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Abstract
Many studies have used different optimisation methods to find a near-optimal solution by optimising the disassembly operations
sequence. These studies have used disassembly operation time as the main optimisation parameter, and other parameters such as
direction change or tool change are converted to time scale. In order to determine accurate operation time, a product needs to be
completely disassembled, noting that the same EOL products can be in a different condition and result in different operation time.
In this work, new optimisation parameters based on the disassemblability and components demand are defined. These include
Disassembly Handling Index (DHI), Disassembly Operation Index (DOI) and Disassembly Demand Index (DDI). In order to
consider the operation time and other costs, Disassembly Cost Index (DCI) is further defined. Genetic algorithm optimisation
method was employed to optimise the process sequence. Here, the most demanded components with the easiest disassembly
operations are disassembled first without requiring to disassemble the unwanted components and avoid complicated operations.
Two case studies were analysed to determine the effectiveness and compatibility of this method. The result shows 13% and 10%
improvement in overall disassembly time for the case studies.

Keywords Remanufacturing . Disassembly sequence planning . Multi-objective planning . Intelligent optimisation . Genetic
algorithm . Disassemblability

1 Introduction

High environmental pollution and low renewable material re-
sources are just a few disadvantages of the traditional
manufacturing industry [1]. New manufacturing and
remanufacturing approaches such as cloud manufacturing
and remanufacturing and also smart manufacturing and
remanufacturing have shown good ability as the future in the
manufacturing industry [2]. These new approaches can em-
ploy all new manufacturing resources and abilities [3].
Mishandling of the end-of-life (EOL) products in the tradi-
tional manufacturing industry for many years has led to the
wasting of the resources and severe environmental problems
[4]. Remanufacturing of the EOL products deals with both
environmental and economic aspects of the EOL products
by considering reusing them in an optimal way [5]. The first

consideration of each remanufacturing process is disassembly
which mostly has been carried out manually due to its
complexity.

Although it looks like that disassembly process planning is
the reverse of the assembly process in manufacturing, there
are significant differences especially in the purpose of disas-
sembly process which is to retrieve demand parts. This re-
quires unique and different approaches. Disassembly planning
has to deal with necessary and unnecessary parts at the same
time, which makes disassembly planning much more compli-
cated than assembly planning in practice [6].

It can be seen that majority of disassembly planning studies
can be categorised into three classes: (a) to increase the value
of the parts that need to be disposed and (b) to minimise the
cost of retrieving some specific parts and (c) efficient full
disassembly sequence of the operations of a product [6].

Gupta and Taleb [7] focused on increasing the value of
retrieved parts through minimising the disassembly costs in
comparison with the value of disassembled parts. In order to
optimise the disassembly operations sequences, Lambert in-
troduced a mathematical model using AND/OR graph.
Although Lambert’s model efficiently finds optimum
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sequences, it does not consider reusable part demand which is
applicable in remanufacturing companies [8].

In a remanufacturing field in which disassembly operations
sequences and costs have to be optimised, Barba et al. [9]
investigated a model using lot-sizing and studied the effect
of it on the costs. Veerakamolmal et al. [10] introduced a
structure known as the disassembly tree (DT) to demonstrate
the relationships and order of disassembling. The main advan-
tage of this method is that the reusable parts can be demanded
at any point and make it applicable in the remanufacturing
field, although the size of DT increases dramatically by in-
creasing the parts.

The optimization of the disassembly planning especially
where the number of parts rises is categorised as NP-hard prob-
lems. One of the most effective tools to optimise this kind of
problem is the genetic algorithm (GA) that was proposed by
Kongar and Gupta [11] to optimise disassembly planning. GA
is a heuristic approach to solve the problem quickly and effec-
tively and as it is easy to adapt this technique with rather little
mathematics it is getting more and more popular in this field.
McGovern et al. [12] studied this method to balance the disas-
sembly lines. Parsa and Saadat [13] investigated automated
disassembly using the genetic algorithm and proposed a model
for robotic disassembly sequence optimisation. Other optimi-
sation methods such as particle swarm optimisation algorithm
were used to solve multi-objective optimisation problems [14].

Although disassembly requests are expanding and disas-
sembly planning techniques are getting more efficient, because
of the environmental regulations and the increasing amount of
the products require to be disassembled, manual disassembly is
getting more difficult and inefficient [15]. Therefore, robotized
disassembly processes are in the focus of new researches and
are gettingmore andmore essential in the disassembly industry.
Studies on robotized disassembly process for electronic prod-
ucts started at the early 1990s. First industrial application in this
field was a robot assistant for telephone disassembling [16].
Furthermore, in this area, Torres et al. [17] proposed a robotized
disassembly cell that can handle non-destructive disassembly
with some degree of automatization. Pomares et al. [18] follow-
ed their work and proposed an object-oriented model. This
model was required in order to a disassembly process. Gil
et al. [19] used co-operative robots to develop a flexible
multi-sensorial system in an autonomous disassembly process.
Torres et al. [20] followed this work and proposed a task plan-
ner using decision trees.

Current demand for more effective disassembly strategies
makes full disassembly uneconomical [21–24]. To find an
optimal solution for planning problems, selective disassembly
which aims to disassemble a product partly to retrieve
demanded components is receiving more attraction in current
studies. ElSayed et al. [25] investigated an intelligent automat-
ed disassembly cell which disassembled products online and
selectively. They modelled an online GA (genetic algorithm)

for selective disassembly to optimise the disassembly se-
quences. A selective disassembly planning method for waste
electrical and electronic equipment (WEEE) was proposed by
Li et al. They develop a selective disassembly planning meth-
od based on particle swarm optimisation with customisable
decision-making. They applied this model on WEEE to max-
imise the economic profit and reduce environmental problems
[26].

In this work, first new parameters and objectives for selec-
tive disassembly planning are introduced. Then genetic algo-
rithm using new parameters and objectives is employed to find
the optimum solution. Finally, the proposed method is tested
on an automotive case study to verify its effectiveness and
results are discussed.

2 Methodology

2.1 Introducing new parameters for intelligent
selective disassembly planning

A full disassembly plan allows a product to be fully
disassembled. However, in realistic industry problems, a prod-
uct does not require to be fully disassembled and it can be
inefficient. Full disassembly plan disassembles all the individ-
ual parts of the product regardless of the disassembly process
requirement. Selective disassembly planning considers the
disassembly aims and objectives and makes it efficient and
practical. The total number of required operations in full dis-
assembly plan is n, and the number of required operations in
selective disassembly ismwhich n ≥m. In selective disassem-
bly, some parts are indicated as target parts to be disassembled
and the disassembly process will be continued until the target
parts are disassembled.

Since the early 1990s, in order to solve the disassembly
sequence problems, researchers have started to use intelligent
heuristic methods and the majority of studies are going in this
direction. The mainly accepted methodology among the pro-
fessional is the “graph model + solving method”. However,
some differences among these methods are noticed, the main
idea is the same. Based on the “graph model + solving meth-
od”, disassembly planning problems can be divided into three
sub-problems: (a) product disassembly modelling, (b) se-
quence generating, (c) disassembly sequence optimization
[27]. Most of the researches on disassembly sequence optimi-
zation have focused on cost and time of the disassembly op-
erations as the main parameters of disassembly optimization.
Using times and costs of disassembly operations as the main
optimization parameters leads to inaccurate and unrealistic
results. First, the majority of the studies estimate the time of
a disassembly operation as measuring actual times of opera-
tions required to disassemble product completely. Also, the
same EOL products have a different condition which leads
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to a different time for the same operation. Secondly, the same
disassembly operation in different sequences of operations has
different disassembly time andmeasuring or estimating all this
time can be problematic.

Therefore, in this work, Disassembly Handling Index
(DHI) and Disassembly Operation Index (DOI) are intro-
duced in order to consider the difficulty and feasibility of
the disassembly operations as the main optimization pa-
rameters instead of the time and cost. The main advantage
of this method is that the disassembly operations can be
evaluated easily and quickly without the need to disas-
semble the EOL product. Also, this evaluation can be
done for the same EOL product with different condition
individually. Furthermore, Disassembly Demand Index
(DDI) is defined to prioritise the demand for each com-
ponent. This parameter indicates the level of demand for
each component in the product. In addition to these pa-
rameters, the Disassembly Cost Index (DCI) is defined to
include costs and times of disassembly operations. In a
sequence of the disassembly process, the operation for
component i is shown as Op(i) and the position of the
Op(i) in the sequence is shown as Pos(Op(i)).

2.1.1 Disassembly handling index

The first parameter for a new approach to the intelligent dis-
assembly planning is the Disassembly Handling Index (DHI).
Disassembly Handling Index is found by analysing the part’s
shape, size, weight and orientation, part handling difficulty
and where it fits into the product. In order to analyse each
part’s disassembly handling, a table that categorises the prod-
uct parts is defined, which is shown in Table 1 [28]. This
categorisation is based on the part’s geometric characteristics
and also the handling of the parts during a disassembly oper-
ation. DHI analyses each part of the product using three pa-
rameters: A, size of the part; B, weight of the part and, C,
shape of the part. As can be seen from Table 1, each charac-
teristics of a part allocated with a score. A higher score means

that the part is more difficult to be handled during a disassem-
bly operation. First, Part Handling Index (PHI) for each part
P(i) is defined as below:

PHI P ið Þð Þ ¼ Aþ Bþ C ð1Þ
where A, B and C can be found using Table 1, for example, for
P(1), a difficult to be grasped part (A = 4), light (B = 2) and
symmetric (C = 0.8), PHI(P(1)) = 6.8.

Then DHI for a set of operations during the disassembly
process is calculated as below:

DHI ¼ ∑n
i¼1PHI P ið Þð Þ=Pos P ið Þð Þ ð2Þ

where Pos(P(i)) is the position of the part in the disassembly
process sequence. For example, if P(1) with PHI(P(1)) is
disassembled with the third operation, it needs to be divided
by 3. A smaller DHI indicates that the parts that are easier to
be handled are disassembled first and ensures that the unnec-
essary parts with high PHI will not be disassembled. Dividing
PHI(P(i)) by Pos(P(i)) allows the algorithm to arrange the
disassembly process in a way that the parts with smaller PHI
be disassembled earlier. For example, consider component
{P1, P2, P3} with PHI {2, 4, 6} respectively. Now, assume
two possible disassembly sequences as seq1 = {P2, P1, P3}
and seq2 = {P3, P2, P1}. For seq1, DHI = (4/1 + 2/2 + 6/3) = 7
and, for seq2, DHI = (6/1 + 4/2 + 2/3) = 8.67. It can be seen
that DHI1 is smaller than DHI2 therefore component with
higher PHI, i.e. P3, is at the end of the sequence, while for
seq2 with higher DHI, P3 is at the beginning of the sequence.

2.1.2 Disassembly operation index

Disassembly Operation Index (DOI) analyses the difficulty of
each operation in the disassembly process. In order to calcu-
late the DOI, main disassembly operations were categorised
into four categories: A, disassembly force; B, requirement of
tools for disassembly; C, accessibility of joints/grooves and,

Table 1 Disassembly handling categories and scores

A. Component size
One of the following:

C. Component shape
One of the following:

Easily grasped 2 Light and symmetric 0.8

Moderately difficult to grasp 3.5 Light and semi-symmetric 1.2

Difficult to grasp 4 Light and asymmetric 1.4

B. Component weight
One of the following:

Moderately heavy, symmetric 2

Moderately heavy, semi-symmetric 2.2

Moderately heavy, asymmetric 2.4

Light (< 7.5 lb) 2 Heavy and symmetric 4.4

Moderately heavy (< 17.5 lb) 2.5 Heavy and semi-symmetric 4.6

Very heavy (< 27.5 lb) 3 Heavy and asymmetric 5
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D, positioning. Each category has several sub-categories to
which a score is given which can be seen in Table 2 [28]. A
higher score indicates that an operation is more difficult to be
carried out in the disassembly process. Disassembly
Operation Index (DOI) for each operation Op(i) is computed
as below:

DOI Op ið Þð Þ ¼ Aþ Bþ Cþ D ð3Þ
where A, B, C and D can be found using Table 2. For instance
Op(1), a pull operations with hand with moderate effort (A =
1), with common tool requirement (B = 2), on a plane surface
(C = 1) and symmetry with high accuracy requirement (D = 5)
has DOI(Op(1)) = 9.

Disassembly Process Index (DPI) for all operations in a
selective disassembly process is computed as below:

DPI ¼ ∑n
i¼1DOI OP ið Þð Þ=Pos Op ið Þð Þ ð4Þ

where Pos(Op(i)) is the position of the operation in the
disassembly process sequence. For example, if Op(1) with
DOI(Op(1)) is the third operation in the sequence, it needs
to be divided by 3. A smaller DPI is beneficial by which
the operations with lower DOI is carried out first and
ensures that the unnecessary and difficult operations will
not be carried out. Dividing DOI(Op(i)) by Pos(Op(i))
allows the algorithm that arranges the disassembly

process in a way that the operations with smaller DOI
be started earlier.

2.1.3 Disassembly demand index

In selective disassembly planning, the goal is to first dis-
assemble specifically targeted components without
disassembling the product completely. In this work,
Disassembly Demand Index (DDI) is defined to optimise
the disassembly process in a way that the most demanded
components disassembled first without disassembling un-
wanted components. Therefore, the level of demand of
each component is categorised in four levels, i.e. low,
medium, high and very high which can be represented
quantitatively by (5, 3, 1, 0) for (low, medium, high and
very high) respectively. DDI can be calculated using the
following equation:

DDI ¼ ∑n
i¼1LD ið Þ=Pos ið Þ ð5Þ

where LD(i) is the level of demand of component i and Pos(i)
is the position of component i in the disassembly sequence.
For example, for a sequence of operations of (3, 1, 4, 2) and
LD of (5, 3, 0, 2) respectively, DDI = 5/3 + 3/1 + 0/4 + 2/2 =
5.67.

Table 2 Disassembly operation categories and scores

A. Disassembly force One of the following: C. Accessibility One of the following:

Push/pull operations with hand,
straight line motion without
exertion of pressure

Little effort required 0.5 Dimensions Shallow and broad fastener recesses 1

Moderate effort required 1 Deep and narrow fastener recesses 1.6

Large amount of effort
required

3 Very deep and very narrow fastener
recesses

2

Twisting and push/pull
operations
with hand, straight line and
twisting motion without
pressure

Little effort required 1 Location On plane surface 1

Moderate effort required 2 On angular surface 1.6

Large amount of effort
required

4 In a slot 2

Inter-surface friction and/or
wedging, Straight line
motion with exertion
of pressure

Little effort required 2.5 D. Positioning One of the following

Moderate effort required 3 Level of accuracy required
to position the
tool- Symmetry

No accuracy required 1.2

Large amount of effort
required

5 Some accuracy required 2

Inter-surface friction and/or
wedging, Straight line and
twisting motions with
exertion of pressure

Little effort required 3 High accuracy required 5

Moderate effort required 3.5 Level of accuracy required
to
position the
tool-Asymmetry

No accuracy required 1.6

Large amount of effort
required

5.5 Some accuracy required 2.5

Material stiffness, Twisting
motions with pressure
exertion

Little effort required 3 High accuracy required 5.5
Moderate effort required 4.5

Large amount of effort
required

6.5

B. Requirement of tools for disassembly One of the following

Exertion of force No tools required 1 Exertion of torque No tools required 1

Common tools required 2 Common tools required 2

Specialised tools required 3 Specialised tools required 3
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2.1.4 Disassembly cost index

Disassembly Cost Index (DCI) is defined to analyse each op-
eration’s cost to disassemble a specific part of the product in a
disassembly process in term of time. It can be used to deter-
mine the cost of each operation to allow the operations with
lower cost be carried out earlier. DCI can include different
operation costs which all converted in a time unit. In this
research, DCI parameters are as below:

Operation time:

The basic time requires to disassemble part P(i) using op-
eration Op(i) is shown as OT(Op(i)). As the CDI needs to have
the same effect as the other parameters in optimisation algo-
rithm, the operation times are normalised as below:

OTN Op ið Þð Þ ¼ OT Op ið Þð Þ−OTmin

OTmax−OTmin
ð6Þ

where OTN(Op(i)) is the normalised time for each operation
and OTmax and OTmin represent the maximum and minimum

operation times of all possible disassembly operations
respectively.

Tool change:

The other parameter of DCI is tool change. In this work,
tool changing for an operation is penalised in a time unit.

TC
�
Op ið Þ ¼ 0 sð Þ if tool changed

1 sð Þ if tool not changed
ð7Þ

where s represents a time unit in second.

Disposal cost:

Finally, the last factor is the disposal cost of a part after it is
disassembled. If after a disassembly process a part of the
product is not reusable and it costs to be disposed of, the
operation will be penalised in time unit:

DC Op ið Þð Þ ¼ 0 sð Þ if part is reusable
1 sð Þ if part is not reusable

ð8Þ

a BorgWarner turbocharger b Turbocharger CAD model c Turbocharger exploded view  

Table 3 The properties and required disassembly tasks for all individual components

Number Component Disassembly task Disassembly tool Reusable Disassembly point (x,y,z) (mm) Mass (g) Demand

1 Nut Unscrewing Spanner No (175, 75, 0) 4 Low

2 Bolt 1 Unscrewing Spanner No (50, 100, 100) 7.5 Low

3 Bolt 2 Unscrewing Spanner No (50, 30, 100) 7.5 Low

4 Bolt 3 Unscrewing Spanner No (100, 30, 100) 7.5 Low

5 Bolt 4 Unscrewing Spanner No (100, 100, 100) 7.5 Low

6 Turbine housing Removing Hammer Yes (80, 80, 105) 1770 Very high

7 Cartridge Removing Hammer Yes (80, 80, 70) 1174 High

8 Bolt 5 Unscrewing Spanner No (60, 60, 50) 5 Low

9 Bolt 6 Unscrewing Spanner No (65, 70, 50) 5 Low

10 Bolt 7 Unscrewing Spanner No (70, 65, 50) 5 Low

11 Compressor housing Removing No tool Yes (80, 80, 50) 480 Very high

12 Electronic actuator Removing No tool Yes (140, 50, 105) 260 Medium
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Now total DCI for disassembly process can be calculated:

DCI ¼ ∑n
i¼1OTN Op ið Þð Þ=Pos Op ið Þð Þ

þ ∑n
i¼1TC Op ið Þð Þ=Pos Op ið Þð Þ

þ ∑n
i¼1DC Op ið Þð Þ=Pos Op ið Þð Þ ð9Þ

2.2 Improved genetic algorithm optimisation

2.2.1 Disassembly representation using a hybrid graph model

Graph-based methods such as AND/OR which was introduced
by Lambert and Homem are widely used to represent disassem-
bly sequences and precedencies space; however, the number of
nodes rises dramatically by the rising number of the compo-
nents. For example, there will be 16,383 nodes in the AND/OR
graph if the product consists of 14 components [29]. In this
work, a hybrid graph method is used to represent disassembly
sequences and precedencies space [30]. The hybrid graph meth-
od describes the topological structure of the product in the form
of a graph. It defines the relationships of the constraints between
the components of the product using a four-tuple, G = {V; Ef;
Efc; Ec}. In this four-tuple nodes set V = {v1, v2, v3, .., vn}
defines a minimum disassembly component unit (part or sub-
assembly) where n is the number of units. Ef = {ef1, .. efi}
represents the contact constraints between two components and
is shown using an undirected solid line. Efc = {efc1, .., efcj} is
disassembly contacted constraints and precedence between two
components and is shown using a directed solid line. The di-
rection of the line defines the disassembly precedence between
the components. Finally, Ec = {ec1, …, eck} which is repre-
sented by a directed dashed line defines the disassembly prece-
dence constraints for two non-connected components.

2.2.2 Disassembly feasibility and constraint matrices

The relation between product components and disassembly
constraints are represented mathematically by two matrices:

1- Components relation matrix detonated by Cr which rep-
resents the relationship between product components

Cr ¼ crij
� �

n�n ¼
cr11 cr12
cr21 cr22

⋯ cr1n
⋯ cr2n

⋮ ⋮
crn1 crn2

⋱ ⋮
⋯ crnn

2
64

3
75 ð10Þ

Disassembly Handling Index  

(DHI)

Size Weight Shape

Optimum sequence of disassembly operations 

Genetic Algorithm 

Force Position Tool
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Time
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Fig. 2 Flow chart of the proposed model
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Fig. 3 Hybrid graph model for turbocharger
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where, i,j = 1, 2, 3, …, n and

crij ¼
1 if vi; v j

� �
∈ E f

2 if vi; v j
� �

or v j; vi
� �

∈ Efc

0 else

8<
: ð11Þ

2- Disassembly constraints matrix, Dc, represents the disas-
sembly constraints mathematically

Dc ¼ dcij
� �

n�n ¼
dc11 dc12
dc21 dc22

⋯ dc1n
⋯ dc2n

⋮ ⋮
dcn1 dcn2

⋱ ⋮
⋯ dcnn

2
64

3
75 ð12Þ

where i,j = 1, 2, 3, …, n and

dcij ¼
n 1 if vi; v j

� �
∈ Ec

2 if vi; v j
� �

or v j; vi
� �

∈ Efc

0 else
ð13Þ

This matrix provides geometrical constraints and disassem-
bly precedencies to determine whether a part can be
disassembled without restriction. Unit vj can be disassembled if:

∑
n

i¼1
dcij ¼ 0 and ∑

n

i¼1
crij > 0 ð14Þ

2.2.3 GA parameters and operators

Several studies have investigated different optimization
methods in order to find optimum disassembly sequences

Table 4 Disassembly handling analysis and disassembly operation analysis for turbocharger

Number Component Disassembly handling analysis Disassembly operation analysis Demand

Size Weight Shape Force Tools requirement Accessibility Positioning

1 Nut 2 2 0.8 4 2 1 2 5

2 Bolt 1 2 2 0.8 4 2 1 2 5

3 Bolt 2 2 2 0.8 4 2 1 2 5

4 Bolt 3 2 2 0.8 4 2 1 2 5

5 Bolt 4 2 2 0.8 4 2 1 2 5

6 Turbine housing 4 2 1.4 1 3 1 1.2 0

7 Cartridge 3.5 2 1.2 3 3 1.6 1.2 1

8 Bolt 5 2 2 0.8 4 2 2 5 5

9 Bolt 6 2 2 0.8 4 2 2 5 5

10 Bolt 7 2 2 0.8 4 2 2 5 5

11 Compressor housing 3.5 2 1.2 1 3 1 1.2 0

12 Electronic actuator 2 2 1.2 1 3 1 1.2 3
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such as ant colony optimization (ACO), simulated annealing
and genetic algorithm (GA). Studies show that GA is the most
successful technique and is widely used [27]. Genetic algo-
rithm is a nature-inspired method based on Darwin’s natural
selection of evolution. It has been used for optimising the
constrained and unconstrained problem. GA repeatedly mod-
ifies and generates a new population of possible solutions as a
new generation. In order to produce a new generation, better
solutions of the current population combined together and
mutate to produce offspring. The aim is that the characteristics
of the better solutions pass to the next generation and popula-
tion evolve toward an optimum solution. GA has been
employed as a powerful optimisation tool in a variety of sub-
jects and researches [31–33]. Basic GA approach was modi-
fied by several researchers to improve results. According to
Kongar and Gupta who are the pioneer of GA, the method got
its idea from the evolution theory and can be simplified based
on that [11]. To initiate the algorithm, a set of the possible
solutions which was called population is selected in which
any member can be encoded as a chromosome. A

chromosome is identified using a combination of several dif-
ferent characters. Different characteristics of product and dis-
assembly can be encoded in each chromosome. Then chromo-
somes are given scores. These scores are based on a fitness
function. The fitness function depends on the disassembly
parameters which in this work are DHI, DOI, DDI and DCI.
To identify a chromosome with an optimum score, the new
population needs to be generated iteratively in each step in
which mutation can happen. Also, the crossover may happen
in which two different chromosomes can mate and a child is
produced. Depending on the disassembly aim and objectives,
the disassembly parameters in the objective function can be
customised by using different weights. In the following, these
parameters are defined:

– Chromosome representation

In order to represent the disassembly solutions and param-
eters, the disassembly sequences are encoded in chromo-
somes. A chromosome is a string of genes that occupy specific
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locations in a chromosome. Parameters of the disassembly
operations are encoded in each chromosome as genes. Each
chromosome indicates a disassembly sequence and its opera-
tions characteristics. A combination of numbers and other
characters are used to encode solutions and parameters. For
example, if the disassembly process has five variables, they
will be codified in a chromosome form composed of five
equal section in which each parameters of operations are rep-
resented respectively. In this research, each chromosome con-
sists of five string; Sequence, Disassembly Handling Index
(DHI), Disassembly Operation Index (DOI), Disassembly
Demand Index (DDI) and Disassembly Cost Index (DCI).

– Objective function

An objective function was defined to evaluate the chromo-
somes and find their fitness level. This function depends on the
disassembly process parameters. In this work, these parameters
are Disassembly Handling Index (DHI), Disassembly
Operation Index (DOI), Disassembly Demand Index (DDI)
and Disassembly Cost Index (DCI) which previously were de-
fined. Therefore, the objective function is calculated as follows:

f ch; gnð Þ ¼ αDHIþ βDOIþ γDDIþ εDCI ð15Þ
where f(ch, gn) is the fitness value of the chth chromosome in
the gnth generation and α, β, γ and ε are the user-defined
weights for disassembly process parameters which are depen-
dent on the aims and objectives of the disassembly. In this
research, the objective of the GA is to minimise the fitness
function by minimising DHI, DOI, DDI and DCI of each
chromosome.

– Initial population

In order to initiate the optimisation algorithm, a series of
randomly selected chromosomes are considered as initial pop-
ulation. The number of chromosomes in the initial population
(ncr) is defined depending on the disassembly process charac-
teristics. Higher ncr can result in higher numerical calculation
time, while smaller ncr can result in wrong solutions [27]. All
constraints and other relationships based on structure graph
(feasible solutions) must be satisfied among these chromo-
somes. In this work, ncr was examined and the optimum ncr
subject to optimum numerical calculation time and a better
solution was selected.

– Chromosome selection

Roulette wheel technique was employed to select chromo-
somes of each generation as parents to generate a newpopulation.
In the roulette wheel technique, each chromosome is assigned a
probability of selection based on its fitness level. Probability of a
chromosome to be selected is calculated by Eq. (16).

Pi ¼ 1

f i∑
n
j¼1

1

f j

ð16Þ

where fi is the fitness value of individual chromosome in the
population. This technique is used to assure that the chromo-
somes with the lower fitness level are selected. However, some
chromosomes with higher fitness value can be selected as parents
of a new generation.

– Crossover
– Crossover operator:

In order to generate a new population, crossover operator
must be applied to the most efficient chromosomes of the
previous generation. In this study, the precedence preservative
crossover (PPX) was employed in order to generate new pop-
ulations. In this methodology, two chromosomes are selected
as parents and considered as parent 1 and parent 2. The algo-
rithm starts with generating randomly selected masks which
contain 1 and 2 and have the same length as the first section of
the chromosomes. Thesemasks impose the order of each child
in a new generation. Then an empty offspring is initialized,
and crossover operation based on the relative mask is applied
and the offspring chromosome is filled with new genes. The
mask specifies which parent should be considered to select the
gene and after the selected gene will be removed from both
parents. This algorithm is repeated until both parents are emp-
tied and a new child is generated. As an example, consider the
first two chromosomes of the initial population as parent 1 and
parent 2 respectively. Two randomly selected masks which
contain 1 and 2 to generate child 1 and child 2 are as follows:

Mask 1: 1 2 1 2 2 2 1
Mask 2: 2 1 1 2 2 1 2
Using (PPX) method to generate new population, the chro-

mosomes of child 1 and child 2 are as follows:
Child 1: 1 7 5 3 6 2 4
Child 2: 7 1 5 3 6 4 2

– Mutation

Table 5 Final optimum
disassembly process
sequence

Optimum solution F(ch,gn)

1 4 5 12 2 3 6 8 9 10 7 11 1362.0333

Table 6 Optimum disassembly process sequence generated by the
conventional time-based method

Optimum solution F(ch,gn)

8 9 10 4 3 5 2 1 6 12 11 7 1372.0333
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After a new population is generated using crossover
operation, the chromosomes are subjected to mutation.
Mutation is not a dominant operator in genetic algorithm
method, and just a small number of the chromosomes are
subjected to mutation. A number of chromosomes are se-
lected randomly, and some genes are exchanged. The mu-
tation happens with a defined mutation probability Pm
and in such a way that all relations and constraints are
preserved. The mutation operation preserves the diversity
of the chromosomes and makes sure that the new solution
candidates are explored. In this study, the swap technique
was used as the mutation operator and different probabil-
ities were investigated. If a chromosome is selected, its

genes will be subjected to mutation otherwise its proper-
ties will be preserved, and it remains unchanged.

– Termination conditions

Two conditions are set in order to terminate GA calcula-
tions. If one of these conditions is met, GAwill be terminated.
The first condition is that if the number of produced genera-
tions exceeds a maximum value GAwill be terminated (in this
work 40). The second condition is that if the difference be-
tween the average fitness of the new generation and the fitness
of the previous generation is smaller than a pre-defined num-
ber, i.e., the solutions are remaining constant.

Table 7 Disassembly operations and process times for turbocharger

Disassembly operations and process times based on the proposed method Disassembly operations and process times based onthe conventional
method

Disassembled
part

Trial 1
(s)

Trial 2
(s)

Trial 3
(s)

Trial 4
(s)

Trial 5
(s)

Mean
time(s)

Disassembled
part

Trial 1
(s)

Trial 2
(s)

Trial 3
(s)

Trial 4
(s)

Trial 5
(s)

Mean
time(s)

1-Nut 8 8 7 9 7 7.8 8-Bolt 5 26 25 30 24 26 26.2

4-Bolt 3 20 17 18 21 22 19.6 9-Bolt 6 24 22 26 26 23 24.2

5-Bolt 4 22 27 25 24 20 23.6 10-Bolt 7 26 22 21 30 28 25.4

12-Electric
Actu.

7 5 5 8 8 6.6 4-Bolt 3 24 30 29 20 21 24.8

2-Bolt 1 20 26 23 22 23 22.8 3-Bolt 2 22 23 25 20 25 23

3-Bolt 2 24 20 22 23 19 21.6 5-Bolt 4 28 28 35 35 25 30.2

6-Turbine hous. 10 9 8 11 8 9.2 2-Bolt 1 23 20 23 26 24 23.2

8-Bolt 5 20 21 23 25 20 21.8 1-Nut 8 8 7 7 9 7.8

9-Bolt 6 22 18 22 25 20 21.4 6-Turbine hous. 10 11 11 10 9 10.2

10-Bolt 7 23 19 24 26 27 23.8 12-Electric
Actu.

7 5 9 7 8 7.2

7-Cartridge 5 6 7 6 8 6.4 11-Comp.
Hous.

9 10 9 10 11 9.8

11-Comp.
Hous.

9 7 8 9 8 8.2 7-Cartridge 7 8 8 5 6 6.8

Total process
time (s)

190 183 192 209 190 192.8 Total process
time (s)

214 212 233 220 215 218.8

Fig. 7 Disassembled components
of the turbocharge
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3 Case study and performance analysis

3.1 Case study 1: turbocharger

3.1.1 Background

As the first case study, a turbocharger supplied by Reco
Turbo Ltd. is selected to verify the proposed method. It is
made by BorgWarner and is used in different cars such as
Renault, Nissan and Dacia. Figure 1a, b, c show the tur-
bocharger, CAD model and exploded drawing. As it can
be seen, the turbocharger made of 12 individual compo-
nents which can be categorised into 7 different types: A,
B, C, D, E, F and G. Components such as A and C can be
disassembled further, but in this work, they assumed as
individual components that do not require further

disassembly. The properties and required disassembly
tasks for all individual components are shown in
Table 3. The main disassembly operations to disassemble
the product completely are unscrewing and removing.

It is assumed that the whole disassembly process is carried
out manually. The penalty time for a tool change is calculated
by Eq. (6). In order to disassemble this product completely,
one spanner and one hammer are required. Also, the disposal
cost penalty is described by Eq. (7). Figure 2 shows a general
flow chart of the proposed model.

3.1.2 Performance analysis

Proposed genetic algorithm method was programmed on
MATLAB© (version 8.5.0 (R2015a)). Then it was run on a
computer with Intel® Core™ i5 6500 CPU at 3.2 GHz and

Table 8 The properties and required disassembly tasks for all individual components

Number Component Disassembly task Disassembly tool Reusable Disassembly point (x,y,z) (mm) Mass (g) Demand

1 Crankcase cover Removing Manual Yes (40, 40, 45) 1021 Very high

2 Crankcase Removing Manual press Yes (23, 23, 5) 129 Medium

3 Bearings and shaft Pulling out Manual press Yes (30, 30, 45) 152 High

4 Spring chamber Removing Manual press No (35, 35, 900) 16 Medium

5 Spring Removing Manual No (30, 30, 90) 9 Low

6 Ring Pulling out Manual No (35, 35, 95) 35 Medium

7 Rotor Pulling out Manual press Yes (50, 50, 100) 250 Very high
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8.00GBRAM. In this section, the first convergence capability
of the proposed method is discussed and the performance of
this method for different iteration and generation is investigat-
ed. Then, the optimum sequence of the operations based on
this method is obtained and discussed. Finally, in order to
validate this method, the turbocharger is disassembled based
on the sequences proposed by this method, conventional time-
based genetic algorithm and total disassembly time compared.

In order to represent the product disassembly proceedings
and constraints mathematically, the hybrid graph method is
used. Figure 3 shows the hybrid graph model for turbocharger.
It is constructed according to the rules described in Section 2.
Based on this model, relation matrix Cr and constraint matrix
Dc are as follows:

Cr ¼

0 0
0 0

0 0
0 0

0 0
0 2

0 0
0 0

0 0
0 0

0 2
0 2

0 0
0 2

0 0
2 2

0 2
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2 2
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2 0
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0 2
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0 2
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2 2
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0 0
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2 0
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0 2
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0 0
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Dc ¼

0 0
0 0

0 0
0 0

0 1
0 2

0 0
0 0

0 0
0 0

0 2
0 2

0 0
0 0

0 0
0 0

0 2
0 0

1 0
2 0

0 0
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2 2
0 0

2 0
2 0

0 0
0 0

0 0
0 2

2 0
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0 0
0 0

0 2
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
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0 0
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0 0
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0 0
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2 0
0 0

0 0
0 0

2 0
2 0

0 0
0 0

0 0
0 0

0 0
0 0:

2
666666666666666664

3
777777777777777775

Table 4 shows the disassembly handling analysis, dis-
assembly operation analysis and demand for the product
which are calculated using Tables 1, 2 and 3. For each
component, size, weight and shape were considered to
find PHI using Eq. (1) and Table 4. Then DHI was calcu-
lated using Eq. (2). In order to analyse the disassembly
operation for each component, force, requirement of tool,
accessibility and positioning were considered. The values
for these properties are shown in Table 4 which were used
in Eq. (3) to calculate DOI. Then, DPI was calculated
using Eq. 4. Finally, based on the demand level in
Table 3, the demand for each component was determined

In this work, it is assumed that the basic operation time to
disassemble a component is constant and does not depend on
the position of the operation in the sequence. Different initial
population numbers (ncr) were examined in order to determine
the optimum convergence time and more realistic solutions.
Figure 4a, b show the calculating time and average fitness
values under different population number respectively. It can
be seen that higher ncr result in higher calculating time; how-
ever, it leads to lower average fitness values. It can be seen after
ncr = 30 the average fitness value remains constant; however,
the calculating time rises with increasing ncr. Therefore, ncr =
30 was selected as the optimum population number for this

Table 9 Disassembly handling analysis and disassembly operation analysis for turbocharger

Number Component Disassembly handling analysis Disassembly operation analysis Demand

Size Weight Shape Force Tools requirement Accessibility Positioning

1 Crankcase cover 2 2 0.8 0.5 1 1 1.2 0

2 Crankcase 2 2 1.2 3 3 1 1.2 3

3 Bearings and shaft 2 2 0.8 3 3 2 2 1

4 Spring chamber 2 2 0.8 3 1 2 1.2 3

5 Spring 3.5 2 1.2 1 1 2 2 3

6 Ring 2 2 0.8 0.5 1 2 1.2 3

7 Rotor 2 2 0.8 3 3 1 2 0
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Fig. 9 Average fitness values under different generations
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study. Figure 5a, b show the average fitness values and calcu-
lating time under a different number of generations.

The effects of different mutation probabilities on the pro-
posed method characteristics were studied. Average fitness
value trends and calculation times for different probabilities
are shown in Fig. 6a, b respectively. It can be seen that muta-
tion probability has a significant effect on both fitness value
and calculating time. Selecting a very small or very high mu-
tation probability leads to higher calculating time and higher
average fitness function. Therefore, choosing an optimummu-
tation probability in order to achieve an optimum solution is
essential. Analysing these results show that the mutation prob-
ability from 0.1 to 0.15 gives best results, which minimise
both calculating time and fitness value.

The optimum disassembly process sequence based on the
proposed model and its fitness value is shown in Table 5. This
optimised solution was achieved in 0.25 s using the proposed
method.

In order to compare the proposed method with convention-
al methods, the turbocharger was disassembled manually
based on the sequences generated by this research and con-
ventional GA method and operations times and the total dis-
assembly process timeweremeasured. To generate a sequence
based on the conventional GA, the method proposed by Parsa
and Saadat [13] was employed. Based on their method, the
main parameter for GA objective function to find an optimum
solution is basic operations times which should be estimated
to initiate the algorithm. Also, as in this research the method
for disassembly is manual, the algorithm used at [13] was
modified to remove the automation parameter, i.e., time travel
of the robot arm. The sequence generated using this method
can be seen in Table 6.

Then, the turbocharger was disassembled 5 times to mini-
mise the error and mean times for operations and total disas-
sembly process calculated. The disassembled turbocharger
can be seen in Fig. 7. Also, the turbocharger was disassembled
5 times based on the sequence generated by the conventional
GA method and mean times calculated. The measured and
calculated times are shown in Table 7.

Although the main advantage of the proposed method in
this research is to avoid initial time estimation and generate
more realistic sequences of disassembly operations based on
the disassemblability of the products, it can be seen that the
overall disassembly time was improved by 13%. This im-
provement can be due to more realistic objective parameters
and avoiding estimating operation time which reduce the er-
rors. It should be noticed that the main objective of the con-
ventional time–based method is to minimise the overall

disassembly time; however, the proposed method in this re-
search considers other objectives such as demand and disas-
sembly times alongside the main objective which is
disassemblability.

3.2 Case study 2: water pump

The second case study is a water pump model GMP187.
Figure 8a, b, c show the water pump, exploded drawing and
disassembled components of the water pump respectively.
The water pump made of 7 sub-assemblies. Table 8 shows
the properties and required disassembly tasks for all individual
components.

As can be seen, the disassembly operations are carried out
manually and just on the tool is required. Furthermore, de-
mand for each component, disassembly tasks and required
tool are detailed in Table 8. The samemethod as the case study
1 is employed to represent the product disassembly proceed-
ings and constraint, therefore, presenting the graph and matri-
ces are not repeated for this case study.

The disassembly handling analysis, disassembly operation
analysis and demand for the product were calculated using
Tables 1, 2 and 8 which presented in Table 9. It can be seen
that components 1 and 7 have the highest demand. It is as-
sumed that the basic operation time to disassemble a compo-
nent is constant and does not depend on the position of the
operation in the sequence.

GA parameters and operators were set up to find an opti-
mum operation sequence based on the DHI, DOI, DDI and
DCI. For the case study, ncr = 20, as the component number is
lower than the first case study. This helps to reduce computa-
tional cost. Analysing the results of the first case study showed
that mutation probability from 0.1 to 0.15 archives the best
results, therefore, mutation probability for this case study was
set at 0.15.

Figure 9 shows average fitness values under a different
number of generations. It shows that at generation 10 the
algorithm reaches its minimum fitness value and running it
further does not improve the results. The optimum disassem-
bly process sequence based on the proposed model and its
fitness value is shown in Table 10. This optimised solution
was achieved in 0.16 s using the proposed method.

The same method as the first case study was employed to
generate a time-based disassembly sequence which is shown
in Table 11. Then the water pump was disassembled manually
based on the two different disassembly sequence. In order to
minimise the error, the water pump was disassembled 5 times
based on each sequence and average times were calculated

Table 10 Final optimum
disassembly process
sequence

Optimum solution F(ch,gn)

2 1 7 6 3 5 4 34.65

Table 11 Optimum
sequence generated by
the time-based method

Optimum solution F(ch,gn)

2 1 7 3 6 4 5 42.22
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which can be seen in Table 12. It can be seen the overall
disassembly time was improved by 10% which is slightly less
than the first case study. This can be due to lower components
for this case study than the first one.

4 Conclusion

In this paper, a new method was introduced to solve disassem-
bly sequence planning problems. The majority of studies have
focused on time as the main parameter to find an optimum
solution and other parameters such as tool change requirement
and disposal casts are converted in a time unit. These studies
estimate the time required to disassemble a component of a
product as it is difficult to determine the time accurately. This
is due to the fact that the product should be disassembled
completely in order to measure the time. Also, the same
EOL products can have different conditions, which cause dif-
ferent disassembly times. Furthermore, the same disassembly
operation in a different sequence order can have a different
disassembly time. In this work, DHI, DOI and DDI were
introduced as optimisation parameters to analyse handling,
disassembly difficulty and demand of a product.
Additionally, DCI was introduced to consider disassembly
time and other disassembly costs. The hybrid graph method
was used to represent the mathematical model of the product
and disassembly constraints. A genetic algorithm was then
employed to search the possible sequences and find a near-
optimum solution. Finally, a turbocharger as an industrial
product was selected to test and verify the proposed method.
The results showed the effectiveness and compatibility of the
method. One of the solutions with the minimum fitness value
was presented as the optimum sequence for this case study. In

this sequence, all disassembly constraints are met. In order to
compare the effectiveness of this method with conventional
time-based GA methods, the turbocharger was manually
disassembled based on the sequences generated by the pro-
posed method and conventional method. Disassembly opera-
tions and process times were measured and compared. The
results showed 13% and 10% improvement in disassembly
time for case studies 1 and 2 respectively. Further improve-
ment of this method can be obtained by improving the
disassemblability categorisation and scoring.
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