.

The second stage of the process involves determination of
probe head errors. For this purpose, the model presented in
[15] is used (see [15] for a detailed overview of the mathemat-
ical model used for simulation of probe head errors). The
probe heads used over the course of presented research utilize
axial adjustment with two orthogonal axes of rotation. The
range of possible rotations for the vertical axis of revolution,
hereinafter referred to as the B axis, equals − 180° to 180°, and
for the horizontal axis, hereinafter referred to as the A axis, the
range is < − 115°; 115° > (A and B are graphically presented in
Fig. 3). The probe head is oriented vertically (along the ma-
chine quill) when A and B angles are set to 0. The experiment
designed to identify probe head errors is based on measure-
ment of a standard ring at specified angular orientation of the
probe head. A standard ring with diameter of 20 mm was
chosen for this purpose and used throughout the course of
measurements. The standard ring was attached to solid block
installed in a swivel and tilt vise. As a result, it was possible to
rotate the ring around two perpendicular axes of revolution, in

such a way that its axis was parallel to stylus in A, B orienta-
tion. The material standard was measured in 24 positions de-
fined by A and B angles. The A angle changes at 30° within a
range between 0° and 90°, while the B angle changes at 60°
within a range between − 120° and 180°. Most of the probe
headworking range was covered by this selection of positions.
In each arrangement, the standard was measured 15 times at
64 evenly distributed measuring points. In order to minimize
possible influences of machine kinematics, all measurements
of the reference ring were done using only rotational probe
head movements. As a result of this experiment, it was possi-
ble to determine probe head errors for A, B, α, where α is an
angle defined on a plane perpendicular to the probe, when it is
oriented in A and B angular positions, and its zero indication
lies in the direction in which the probe rotates along A axis in
the positive direction. The α angle increases in a
counter-clockwise direction.

The next stage consisted in computer implementation of
virtual CMM algorithms described in Sect. 3. The MODUS
metrological software was installed on the modelled machine.
Using DMIS and Python languages, an add-on to this software
was developed to allow for online determination of measure-
ment uncertainty for measurements performed on the
modelled five-axis measuring system.

Following the completion of preliminary measurements
and installation of the required software, the validation stage

Fig. 1 Concept of the virtual CMM model for a five-axis coordinate measuring system

Int J Adv Manuf Technol (2019) 104:4685–4696 4687



was performed. This stage plays a crucial role in the imple-
mentation of the virtual CMM as it proves that the results and
corresponding uncertainties produced by the virtual model are
correct, and that the implementation of the model on a CMM
(including determination of kinematic system and probe head
errors) was carried out properly. The process should be per-
formed each time the virtual model of a five-axis system is
installed on a new machine. Validation measurements consist
of select measuring tasks and evaluation of the obtained re-
sults using two methods, i.e. through the presented virtual
model, and the calibrated workpiece method [11], which
serves as a reference for comparison. After the results and
uncertainties are determined, they are then cross-compared
using the chosen statistical test. In the case of presented ex-
periments, the statistical test is based on the concept of con-
sistency control. The model of consistency control, according
to [21–23], refers to classical statistics, such as a weighted
mean of both methods (denoted here as the reference value
(RV)) and the chi-squared test. This model can be applied on
condition that one of the methods used in the comparison may
be regarded as a reference method (hence the use of the cali-
brated workpiece method as part of the presented experi-
ments). If the consistency of results produced by the reference
method and the method under validation is confirmed, the
latter may be also considered as properly validated.

A simplified mathematical procedure of the validation
model is presented below (for more details, please refer to
[21]):

1. Calculation of the so-called reference value (RV) (1):

RV ¼ x=u2 xð Þ þ y=u2 yð Þ
1=u2 xð Þ þ 1=u2 yð Þ ð1Þ

where

x, y the mean values of results obtained from the
calibrated workpieces method (x) and the virtual
CMM method (y),

u(x), u
(y)

uncertainties calculated according to the respective
method

2. A chi-squared test calculated as (2):

χ2
obs ¼

x−RVð Þ2 þ y−RVð Þ2
u2 xð Þ þ u2 yð Þ ð2Þ

Pr χ2 vð Þ > χ2
obs

� �
< 0:05 ð3Þ

where

ν =N −
1

the degrees of freedom for N, being the number of
methods used for determination of RV

If formula (3) is true, the chi-squared test rejects the hy-
pothesis regarding consistency of results obtained through the
considered methods.

3. If the test described in item 2 results in a failure, the
consistency of the examined methods may be assumed.
In this case, it is possible to proceed with the following
steps. Otherwise, the validation ends with a negative re-
sult (in such case, the experiments aiming at determina-
tion of kinematic residual errors and probe head residual
errors are usually repeated, followed by a validation stage
as described).

4. Calculation of standard uncertainty associated with the
reference value (RV) using (4):

1

u2 RVð Þ ¼
1

u2 xð Þ þ
1

u2
ð4Þ

5. Determination of a validation acceptance interval (VAI) in
the form of (5):

< RV−u RVð Þ;RV þ u RVð Þ > ð5Þ

VAI is the proposed mathematical range, which
should overlap with the intervals that contain the true
value of the measured quantity obtained using the ex-
amined methods. It is used as a criterion for verifying if
the results obtained through the examined methods may
be regarded as statistically comparable with the refer-
ence method.

6. Determination of intervals that contain the true value of
the measured quantity obtained using all of the compared
methods in the form of (6):

< x−u xð Þ; xþ u xð Þ > ; < y−u yð Þ; yþ u yð Þ > ð6Þ

7. If all intervals presented in (6) share a common part with the
VAI, then the validation ends with a positive result and the
developed model may be considered as properly validated.
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A visual example of the VAI and intervals that
contain the true value of the measured quantity de-
termined using the developed virtual model and the
calibrated workpieces method for measurement of an
internal cylinder diameter (presented in Table 2) is
shown in Fig. 2. As discussed, both intervals share
a common part with the VAI and the developed
model may be considered as properly validated with
regard to the results and standard uncertainty of in-
ternal cylinder diameter measurement.

The mathematical procedure described above should be
performed for all measuring tasks included in the measure-
ment routine. In the case of the discussed research, the proce-
dure was repeated for all six measuring tasks presented in
Table 2.

3 Methodology of virtual CMM
implementation

This section discusses the manner in which input quanti-
ties (measured point coordinates, direction of approach to
the point, actual values of A and B angles during point
measurement and effective length of stylus used) required
for running the simulations performed by the virtual mod-
el are processed in order to obtain the output quantity
(point coordinates with simulated errors). All simulations
performed with the described virtual model utilize the
Monte Carlo method (parameters defining the probability
density functions assigned to input quantities, and general
course of the simulation are given below; for more details

regarding each of the modules, please refer to [14, 15]). In
order to facilitate understanding of the presented model,
an example of the probe head used in five-axis coordinate
systems with all input quantities marked is presented in
Fig. 3.

Data flow in the developed virtual model is presented
below:

1. Gathering the values of x′, y′, z′, i′, j′, k′, Aa, Ba (Fig.
3) during a single measurement, where x′, y′, z′ are the
actual measured point coordinates in the part coordi-
nate system, i′, j′, k′ are the actual direction cosines
defining the direction of approach to a given mea-
sured point in the part coordinate system, and Aa, Ba

are the actual values of A and B angles of the probe
head. All numeric input values can be obtained from
the machine controller either by the user or via an
external application.

2. Transformation of x′, y′, z′, i′, j′, k′ to the global coordinate
system of the machine as detailed below in (7) (for trans-
formation of [i′, j′, k′] into [i, j, k] in formula (7), i′, j′, k′
should be substituted in place of x′, y′, z′):

x
y
z
1

2
664
3
775 ¼ Tr⋅RZ ⋅Ry⋅Rx⋅

x
0

y
0

z
0

1
0

2
664

3
775 ð7Þ

where Tr is the coordinate system translation matrix, and Rx,
Ry, Rz are the respective rotation matrices along x, y, z axes

Fig. 2 Graphical representation
of VAI and intervals containing
the true value of the measured
quantity determined using the
developed virtual model (Virtual
CMM) and the calibrated
workpieces method for
measurement of internal cylinder
diameter
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3. The residual errors of machine kinematic system are de-
termined with through the use of a retroreflector mounted
in place of a probe/tool. The error distributions are iden-
tified for intermediate points, in which the centre point of
retroreflector stops during the measuring sequence.
During measurements, when the probe is mounted to the
quill of the machine, it records coordinates located in a
different position (in relation to the quill reference point)
than in the case of measurements performed with a retro-
reflector. Thus, in order to obtain the values of residual
errors for the actual stopping point of the machine, it is
necessary to translate x, y, z coordinates of the measured
point in the global coordinate system of the machine into
xR, yR, zR coordinates of the point in which machine with
retroreflector stopped during implementation measure-
ments. This is accomplished using Eqs. (8–10):

xR ¼ x−rcos A−90°ð Þcos B−90°ð Þ ð8Þ

yR ¼ y−rcos A−90°ð Þcos B−90°ð Þ ð9Þ

zR ¼ z−rsin A−90°ð Þ þ zoff ð10Þ

where r is the effective length of stylus used during measure-
ment (as determined during probe qualification), and zoff is the
offset from reflector centre to the probe head rotation point
(the point where A and B axes should theoretically cross). The

determined values xR, yR, zR are used as an input for the resid-
ual kinematic error module.

4. Simulation of residual kinematic errors for a single point
is performed using the following procedure:

– For the point defined by xR, yR, zR coordinates, it is nec-
essary to find the nearest reference point (one of the nine
reference points mentioned in Sect. 2), whose coordinates
are xref, yref, zref.

– N simulations (for simulations discussed in this paper N
was set as 10,000) of point reproduction error have to be
performed for the chosen reference point using the
t-distribution with parameters (x, σ, υ), where x is the
mean value of the distribution, σ standard deviation and
υ the number of degrees of freedom. The mean value of
differences between the programmed and obtained values
of each point coordinate (for a considered reference point)
determined during experiments performed with the
LaserTracer is taken as x, as the standard deviation, values
of s(X), s(Y), s(Z) mentioned in Sect. 2 are taken. The
number of degrees of freedom for each of the points is
set at 13, because it was assumed that the number of
degrees of freedom should be equal to the number of
measurements performed for each point (during experi-
ments conducted with the LaserTracer system) minus
one, i.e. 14–1 = 13. The t-distribution was chosen accord-
ing to guidelines of ISO-IEC (Supplement), because of a
relatively small number of measurement results (14) used
for determining error distributions. The Kolmogorov–
Smirnov test was carried out for all probability distribu-
tions. The tests suggested no grounds for rejecting the
hypothesis about the tested distributions being t-distribu-
tions. Examples of error distribution histograms are given
below (Fig. 4) for errors related to the probe head and the
kinematic system of CMM.

– Calculation of residual kinematic errors xres, yres, zres as
mean values of all simulated xref_sim, yref_sim, zref_sim
coordinates (calculated separately for each coordinate,
e.g. xres being calculated as mean value from all simu-
lated xref_sim values).

As a result of these operations, the simulated values of
residual errors for xR, yR, zR are given as xres, yres, zres.

5. The simulation of probe errors is divided into several
stages. The probe error model used in the described vir-
tual machine requires three input values: the angular po-
sitions of the head Aa, Ba and the α angle, which carries
information about the direction of approach to a measured
point. The Aa and Ba values can be obtained directly from

Fig. 3 Diagram of probe head used in five-axis coordinate systems with
graphical explanation of input quantities

Int J Adv Manuf Technol (2019) 104:4685–46964690



the machine driver, whereas α is calculated on the basis of
direction cosines of the considered point recorded during
actual measurements. The first step consists in selecting
the appropriate reference grid nodes for the probe head
based on previously obtained Aa and Ba values (according
to [15], four nodes have to be chosen for the simulation of
probe errors in a single set of A, B, α; they are denoted
here as P1, P2, P3, P4 and are described by the following
pairs of A and B angles: P1 (Aa-1,Ba-1), P2 (Aa+ 1,Ba-1), P3
(Aa-1,Ba + 1), P4 (Aa + 1,Ba + 1), where As-1, Bs-1 are the
angle values for the nearest node with angles narrower
than As, Bs respectively, and the As+ 1, Bs+ 1 are the angle
values for the nearest node with corresponding angles
broader than As, Bs). Subsequently, the approach direction
recorded as [i′, j′, k′] is used to determine the α value. The
approach direction cosines are dependent on feature ori-
entation in the part coordinate system, which means that
the approach vector transformed into the base coordinate
system of the machine (i.e. into the [i, j, k] form) in step 2
of this procedure may be used. In the next step, the values
are transformed again into a coordinate system used for
determining probe errors in the previously selected refer-
ence grid nodes. Since the rotation and transformation
matrices are recorded for those coordinate systems during
implementation measurements, the transformation of co-
sine vectors into a node coordinate system can be per-
formed easily (using a reverse transformation to this pre-
sented in (7)). The final step involves projection of direc-
tion cosines on the XY planes of the node coordinate

systems, determining the αP values for a given measuring
point in the node coordinate systems using Eq. (11), as
well as finding the closest α that could be used as refer-
ence (two values for each node are determined this way
for a total of eight α values; they are denoted as αP1 + 1,
αP1–1, αP2 + 1, αP2–1 αP3 + 1, αP3–1, αP4 + 1, αP4–1, where
αP1 + 1 means value of α angle for the first angle greater
then α included in the measurements of the standard ring
(described in Sect. 2) for P1 node, and αP1–1 means value
of α angle for the first angle smaller then α included in
these measurements).

αP ¼ arccos
vxy⋅x ̂
vxy
�� ��⋅ xj ĵÞ ¼ arccos

xvffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xv2 þ yv2 þ zv2ð Þp

 ! 

ð11Þ
where αP is value of α angle determined for node P, vxy = [xv,
yv, zv] − [i,j,k] vector transformed into the P node coordinate
system and projected on xy plane of this coordinate system, x̂
the unit vector in the direction of the x-axis of the P node
coordinate system (it is used here because α has its zero value
in this direction).

As a result of operations presented in this section, the probe
head error (PE) is simulated for a chosen set of (Aa, Ba, αP1,
αP2, αP3, αP4) as a scalar, using Eq. (12).

PE Aa;Ba;αP1;αP2;αP3;αP4ð Þ ¼ Aaþ1−Aað Þ= Aaþ1−Aa−1ð Þ* Baþ1−Bað Þ= Baþ1−Ba−1ð Þ*P1þ Ba−Ba−1ð Þ= Baþ1−Ba−1ð Þ*P3ð Þð Þþ
þ Aa−Aa−1ð Þ= Aaþ1−Aa−1ð Þ* Baþ1−Bað Þ= Baþ1−Ba−1ð Þ*P2þ Ba−Ba−1ð Þ= Baþ1−Ba−1ð Þ=*P4ð Þð Þ ð12Þ

where

P1 (((αP1 + 1-αP1)/(αP1 + 1-αP1–1)) * PE(Aa-1,Ba-1,αP1–1)) +
(((αP1-αP1–1)/(αP1 + 1-αP1–1)) * PE(Aa-1,Ba-1,αP1 + 1))

P2 (((αP2 + 1-αP2)/(αP2 + 1-αP2–1)) * PE(Aa + 1,Ba-1,αP2–1))
+ (((αP2-αP2–1)/(αP2 + 1-αP2–1)) * PE(Aa + 1,Ba-

1,αP2 + 1))

Fig. 4 Histograms showing
distribution of a probe head errors
for chosen A, B and α angles (A =
90°, B = 120°, α ≅ 331°) and b
residual errors of y-coordinate
reproduction for chosen reference
point (x = 395, y = 580, z = 240)
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P3 (((αP3 + 1-αP3)/(αP3 + 1-αP3–1)) * PE(Aa-1,Ba + 1,αP3–1))
+ (((αP3-αP3–1)/(αP3 + 1-αP3–1)) * PE(Aa-1,Ba + 1,αP3 + 1))

P4 (((αP4 + 1-αP4)/(αP4 + 1-αP4–1)) * PE(Aa + 1,Ba + 1,αP4–1))
+ (((αP4-αP4–1)/(αP4 + 1-αP4–1)) * PE(Aa + 1,Ba + 1,αP4 +

1))

Similarly as in case of residual kinematic errors, the probe
errors (PEs) are simulated via the Monte Carlo method that
utilizes the scaled and shifted t-distributions with parameters
(x,s,ν), where x denotes the mean radial PE determined for the
considered A, B and α, s is the standard deviation associated
with x, and ν is the number of degrees of freedom (14 in the
case of the presented module, since PE values were deter-
mined using 15 measurements of a standard ring). The exact
parameters of these distributions are determined through the
experiment discussed in Sect. 2.

6. Calculating the effect of PE on simulated point coordi-
nates as (13):

PEx ¼ PE*i
PEy ¼ PE*j
PEz ¼ PE*k

ð13Þ

7. Calculating coordinates of simulated point in the form of
(14):

xsim ¼ xþ xres þ PEx

ysim ¼ yþ yres þ PEy

zsim ¼ zþ zres þ PEz

ð14Þ

8. Steps 3–7 should be repeated for all points included in the
simulated measurement to generate N sets of xsim, ysim, z-
sim values.

9. The coordinates of all simulated points (N sets of coordi-
nates for each point) are then sent tometrological software
to construct N features whose characteristics (such as di-
ameter, form deviation, etc.) are further examined. The
uncertainty of geometrical relations (e.g. plane–plane dis-
tance, parallelism deviation, coaxiality deviation, etc.) is
evaluated by constructing all features comprising a given
geometrical relation N-times.

10. Specific geometrical characteristics or relations are eval-
uated for all N features (or sets of features), producing N
values of those characteristics (relations) denoted as yi,
where i changes in the range from 1 to N.

11. Standard uncertainty for the individual characteristics
(relations) is determined using Eq. (15):

u yð Þ ¼ 1

N−1
∑N

i¼1

�
yi−y

�2
ð15Þ

where y ¼ 1
N ∑

N

i¼1
yi .

4 Verification measurements and results

Verification measurements were carried out on a
Multi-Feature Check (MFC) standard. It is a complex measur-
ing standard (Fig. 5) commonly used for assessing measure-
ment accuracy and uncertainty for nearly all features and di-
mensions applicable to the coordinate measuring technique.
The standard has a nominal length of 200 mm and external
diameter of 100 mm. Further information regarding the MFC
standard can be found in [https://www.eumetron.de].

The MFC was measured in two different positions. In the
first position, the main axis of the standard was oriented along
the x axis of the machine, in order to verify proper functioning
of the developed virtual model at different orientations of a
measured workpiece. The MFC standard was also measured
in a second position (Fig. 6), in which the main axis of the
standard is inclined at a certain angle towards the x and y axes
of the machine. Table 2 and Fig. 7 present results obtained for
measurements of MFC in its second position.

The following features were measured on the MFC stan-
dard: distance between front planes, cylindricity and diameter
of internal cylinder, plane flatness, parallelism deviation be-
tween front planes and angle between two planes (front and
side plane). Calibration results for geometrical characteristics
and relations of the MFC measured during presented experi-
ments are listed in Table 1. The MFC standard was calibrated
on a PMM 12106 Leitz Messtechnik measuring machine with
CMC (calibration and measurement capability) for calibration
of geometrical standards equal to 0.0006 + 0.0007·L mm
(where L is measured length given in m).

Fig. 5 Diagram of Multi-Feature Check standard used for validation
measurements [https://www.eumetron.de]
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The detailed procedure for measurement of the MFC
consisted of manual measurement of external cylinder using
16 points divided into two sections, each containing eight
points regularly distributed over the circumference of the cyl-
inder section; measurement of side and front plane using eight
regularly distributed points; construction of manual align-
ment, where the axis of cylinder forms the main axis of the
part coordinate system; the side plane is used to indicate the
direction of the second axis and the origin of the coordinate
system lies at the intersection point of the front plane and the
external cylinder axis. The next step involved repetition of the
discussed measurements in an automatic mode, followed by
the construction of a part coordinate system using features
measured in this way, as well as automatic measurements of
the second front plane (also using eight points) and the chosen
internal cylinder using similar points distribution as for the
external cylinder.

A ring standard and gauge block that satisfies the similarity
conditions postulated in [11] were used as reference objects
during uncertainty estimation, in accordance with the guide-
lines of the calibrated workpiece method. A total of 20 mea-
suring cycles were performed, each consisting of measure-
ments carried out on both the MFC standard and calibrated
workpieces. The whole measuring procedure lasted approxi-
mately 200 min. For the measurements of calibrated work-
pieces, the same number of points was used for each feature
as in the case of the MFC, and their distribution over the
surface of the standard was similar for both measurements.
The results given for the developed virtual model come from
a single measurement (performed separately from the mea-
surements according to the calibrated workpieces method)
with its corresponding uncertainty determined as a result of
simulations presented in Sect. 3. A single measuring cycle
lasted about 7 min, whereas the simulation lasted less than
1 min. This clearly suggests that the use of a virtual CMM
reduces the time necessary for determination of measurement
uncertainty by about 25 times.

Additionally, the measurement routine was repeated for a
CMM working in three-axis mode. The same numbers and
distributions of points were used for measurements of all fea-
tures. However, one major difference between five-axis and
three-axis modes is that during five-axis measurements, point
coordinates are obtained using a combination of three transla-
tional movements of a CMM and two rotational movements
of probe head axes, while in the case of three-axis mode, point
coordinates are measured using only three translational move-
ments of CMM axes and the angular position of the probe
head does not change during point measurements (angular
position of the probe head may still change between measure-
ments of consecutive features, like it is done during measure-
ments performed with commonly used motorized indexing
probe heads).

The results in Table 2 show that for all the presented mea-
suring tasks (performed both in three- and five-axis mode), the
intervals containing the true value of a measured quantity
share a common part with the validation acceptance interval,
which indicates that the validation process discussed in Sect. 2
concludes with a positive result. On this basis, the developed

Fig. 6 Measurement of MFC standard and calibrated workpieces (in
second position) during verification of virtual model

Fig. 7 Results of cylindricity measurement with corresponding
uncertainty estimated using the examined methods

Table 1 Results of MFC standard calibration

Characteristic/
relation

x, mm U(x), mm

Plane–plane distance 199.6205 0.0008

Internal diameter 59.9657 0.0007

Cylindricity 0.0029 0.0007

Flatness 0.0005 0.0006

Parallelism 0.0040 0.0008

Plane–plane angle 89.9818 0.0017
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virtual model may be regarded as working properly and pro-
viding accurate uncertainty values for measurements per-
formed on five-axis measuring systems. The primary aim of
this paper was to present a fully functional virtual model of a
five-axis measuring system that uses an articulated probe head
with continuous indexation capability and prove its correct
functioning. The results gathered in Table 2 clearly indicate
that this aim was fulfilled. What is more, in light of the pre-
sented results, it should also be noted that the virtual model of
a five-axis measuring system works properly regardless of the
mode in which the measuring points are gathered. Due to this,
it may be used for uncertainty estimation for measurements
performed using both the mentioned modes (three- and
five-axis mode) over the course of a single measurement rou-
tine. This situation happens quite frequently, seeing as com-
plex shapes of the currently manufactured parts make it so that
it is rarely possible to measure all the necessary features solely
in five-axis mode.

Proper functioning of the developed virtual model may also
be demonstrated by direct comparison of the intervals contain-
ing the true value of a measured quantity produced by the
model and the results ofMFC calibration (Table 1). In the case
of all performed measurements, these two intervals (as the
second interval, the interval < calibration result − standard un-
certainty of calibration, calibration result + standard uncertain-
ty of calibration > should be taken) share a common portion.
Basing on that, when calibration results are regarded as a
reference value, it is possible to conclude that this value is
correctly determined by the presented model.

It is also worth mentioning that a detailed analysis of the
obtained results proves the authors’ observation from previous

research with respect to lesser uncertainty values during
five-axis measurements than in the case of measurements of
the same geometrical features or relations performed in
three-axis mode (Fig. 7). The difference is clearly noticeable,
especially for measurements of circular or cylindrical features.
Over the course of measurements presented in this paper, the
standard uncertainty of cylindricity measurement determined
using the calibrated workpieces method was over two times
greater for measurements in three-axis mode. Moreover, due
to improved point probing kinematics, measurements per-
formed in five-axis mode are characterized by significantly
higher repeatability than those performed in three-axis mode,
which also partially explains the lesser measurement uncer-
tainty in case of the former.

5 Conclusion

The developed virtual model is the first fully functional model
of five-axis measuring systems that use probe heads with con-
tinuous indexation capability. Five-axis machining systems
and CMMs attract increasing attention, mainly due to the
promise of significant reduction in manufacturing and quality
control time. Furthermore, the increasing appeal of five-axis
measuring systems can also be attributed to the rising aware-
ness about the importance of uncertainty estimation for mea-
surements performed during assessment of products compli-
ance with geometrical specifications. This suggests that the
developed model may find a vast number of potential users,
and due to its simplicity, ease of use without the need for
advanced metrological knowledge and short implementation

Table 2 Verification results for the developed virtual model (for MFC standard located as in Fig. 4). Results for angle measurement given in °, other
features/relations expressed in mm

Characteristic/Relation Five-axis

Calibrated workpieces method Virtual CMM

x u(x) y u(y) VAI <x–u(x); x + u(x)> <y–u(y); y + u(y)>

Plane–plane distance 199.6208 0.0006 199.6219 0.0009 <199.6206; 199.6216> <199.6202; 199.6214> <199.6210; 199.6228>

Internal diameter 59.9652 0.0005 59.9656 0.0003 <59.9652; 59.9658> <59.9647; 59.9657> <59.9653; 59.9659>

Cylindricity 0.0023 0.0007 0.0024 0.0008 <0.0018; 0.0029> <0.0016; 0.0030> <0.0016; 0.0032>

Flatness 0.0008 0.0006 0.0008 0.0006 <0.0004; 0.0012> <0.0002; 0.0014> <0.0002; 0.0014>

Parallelism 0.0034 0.0011 0.0036 0.0007 <0.0030; 0.0041> <0.0023; 0.0045> <0.0029; 0.0043>

Plane–plane angle 89.9824 0.0023 89.9806 0.0019 <89.9799; 89.9828> <89.9801; 89.9847> <89.9787; 89.9825>

Three-axis

Calibrated workpieces method Virtual CMM

x u(x) y u(y) VAI <x–u(x); x + u(x)> <y–u(y); y + u(y)>

Plane–plane distance 199.6199 0.0007 199.6195 0.0008 <199.6192; 199.6203> <199.6192; 199.6206> <199.6187; 199.6203>

Internal diameter 59.9663 0.0006 59.9667 0.0004 <59.9666; 59.9669> <59.9657; 59.9669> <59.9663; 59.9671>

Cylindricity 0.0039 0.0015 0.0038 0.0011 <0.0029; 0.0047> <0.0024; 0.0054> <0.0027; 0.0049>

Flatness 0.0002 0.0005 0.0003 0.0003 <0.0000; 0.0005> <0.0000; 0.0007> <0.0000; 0.0006>
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time (the entire implementation of system including verifica-
tion measurements may be done in less than 8 h), it has a high
chance of becoming a popular method of uncertainty estima-
tion, especially in cases where the results of performed mea-
surements remain close to tolerance limits.

As shown in the previous section, the virtual model imple-
mented using the methodology presented in Sect. 2, and op-
erated on the basis of data flow specified in Sect. 3, success-
fully passed verification measurements and should be
regarded as working properly and producing correct values
of measurement uncertainty for common metrological tasks
from the GD&T framework. Correct function of the model
was additionally confirmed in a secondary way, through com-
parison of results and uncertainties produced by the model
with the results of an MFC standard calibration, given with
corresponding uncertainty values.

The verification method adopted for the performance of
measurements presented in Sect. 4 may be used in an analo-
gous way for verification of other virtual models developed in
the future (or already existing virtual models that have not yet
been experimentally validated). Understandably, it is essential
that in addition to a purely theoretical verification (usually
based on a comparison of the results produced by the exam-
ined model with the mathematical/simulation model of a giv-
en process/phenomenon), all virtual models, created across
different scientific disciplines, should also undergo practical
verification, which may be based on the procedure presented
in this paper.

Experiments presented in this paper were performed using
a CMM equipped with an articulated probe head with contin-
uous indexation capability. In the authors’ opinion, it should
be possible to transfer the presented model into five-axis ma-
chine tools with inspection probes mounted on a tilt and swiv-
el head following minor adjustments to the implementation
procedure. This stems from the fact that the kinematic struc-
ture of these two systems is identical and that touch-trigger
inspection probes used in machine tools are based on the same
working principle as the TP20 probe used with the five-axis
measuring system presented in this paper. The usage of the
presented model with a five-axis machine tool is one of the
possible directions of further research within this field.

The presented model of kinematic residual errors may
also be used for modelling machine tool kinematics dur-
ing machining processes, as an alternative for models
presented in [24, 25]. However, in such instances, resid-
ual errors may be strongly influenced by forces related
to the machining operations. Additional research into
the impact of such operations is currently underway at
the Laboratory of Coordinate Metrology of the Krakow
University of Technology.
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