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Abstract
This contribution studies failure by elastic buckling and plastic collapse of wall structures during extrusion-based 3D
printing processes. Results obtained from the parametric 3D printing model recently developed by Suiker (Int J Mech Sci,
137: 145–170, 2018), among which closed-form expressions useful for engineering practice, are validated against results
of dedicated FEM simulations and 3D concrete printing experiments. In the comparison with the FEM simulations, various
types of wall structures are considered, which are subjected to linear and exponentially decaying curing processes at different
curing rates. For almost all cases considered, the critical wall buckling length computed by the parametric model turns out
to be in excellent agreement with the result from the FEM simulations. Some differences may occur for the particular case
of a straight wall clamped along its vertical edges and subjected to a relatively high curing rate, which can be ascribed to
the approximate form of the horizontal buckling shape used in the parametric model. The buckling responses computed
by the two models for a wall structure with imperfections of different wavelengths under increasing deflection correctly
approaches the corresponding bifurcation buckling length. Further, under a specific change of the material properties,
the parametric model and the FEM model predict a similar transition in failure mechanism, from elastic buckling to plastic
collapse. The experimental validation of the parametric model is directed towards walls manufactured by 3D concrete
printing, whereby the effect of the material curing rate on the failure behaviour of the wall is explored by studying walls of
various widths. At a relatively low curing rate, the experimental buckling load is well described when the parametric model
uses a linear curing function. However, the experimental results suggest the extension of the linear curing function with a
quadratic term if the curing process under a relatively long printing time is accelerated by thermal heating of the 3D printing
facility. In conclusion, the present validation study confirms that the parametric model provides a useful research and design
tool for the prediction of structural failure during extrusion-based 3D printing. The model can be applied to quickly and
systematically explore the influence of the individual printing process parameters on the failure response of 3D-printed
walls, which can be translated to directives regarding the optimisation of material usage and printing time.

Keywords Collapse behaviour · Elastic buckling · Plasticity · FEM modelling · 3D printing experiments ·
Effect of printing velocity · Thermal heating

1 Introduction

Extrusion-based 3D printing (E3DP) is an additive manu-
facturing technique, whereby the material is pushed in a
molten, slurry or paste form through a nozzle to build up an
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object in a layerwise fashion along a calculated path. The
specific layout of an individual layer is created by moving
the nozzle in the horizontal plane at constant speed using
robotic control. Once a layer is deposited, the extrusion
nozzle, or the base on which the object is built, translates
vertically across a distance equal to the layer height, after
which the process is continued by placing a new layer on
top of the previous layer, creating a so-called wall struc-
ture. Due to the curing of the layer, it binds to the layer
beneath, such that the desired shape typically can be man-
ufactured without the use of a support structure. Examples
of E3DP are fused deposition modelling (also known as
fused filament fabrication) [1–7], multiphase jet solidifica-
tion [8], extrusion freeforming [9–11], contour crafting [12]
and robocasting [13, 14], processes which mainly differ by
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the printing material applied, and by whether and how a
heat source is used to bring the raw material to a print-
able state. In addition, E3DP bears similarities with the slip
forming process applied in the building industry, where a
concrete material is poured into a continuously moving form
that permits the self-supported shaping of tall vertical struc-
tures (towers, bridges, buildings) and horizontal structures
(roads) during the materials’ initial curing phase [15, 16].

Over the past 20 years, E3DP has grown into the world’s
most widely used additive manufacturing technology, as
a result of the low costs involved, its ability to produce
complex geometrical shapes without the use of conven-
tional tooling, the simplicity in operation, its suitability for
low-volume production, a high dimensional accuracy, the
easy integration with computed-aided design (CAD) soft-
ware and the elimination of product storage costs [4, 7,
17]. E3DP can be applied for creating models and pro-
totypes, and for production applications, with examples
in the aerospace industry (landing gear enclosure, jigs
and fixtures, check gauges, aircraft components with high
resistance to heat, moisture and chemicals), automotive
industry (customised vehicle exteriors and interiors, com-
plex parts for the engine compartment, vehicle scale mod-
els), food industry (pasta, meat-based products, chocolate),
consumer goods industry (sporting goods, toys), pharma-
cokinetics (drug delivery devices), architectural and civil
engineering (structural elements, bridges, houses), biomed-
ical engineering (tissue scaffolding, implants, prosthetics),
arms industry (gun prototyping), custom art and design
(sculptures, modern abstract pieces), casting and tooling
applications (production of dies and moulds, preforms, trim
and drill tools) and electronics (sensors, electronic com-
ponents and housing), among others (see [1, 3–7, 18–20]
and references therein). The range of materials used in var-
ious E3DP processes is broad and includes thermoplastic
polymers, biomaterials, cementitious materials, biological
pastes, fibre-reinforced composites, mixtures of metal pow-
ders and polymeric binders, food pastes, ceramic powders,
clays, gypsum, etc. [3, 4, 6, 7, 9–11, 14, 19, 20].

Despite the great success of E3DP, little is known about
the influence of the manufacturing parameters and condi-
tions on the mechanical behaviour of the object during the
printing process. This is largely due to the complexity and
diversity of the process parameters, as a result of which
failures typically appear unexpectedly through a lack of
mechanical performance or dimensional inaccuracy. Con-
sequently, adequate printing process parameters commonly
are established by means of trial and error, whereby it
remains unclear if the optimal parameter set eventually is
found under the conditions and requirements prescribed.
This makes product development by 3D printing more
expensive and time-consuming than necessary, in particular
when the printed object is relatively large, such as in civil

engineering and architectural applications. These aspects
can be improved through the development of accurate mech-
anistic models, which are able to predict the influence of
individual process parameters on the failure behaviour of the
object during printing, thereby illustrating how the printing
process can be optimised in terms of use of printing material
and manufacturing time. The initially low strength and stiff-
ness properties of the uncured printing material may ensure
that the objects’ failure resistance during manufacturing is
more critical than during operation; hence, minimising the
amount of printing material needed to maintain the strength
and stability of the object during the printing process may
significantly reduce the production costs.

Recently, Suiker [21] developed a mechanistic paramet-
ric model that can be used for the prediction of structural
failure of straight, free-standing walls generated during
E3DP processes. The model focuses on the competition
between elastic buckling and plastic collapse (see Fig. 1),
which typically are identified as the two most relevant
structural failure mechanisms during E3DP processes (see
also [22–25]). The elastic buckling mechanism reflects fail-
ure caused by a loss of geometrical stability, while plastic
collapse is characterised by the maximum stress (at the bot-
tom of the wall) reaching the material yield strength. The
parametric model in [21] reveals the sensitivity of these
failure mechanisms to the actual printing process parame-
ters, which are the curing properties of the printing material,
the printing velocity, the geometrical features of the printed
object, the heterogeneous strength and stiffness character-
istics of the object, the non-uniform dead weight loading
and the presence of imperfections. It is demonstrated that
the relatively large number of parameters characterising
the 3D printing process can be reduced to five unique,
dimensionless (time and length scale) parameters, with
three parameters defining elastic buckling and two param-
eters representing plastic collapse. In addition, closed-form
expressions are presented for the critical buckling length

Elastic buckling Plastic collapse

Fig. 1 Wall failure by elastic buckling (left) and plastic collapse (right)
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and plastic collapse length of a free wall (i.e., a wall with-
out support along its vertical edges), and design graphs
are provided for the critical failure lengths of simply sup-
ported and fully clamped walls. It is further demonstrated
how the parametric model can be applied for determining
the failure behaviour of more complicated wall geometries,
such as a rectangular wall-layout. Finally, the buckling
behaviours calculated for the free wall and the rectangular
wall layout are compared to the experimental results of 3D-
printed concrete wall structures, which turn out to be in good
agreement.

In order to validate the accuracy of the parametric 3D
printing model and support the implementation of the design
formulas and graphs presented in [21] in engineering prac-
tice, it is useful to compare results of this model to those
obtained by dedicated finite element method (FEM) analy-
ses and supplementary 3D printing experiments. A design
parameter that deserves special attention in this compari-
son study is the material curing rate, or, analogously, the
printing velocity, since its optimisation straightforwardly
leads to a reduction in printing time, and thus to a decrease
of the manufacturing costs. Accordingly, in the present
communication for the various straight wall structures men-
tioned above, the failure response computed by the paramet-
ric 3D printing model is validated against results obtained
by dedicated FEM analyses and 3D printing experiments,
both carried out at various curing rates. The finite element
method serves as an excellent tool for the accurate mod-
elling of 3D printing processes of structures of arbitrary
geometry, as recently demonstrated in [24] for 3D-printed
cylindrical walls collapsing by non-linear buckling. The
experimental validation is directed towards free walls man-
ufactured by 3D concrete printing, whereby the effect of
the material curing rate on the failure behaviour of the
wall is explored by considering walls of various widths.
The validation study includes the linear and exponentially
decaying, time-dependent curing processes analysed in [21],
and suggests the application of a quadratic curing function
if the curing process under a relatively long printing time is
accelerated by thermal heating of the 3D printing facility.

The manuscript is organised as follows. In Section 2,
the main equations and characteristics of the mechanistic
parametric model presented in [21] are outlined, thereby
distinguishing between failure due to elastic buckling and
plastic collapse. Section 3 starts by comparing the elastic
buckling response computed by the parametric model for
the free wall, simply supported wall and fully clamped wall
to the results calculated by FEM modelling, assuming a lin-
ear curing process and considering three different curing
rates (or printing velocities). Subsequently, for the free wall
configuration, the buckling response under an exponentially
decaying curing process is analysed, followed by a study
on the influence of imperfections. The comparison study is

continued with analyses of the elastic buckling response of a
rectangular wall layout, and the transition from elastic buck-
ling to plastic collapse under a specific change of the mate-
rial parameters. In Section 4, the results of the parametric
model are validated against experimental results obtained by
the 3D printing of concrete wall structures. The influence of
the printing velocity on the buckling behaviour of the free
wall is analysed by choosing three different wall widths. In
addition, the effect by thermal heating of the 3D printing
facility on the buckling response is highlighted. Section 5
presents the main conclusions of the validation study.

2 Review of parametric 3D printingmodel

The mechanical stresses during the 3D printing of a vertical,
free-standing wall structure monotonically increase as a
result of a growing dead weight loading. At some critical
moment, this may lead to wall failure by either elastic
buckling (a stability mechanism) or plastic collapse (a
strength mechanism) (see Fig. 1). These two basic failure
mechanisms form the basis of the parametric 3D printing
model recently developed by Suiker [21], of which the main
characteristics and equations are outlined in this section.

Consider the three basic configurations of a printed wall
of length l, width b and thickness h illustrated in Fig. 2,
which have been taken from [21]. These configurations
differ by the boundary conditions in the (horizontal) y-
direction, and accordingly are designated as (i) a free wall,
(ii) a simply supported wall and (iii) a fully clamped wall.
The walls are printed by adding material in a layer-wise
fashion, whereby it is assumed that during the printing
of an individual layer the strength and stiffness properties
in that layer do not significantly alter. In other words,
the characteristic time defining the curing process of the
printing material is considered to be larger than the period
needed for the printing of an individual layer. In various
E3DP processes, this condition is of vital importance from
a structural point of view, since it supports a good bonding
between the actual layer and the layer beneath. Accordingly,
the spatial variations in strength and stiffness as a result
of the curing behaviour of the printing material may be
assumed to occur solely along the direction of increasing
wall length, i.e. the x-direction in Fig. 2.

2.1 Elastic buckling

In accordance with plate theory, for the description of elastic
buckling the out-of-plane deflection w = ŵ(x, y) of the
wall structures illustrated in Fig. 2 may be subjected to a
separation of variables:

w = ŵ(x, y) = ŵc(x) f̂ (y) , (1)
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Fig. 2 Three basic wall configurations: a free wall (left), a simply supported wall (middle) and a fully clamped wall (right). The figure has been
reprinted from [21]

where ŵc(x) is the out-of-plane displacement along the
(vertical) x-direction of the wall, evaluated at the symmetry
line y = b/2, and f̂ (y) designates the normalised out-of-
plane displacement along the (horizontal) y-direction. For
the three wall types sketched in Fig. 2, the fundamental
horizontal buckling shapes satisfying the corresponding
horizontal boundary conditions are assumed as:

Free wall: f̂ (y) = 1 ,

Simply supported wall: f̂ (y) = sin(πy/b) ,

Fully clamped wall: f̂ (y) = (1 − cos(2πy/b)) /2 .

(2)

As demonstrated in [21], after combining Eq. 1 with the
horizontal buckling shape in Eq. 2, the equilibrium equation
and boundary conditions to be solved for wall buckling can
be entirely formulated in terms of the unknown out-of-plane
displacement along the x-direction, wc = ŵc(x).

The growth of a wall of length l in x-direction is
considered to be a continuous process that occurs at a
constant wall growth velocity. The wall growth velocity l̇—
with the superimposed dot indicating the time derivative—
can be expressed in terms of the actual printing process
parameters as:

l̇ = Q

vnhTl

, (3)

where Q represents the material volume discharged from
the printing nozzle per unit time, vn is the horizontal
velocity of the printing nozzle, Tl is the period required for
printing an individual material layer and h is the thickness of
the wall. Due to curing, the stiffness of the printing material
evolves with time, which can be formally expressed as

Ê∗(t) = ĝ∗(t)E0 , (4)

where g∗ = ĝ∗(t) is the characteristic curing function
and E0 is the initial stiffness of the printing material,
corresponding to the moment the material is discharged
from the printing nozzle. In [21], two basic types of curing
functions are considered, namely a linear curing function
g∗ = ĝl∗(t), whereby:

ĝl∗(t) = 1 + ξ l
E t , (5)

and an exponentially decaying curing function g∗ = ĝe∗(t),
with:

ĝe∗(t) = γE + (1 − γE) exp(−ξe
Et) where γE = E∞

E0
. (6)

Here, ξ l
E and ξe

E are the curing rates for the elastic modulus
(with dimension of time−1) in the linear and exponential
evolutions, respectively. Further, γE is the ratio between
the final stiffness E∞, obtained when t → ∞, and the
initial stiffness E0 in the exponential curing process. The
characteristics of the linear and exponentially decaying
curing functions are illustrated in Fig. 3.

The exponential form is representative of a strongly
accelerating curing process that quickly leads to a plateau
value for the stiffness (and/or the strength), as realised under
the application of an external stimulus, e.g. UV light or heat
[26, 27], or through the addition of a chemical agent [28].

The specific time evolution of the macroscopic material
properties is related to microstructural characteristics of the
printing material, including the morphology, domain size
and size homogeneity [29]. It should be mentioned that
these aspects in general may be influenced by the process
conditions applied during extrusion-based 3D printing. For
example, for polypropylene and polycarbonate composites,
the deposition orientation and deposition speed applied
during the printing process may have a strong effect on the
morphological structure of the printing material, and thus on
its mechanical properties, the level of material anisotropy
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Fig. 3 Characteristics of the linear and exponentially decaying curing
functions for the stiffness modulus E∗ (solid lines), in accordance with
Eqs. 4, 5 and 6. The dashed lines designate exponentially decaying
curing functions characterised by relatively high and low curing rates
ξe
E . The figure has been reprinted from [21]

and the surface roughness of the printed object [29, 30]. Ad-
ditional morphological changes in a thermoplastic polymer
printing material occur when melting the feedstock and pu-
shing it through the printing nozzle, which are caused by
the vaporisation of adsorbed water and the breakage of
polymer chains under the application of relatively high
temperatures [31]. When applying Eq. 4 for calibrating the
time-dependent stiffness properties from experiments, the
above aspects should be carefully considered and, when
relevant, be taken into account. For the specific case of
3D concrete printing, however, the significance of these
aspects is relatively low, which allows calibrating Eq. 4
from material tests that are independent of the printing
process conditions mentioned above (see also Section 4.1).
In case the concrete printing material is reinforced by fibres,
the microstructural stiffening effect by the fibres should
be accounted for in the calibration of Eq. 4, although
the influence may be negligible for low fibre volume
percentages [32].

As shown in [21], for the incorporation of time-related
process parameters in the parametric model, i.e. the material
curing rate and the printing velocity, it is convenient to
develop the model equations in an Eulerian coordinate
system that is attached to the printing nozzle. In accordance
with Fig. 4, the Eulerian coordinate X is related to the
Lagrangian coordinate x connected to the bottom of the
printed wall as:

X = X̂(x, t) = x − l = x − l̇t , (7)

with t denoting time. The Eulerian coordinate X can
be expressed into a dimensionless form X̄ (with the

h

l

0

0

printed wall

printing nozzle

x

X

Fig. 4 A Lagrangian coordinate system x with its origin connected to
the bottom of the printed wall, and an Eulerian coordinate system X

with its origin connected to the end of the printing nozzle. The figure
has been reprinted from [21]

superimposed bar emphasising that the parameter is dimen-
sionless) as follows:

X̄ = ˆ̄X(x, t) = ξE

l̇
X , (8)

with ξE representing the curing rate of the elastic stiffness
E∗ of the printing material. Similar to Eq. 4, the evolution
of the elastic stiffness during curing may be formally
expressed as a function of the Eulerian coordinate X̄ as:

Ê∗(X̄) = ˆ̄g∗(X̄)E0 , (9)

in which ḡ∗ = ˆ̄g∗(X̄) thus reflects the specific curing
function adopted. Via the coordinate transformation given
by Eqs. 7 and 8, the linear curing function, Eq. 5, in terms
of X̄ becomes:

ˆ̄gl∗(X̄) = 1 − X̄ with X̄ = ξ l
EX

l̇
, (10)

and the exponentially decaying curing function, Eq. 6, turns
into:

ˆ̄ge∗(X̄) = γE + (1 − γE) exp(X̄)

with X̄ = ξe
EX

l̇
and γE = E∞

E0
. (11)

As a next step, the out-of-plane displacement is henceforth
expressed in a dimensionless form, w̄c = wc/h, with
h the wall thickness. In accordance with the coordinate
transformation given by Eqs. 7 and 8, w̄c can be expressed
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as a function of the dimensionless Eulerian coordinate X̄,
and may be subsequently decomposed as:

ˆ̄wc(X̄) = ˆ̄wc,0(X̄) + ˆ̄wc,F (X̄) , (12)

in which the displacement function w̄c,0 characterises pos-
sible geometrical imperfections generated during printing of
the wall, and w̄c,F is the deflection under the applied loading
F (i.e. the dead weight loading of the wall). The equilibrium
condition for elastic buckling can be expressed in terms
of these two displacement components via the following
non-homogeneous fourth-order differential equation [21]:
(
ḡ∗ w̄

c,F

,X̄X̄

)
,X̄X̄

−
(
k̄1w̄

c,F

,X̄

)
,X̄

+ k̄2w̄
c,F

=
(
k̄r
1w̄

c,0
,X̄

)
,X̄

− k̄r
2w̄

c,0 . (13)

Under vanishing imperfections the right-hand side of the
above differential equation becomes 0; this homogeneous
differential equation can be used for computing the critical
bifurcation buckling length of the wall. The curing function
ḡ∗ = ˆ̄g∗(X̄) is given by Eq. 10 for linear curing and by
Eq. 11 for exponentially decaying curing, while the other
functions read1

k̄1 = ˆ̄k1(X̄) = λX̄ + 2cy∗
(ny∗π

ε

)2
ḡ∗ ,

k̄2 = ˆ̄k2(X̄) = cy∗
(ny∗π

ε

)4
ḡ∗

+ cy∗
(ny∗π

ε

)2 (
Ky∗λX̄ − ν(ḡ∗),X̄X̄

)
, (14)

k̄r
1 = ˆ̄kr

1(X̄) = λX̄ ,

k̄r
2 = ˆ̄kr

2(X̄) = cy∗
(ny∗π

ε

)2
Ky∗λX̄,

with the dimensionless parameters λ and ε given by:

λ = ρgh

D0

(
l̇

ξE

)3

, ε = ξEb

l̇
. (15)

The parameter λ includes the dead weight loading character-
istics via the density ρ, the gravitational acceleration g, and
the initial wall bending stiffness,

D0 = E0h
3

12(1 − ν2)
, (16)

where ν is the Poisson ratio of the printing material (which
is assumed to be constant during the curing process) and
h is the wall thickness. The function Ky∗ = K̂y∗(X̄)

appearing in Eq. 15 represents the coefficient of lateral
stress, which quantifies the horizontal stress generated in
the wall by the vertical dead weight loading; this function

1In Eq. 15, the asterisk subindex is used to emphasise that the actual
parameter is a function of the dimensionless Eulerian coordinate X̄.

takes values between 0 (for a wall without in-plane support
along the vertical boundaries) and ν (for a wall with in-
plane support along the vertical boundaries) [21]. Finally,
the parameters ny∗ and cy∗ present in Eq. 15 respectively
reflect the number of half-waves characterising the buckling
shape in y-direction, and a constraint factor that depends on
the type of boundary conditions applied in the y-direction.
Specifically, for the three basic wall types depicted in Fig. 2,
ny∗ and cy∗ have the following values [21]:

Free wall: ny∗ = 0 , cy∗ = 0 ,

Simply supported wall: ny∗ = 1 , cy∗ = 1 ,

Fully clamped wall: ny∗ = 2 , cy∗ = 0.5 .

(17)

Note that for the simply supported wall, the rotation about
the vertical axis at the boundaries in y-direction is fully
free, whereas for the fully clamped wall it is completely
constrained. When this rotation is partly constrained by a
rotational stiffness that is non-uniform along the X̄-direction

of the wall boundaries, k̄r = ˆ̄kr(X̄), the parameters ny∗
and cy∗ fall within ranges bounded by the above-mentioned
values for the simply supported and fully clamped walls, i.e.
1 ≤ ny∗ ≤ 2 and 1 ≥ cy∗ ≥ 0.5, and are formally expressed
by the functions:

ny∗ = n̂y∗(X̄) = n̂y∗( ˆ̄kr(X̄)) ,

cy∗ = ĉy∗(X̄) = ĉy∗( ˆ̄kr(X̄)) .
(18)

As demonstrated in [21], for structural layouts composed
of multiple straight walls, the rotational stiffness k̄r may
effectively account for the constraining influence of a
secondary, supporting wall on the primary wall that buckles.

By deriving the function ˆ̄kr(X̄) for such a wall geometry,
and inserting the result into the following closed-form
expressions [21]:

ny∗ = n̂y∗(k̄r ) = 1.984
[
1− exp

(−(0.360k̄r +0.430)0.452
)]

,

cy∗ = ĉy∗(k̄r ) = 0.5+0.309 exp(−0.854k̄r )

+ 0.192 exp(−0.183k̄r ),

(19)

the functions, Eq. 18, become specified. In this way, it is
possible to analyse the buckling behaviour of wall structures
with more advanced geometries than those presented in
Fig. 2 (see Section 3.4 for an example).

In addition to the buckling equation, Eq. 13, the boundary
conditions in the X̄-direction need to be formulated. In line
with Eqs. 7 and 8, the locations of the Eulerian boundaries
are X̄ = −κ (bottom of the wall) and X̄ = 0 (top of the
wall), with

κ = ξEl

l̇
. (20)
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At the bottom of the wall, X̄ = −κ , the wall structure
is fully clamped, in correspondence with the boundary
conditions [21]:

w̄c = 0 ,

w̄c

,X̄
= 0 ,

(21)

while at the top of the wall, X̄ = 0, the wall structure can
displace and rotate freely, in accordance with [21]:

w̄c

,X̄X̄
− cy∗

(ny∗π
ε

)2
νw̄c = 0 ,

(
ḡ∗w̄c

,X̄X̄

)
,X̄

− cy∗
(ny∗π

ε

)2 (
ν

(
ḡ∗w̄c

)
,X̄

+ 2(1 − ν)ḡ∗w̄c

,X̄

)
= 0 .

(22)

The solution w̄c,F of the buckling equation (13), which
satisfies the boundary conditions, Eqs. 21 and 22, can be
found by solving the weak form of Eq. 13, which is done by
using a combined analytical–numerical solution procedure.
In this procedure, w̄c,F is expressed as a linear combination
of suitable basis functions that are multiplied by un-
known, generalised coordinates defining the corresponding
amplitudes. Inserting the expression for w̄c,F into the weak
form of Eq. 13 leads to a set of coupled equations, which
is solved numerically by using an incremental-iterative
(Newton–Raphson) solution procedure. More details about
this solution procedure can be found in [21].

As argued in [21], the elastic buckling behaviour of
3D-printed wall structures is uniquely described by the
following three dimensionless parameters:

l̄cr = λ1/3κ =
(

ρgh

D0

)1
3

lcr ,

b̄ = λ1/3ε =
(

ρgh

D0

)1
3

b ,

ξ̄E = λ−1/3 =
(

D0

ρgh

)1
3 ξE

l̇
, with ξE ∈ {ξ l

E, ξe
E} ,

(23)

with λ, ε and κ given by Eqs. 151, 152 and 20, respectively.
Here, Eq. 231 represents the dimensionless critical buckling
length, Eq. 232 is the dimensionless width of the wall and
Eq. 233 reflects the dimensionless “curing rate”, which also
incorporates the effect by the printing velocity l̇.

In Section 3, the three dimensionless parameters given
by Eq. 23 are used for the analysis of the elastic buckling
behaviour of the three wall configurations shown in Fig. 2,
whereby results calculated by the parametric model are
compared to those obtained by FEM simulations. For
the free wall configuration, the finite element results are
compared against accurate closed-form expressions for
the dimensionless bifurcation buckling length, which were
established in [21] from numerical results computed with
the parametric model. For a free wall characterised by a

linear curing process, this closed-form expression reads
[21]:

l̄cr = l̄cr,0 + 0.996
(
ξ̄ l
E

)0.793
, (24)

with l̄cr and ξ̄ l
E in accordance with Eqs. 231 and 233,

respectively. The limit value l̄cr,0 = 1.98635 is the rate-
independent dimensionless buckling length of the wall,
i.e. the buckling length corresponding to an infinitely fast
printing process or, equivalently, to an infinitely slow curing
process. For a free wall characterised by an exponentially
decaying curing process, the closed-form expression for the
buckling length is [21]:

l̄cr = l̄cr,0

[
(γE)

1
3 +

(
1 − (γE)

1
3

)
exp (− (1.662

+ 0.240γE) ξ̄ e
E

) ]
with γE = E∞

E0
.

(25)

2.2 Plastic collapse

Instead of failing by elastic buckling, during the 3D printing
process, the wall structure at its bottom may fail by plastic
collapse, as a result of the dead weight stress reaching the
material yield strength. Due to the curing process of the print-
ing material, the material yield strength evolves with time.
In analogy with Eq. 9, this effect can be formally expressed in
terms of the dimensionless Eulerian coordinate X̄ as:

σ̂p∗(X̄) = ˆ̄h∗(X̄)σp,0 , (26)

in which σp,0 is the initial yield strength (i.e. the yield
strength of the material at the moment it leaves the printing

nozzle), and h̄∗ = ˆ̄h∗(X̄) reflects the effect of the curing
process on the yield strength. Similar to the curing functions
(10) and (11) for the elastic stiffness, the two basic curing
functions selected for the yield strength are the linear curing
function:

ˆ̄hl∗(X̄) = 1 − X̄ , with X̄ = ξ l
σ X

l̇
, (27)

and the exponentially decaying curing function:

ˆ̄he∗(X̄) = γσ + (1 − γσ ) exp(X̄) ,

with X̄ = ξe
σ X

l̇
and γσ = σp,∞

σp,0
. (28)

Here, ξσ ∈ {ξ l
σ , ξ e

σ } are the linear and exponential curing
rates, and γσ represents the ratio between the final yield
strength σp,∞ at the end of the exponentially decaying
curing process and the initial yield strength σp,0. As
explained in [21], the values of the yield strength σp ∈
{σp,0, σp,∞} depend on the type of failure criterion adopted.
A representative criterion is failure by compression, where

σp = σc , (29)
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with σc the uniaxial compressive strength. Another repre-
sentative mechanism is failure by pressure-dependent shear,
in accordance with a Mohr-Coulomb type model2, i.e.:

σp = 2c cos(φ)

1 − Ky − (1 + Ky) sin(φ)
, (30)

in which c and φ represents the cohesion and the friction
angle of the printing material, respectively, and Ky is the
coefficient of lateral stress, evaluated at the bottom of the
wall. For a printing material without frictional resistance
(φ = 0), Eq. 30 reduces to:

σp = 2c

1 − Ky

, (31)

whereby failure occurs as a result of reaching the maximal
shear stress at the bottom of the wall. Which specific
criterion for σp is applicable depends on the material
characteristics of the actual printing material.

In the case of linear curing, the yield function for plastic
collapse can be formulated in a dimensionless form as [21]:

l̄p = 1

1 − ξ̄ l
σ

with 0 ≤ ξ̄ l
σ < 1, (32)

while for exponentially decaying curing it reads [21]:

l̄p − [
γσ + (1 − γσ ) exp

(−ξ̄ e
σ l̄p

)] = 0 . (33)

Here, ξ̄σ and l̄p are the dimensionless curing rate and the
dimensionless wall length at plastic collapse, respectively,
given by:

ξ̄σ = ξσ |σp,0|
ρgl̇

with ξσ ∈ {ξ l
σ , ξ e

σ } ,

l̄p = ρglp

|σp,0| ,

(34)

with lp the actual wall length at plastic collapse. The two
dimensionless parameters given by Eq. 34 are sufficient
for uniquely describing the plastic collapse behaviour of 3D
printed walls. The transcendental equation, Eq. 33, does not
have an exact, closed-form solution, and thus needs to be sol-
ved numerically, for example, by using a Newton–Raphson
solution procedure. Nonetheless, an accurate closed-form

2Note that the sign of the third term in the denominator of Eq. 30 is
opposite from that of the corresponding term in the original expression,
Eq. (79), presented in [21]. This is, because in the derivation of
Eq. (79) the direction corresponding to the largest absolute value of
the principal stress, which is the vertical wall direction, has been
erroneously set equal to the horizontal wall direction.

approximation for the numerical solution of Eq. 33 is given
by [21]:

l̄p = l̄p,0

⎛
⎜⎝1 + γσ − 1

1 +
(

ξ̄ e
σ

ξ̄ref

)−p

⎞
⎟⎠ ,

with ξ̄ref = ˆ̄ξref (γσ ) = 1.181

1 + 0.844γσ

,

and p = p̂(γσ ) = 1.466(γσ )0.322 ,

(35)

where the initial dimensionless length for plastic collapse
equals unity, l̄p,0 = 1. The closed-form expressions given
by Eqs. 32 and 35 are independent of the type of boundary
conditions imposed along the vertical wall edges, and
therefore are applicable for describing the plastic collapse
behaviour of arbitrary straight wall structures.

2.3 Competition between elastic buckling and
plastic collapse

The wall will fail by yielding if the wall length for plastic
collapse is smaller than the critical buckling length, lp <

lcr . In contrast, when lp > lcr , the wall will fail by
elastic buckling. This criterion for the determination of the
possible failure mechanism can be formulated in terms of
geometrical, material and printing process data by making
use of Eqs. 231 and 342, which results into [21]:

l̄cr

l̄p
< �̄ : elastic buckling ,

l̄cr

l̄p
> �̄ : plastic collapse ,

with �̄ =
(

h

D0

) 1
3 |σp,0|

(ρg)
2
3

,

and l̄cr = ˆ̄lcr (ξ̄E, b̄) , l̄p = ˆ̄lp(ξ̄σ ) .

(36)

In summary, Eq. 36 illustrates that the mechanisms of
elastic buckling and plastic collapse of a straight 3D-
printed wall can be uniquely described by means of the five
dimensionless parameters l̄cr , ξ̄E , b̄, l̄p and ξ̄σ given by
Eqs. 23 and 34.

3 Numerical results

In this section, the failure behaviour during 3D printing is
computed for various types of wall structures, among which
the basic configurations depicted in Fig. 2, whereby the
results calculated with the parametric 3D printing model
are compared against those obtained by FEM simulations.
The results from the parametric model relate to specific
cases that were included in the extensive parameter variation
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study performed in [21], and thus can be also read off from
the corresponding design graphs presented in this reference.
The FEM simulations include both a bifurcation analysis
and a non-linear buckling analysis for determining the elas-
tic buckling response. The effect of geometrical imperfec-
tions on the buckling response is analysed for the free
wall configuration. Subsequently, the buckling response of
a more advanced, rectangular wall geometry is computed.
Finally, for a free wall, the transition of failure by elastic
buckling to plastic collapse is demonstrated under a specific
change of the material parameters.

In the parametric model, the coefficient of lateral stress is
assumed as constant and set equal to Poisson’s ratio, Ky∗ =
ν. For the simply supported wall and the fully clamped wall
depicted in Fig. 2, this corresponds to a fully constrained,
in-plane support along the vertical boundaries (see [21] for
more details).

3.1 FEMmodelling

The FEM simulations of the 3D printing process of wall
structures were performed using the commercially available
finite element software Abaqus3, and were operated by
means of a tailor-made, parametric Phyton script (see
also [24]). The wall configurations were modelled as
three-dimensional structures, and were constructed in a
layer-wise fashion to perform elastic buckling and plastic
collapse analyses. The dimensions of the layer were taken
representative of those in realistic 3D printing processes.
The layers were added stepwisely using the “model change”
option in Abaqus.

After the interface with the preceding layer was made
coherent by means of geometrical (tie) constraints, the dead
weight of the layer was increased linearly with time until
it was fully activated. The above process was repeated up
to failure of the wall structure by elastic buckling or plastic
collapse.

The critical failure modes of the wall configurations
depicted in Fig. 2 are symmetric with respect to the ver-
tical symmetry line at the half-width of the wall. Hence,
to limit the computational time of the FEM analyses, only
one symmetric part of the wall structures was meshed,
and roller supports were applied to warrant this symmetry
and to prevent rigid body motions. The 3D meshes were
constructed using 4-node tetrahedron elements equipped
with 1-point Gauss quadrature. Preliminary comparisons
with FEM simulations using discrete Kirchhoff quadrilat-
eral shell elements showed to give virtually identical results.
Although shell elements are computationally more efficient,
tetrahedron elements better facilitate the construction of

3Dassault Systems Simulia Corp., Providence, RI, USA

more complex wall geometries, for example when account-
ing for geometrical imperfections. For this reason, all FEM
simulations considered in this communication were per-
formed with 3D tetrahedron elements. The cross-section of
each layer was modelled with a total of 32 elements, using
two elements across the height of a layer. The total num-
ber of elements employed in the simulations depends on
the specific geometry modelled, as well as on the critical
buckling length of the wall. As an example, for the three
basic wall configurations illustrated in Fig. 2, the number
of finite elements lies approximately between 65,000 and
135,000 elements for one symmetric part of the wall, which
proved to be sufficient to accurately capture the global fail-
ure response of the walls. In order to trigger the occurrence
of global buckling in the non-linear buckling analysis, an
initial imperfection profile corresponding to the first buck-
ling mode—computed from a bifurcation analysis—was
applied, whereby the imperfection amplitude was set equal
to one-thousandth of the wall thickness. The time-dependent
developments of the elastic stiffness and the plastic strength
were described by the linear and exponentially decaying
curing processes characterised by Eqs. 5 and 6, respectively.

In addition to a non-linear buckling analysis, the wall
structures were subjected to an FEM bifurcation buckling
analysis. The critical buckling length following from this
bifurcation analysis was computed in an iterative fashion,
by starting from an initial estimate for the wall length
and assigning a stiffness variation in length direction, in
accordance with the linear or exponential curing law applied
and the printing velocity imposed. Subsequently, by making
good use of the scaling of parameters expressed via (23)1,
the wall length was adapted based on the computed value of
the buckling load factor, until the load factor reached unity
within an acceptable inaccuracy of 3%.

3.2 Elastic buckling

The printing parameters used in the elastic buckling
analyses are listed in Table 1, and are representative of wall
structures manufactured by 3D concrete printing [21, 24].
Initially, the three basic configurations sketched in Fig. 2 are
considered, which are the free wall, the simply supported
wall and the fully clamped wall. The elastic stiffness of
the concrete material is characterised by a linear curing
process (see Fig. 3), whereby three different dimensionless
curing rates are selected that cover a broad range of practical
conditions, namely ξ̄ l

E = 0.02, 0.5 and 2.0, with the
normalised curing rate defined by Eq. 233.

Note that a higher normalised curing rate either
corresponds to a higher curing rate of the printing material,
or to a printing process performed at a lower printing
velocity (see Eq. 233). For the free wall, the dimensionless
wall width b̄ given by Eq. 232 does not influence the
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Table 1 Printing and curing process parameters

Parameter Value

Wall thickness h = 43.5 (mm)

Height of individual layer tl = 9.2 (mm)

Material density ρ = 2020 (kg/m3)

Velocity of printer head vn = 83.3 (mm/s)

Poisson’s ratio ν = 0.3 (–)

Linear curing

Initial elastic stiffness E0 = 0.0781 (MPa)

Curing rate ξ̄ l
E = 0.02, 0.5, 2.0 (–)

Exponential curing

Initial elastic stiffness E0 = 0.0781 (MPa)

Curing rate ξ̄ e
E = 0.02, 0.5, 2.0 (–)

Stiffness ratio γE = E∞
E0

= 5 (–)

critical buckling length (see Eq. 24), and thus can be given
an arbitrary value. For the simply supported and fully
clamped walls, the widths were set equal to b̄ = 9.1 and
b̄ = 13.0, respectively. The fully clamped wall was given
a larger width than the simply supported wall in order to
avoid that the buckling length at the higher curing rates
selected becomes impractically large, as can be observed
from Figure 23 in [21] . The current analyses focus on
elastic buckling, whereby the plastic collapse mechanism
is excluded by giving the yield strength σp,0 in Eq. 26 a
relatively large value. The transition in failure mechanism
from elastic buckling to plastic collapse will be addressed in
detail in Section 3.5.

Figure 5 shows the buckling response for the three basic
wall types at the three curing rates selected. The buckling
response is evaluated in terms of the dimensionless critical
buckling length l̄cr given by Eq. 231. For the free wall,
the critical buckling length has been determined from the
parametric model by applying the closed-form expression,
Eq. 24, while for the simply supported and fully clamped
walls it has been computed by solving the weak form of
the differential equation, Eq. 13, together with the boundary
conditions, Eqs. 21 and 22, using the combined analytical–
numerical solution procedure described in [21].

For the free wall and the simply supported wall, the
results from the FEM bifurcation analysis turn out out be in
excellent agreement with those from the parametric model:
for the three curing rates selected the values calculated
for the critical bifurcation buckling length differ less than
2%. For the fully clamped wall, the relative difference
is comparably small at the low curing rate ξ̄ l

E = 0.02,
but tends to grow when the curing rate becomes higher.
Specifically, at the largest curing rate of ξ̄ l

E = 2.0,
the parametric model overestimates the critical buckling
length computed by the FEM bifurcation analysis by

Fig. 5 Wall length l̄ versus wall top deflection w̄c for a a free wall,
b a simply supported wall and c a fully clamped wall. The walls are
subjected to a linear curing process considering three different curing
rates, ξ̄ l

E = 0.02, 0.5 and 2.0. The short-dashed and long-dashed lines
indicate the bifurcation buckling lengths obtained from the parametric
model and an FEM bifurcation analysis, respectively, and the solid line
represents the buckling response from a non-linear FEM analysis
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15.2%. This difference is due to the cosine approximation,
Eq. 23, used in the parametric model for describing the
horizontal buckling shape of the fully clamped wall. This
is illustrated in more detail in Fig. 6, which depicts the
cosine approximation together with the horizontal buckling
shape calculated by the FEM model for ξ̄ l

E = 2.0 along two
different layers, namely the 5th layer (located close to the
wall bottom) and the 43rd layer (located at the wall top).

It can be observed that for the 5th layer the approximation
given by Eq. 23 is rather accurate; only close to the
wall boundary there appears to be a noticeable difference
with the buckling shape calculated by the FEM model.
Conversely, for the 43rd layer, the difference is larger,
whereby the horizontal buckling shape assumed for the
parametric model near the wall boundary and close to the

Fig. 6 Horizontal buckling shape across the (symmetrical) half-width
of a fully clamped wall, evaluated in a layer 5 (close to the wall
bottom) and b layer 43 (at the wall top). The wall is subjected to a
linear curing process with a relatively high curing rate, ξ̄ l

E = 2.0. The
short-dashed and solid lines designate the buckling shapes from the
parametric model and the FEM bifurcation analysis, respectively

half-width is more curved than the shape computed by
the FEM model, thus leading to a higher buckling length.
Since the discrepancy in horizontal buckling shape becomes
stronger with increasing distance from the bottom of the
wall, the relative overestimation of the critical buckling
length by the parametric model becomes greater at a larger
buckling length, as generated under a higher curing rate.

The response following from the non-linear FEM
buckling analysis for all three wall configurations lies close
to the bifurcation buckling length, especially at the onset
of buckling. At larger deformations w̄c the buckling length
obtained from the non-linear analysis may show a slight
increase, which can be ascribed to a membrane stiffening
effect developing in the wall structure. Note from Fig. 5b
that for the simply supported wall the non-linear FEM
analyses for the curing rates ξ̄ l

E = 0.5 and ξ̄ l
E = 2.0 at some

stage did not converge, as indicated by the small crosses at
the end of the buckling response.

In addition to the linear curing process, the free wall
is subjected to an exponentially decaying curing process
characterised by a stiffness ratio γE = E∞/E0 = 5,
whereby again three different curing rates are considered,
ξ̄ e
E = 0.02, 0.5 and 2.0. The dimensionless critical buck-
ling length l̄cr can be straightforwardly computed using the
closed-form expression, Eq. 25, derived in [21] from the
numerical results of the parametric model. As illustrated in
Fig. 7, the critical buckling lengths calculated with this
expression are in excellent agreement with the bifurcation
buckling lengths computed with the FEMmodel, i.e. the rel-
ative difference in buckling length lies between 1.0 and 2.6%.

Fig. 7 Wall length l̄ versus wall top deflection w̄c for a free wall.
The wall is subjected to an exponentially decaying curing process
considering three different curing rates, ξ̄ e

E = 0.02, 0.5 and 2.0. The
short-dashed and long-dashed lines indicate the bifurcation buckling
lengths obtained from the parametric model and an FEM bifurcation
analysis, respectively, and the solid line represents the buckling
response from a non-linear FEM analysis
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In addition, the computed bifurcation buckling lengths
lie close to the buckling responses following from the
non-linear FEM analyses, which illustrates the usefulness
of the closed-form expression, Eq. 25, for the design of 3D
printing processes. Furthermore, the exponentially decay-
ing trend of the curing function causes the critical buckling
length to asymptote to a limit value with increasing curing
rate, as illustrated in Fig. 7 by the close correspondence of
the critical buckling lengths for the cases ξ̄ e

E = 0.5 and 2.0,
see [21] for more details on this aspect.

3.3 Influence of imperfections on buckling response

The influence of imperfections on the buckling response is
evaluated by considering a free wall printed under a linear
curing process. For the parametric model, the imperfection
profile ˆ̄wc,0(X̄) present in Eq. 12 is defined by the following
kinematically admissible form [21]:

ˆ̄wc,0 (
X̄

) = w̄c,0
m

(
− sin

(
k̄w

(
X̄ + κ

))

+ τ̄

[
1 − exp

(
− k̄w

τ̄

(
X̄ + κ

))])
. (37)

This expression represents a harmonic imperfection, with
the exponential term ensuring that the essential boundary
conditions given by Eq. 21 are rigorously satisfied. Further,
w̄

c,0
m is the dimensionless amplitude of the imperfection,

k̄w is the dimensionless wavenumber and τ̄ is a boundary
factor, in accordance with:

k̄w = 2πl̇

nt tl ξE

, τ̄ = 2π

ωnt tl
, (38)

where tl is the height of an individual printed layer, nt is the
number of printed layers characterising the wavelength L of
the imperfection profile, i.e. L = nt tl (see also Fig. 8) and
ω is a factor defining the influence length of the exponential
term at the bottom of the wall.

In the parametric model, the influence length of the expo-
nential term is kept limited by taking a relatively small value
for the parameter τ̄ in Eq. 38, i.e. τ̄ = 0.5. Hence, the imper-
fection profile given by Eq. 37 becomes fully characterised
by the two length-scale parameters k̄w and w̄

c,0
m . Note that

the dimensionless wavenumber may be converted into the
dimensionless wavelength of the imperfection profile via:

L̄ = 2π

k̄w

= nltlξE

l̇
. (39)

The effect of wall imperfections on the buckling response
is analysed by taking the dimensionless imperfection
amplitude as w̄

c,0
m = 0.05, and the dimensionless curing rate

as ξ̄ l
E = 2.0. Three different profiles are selected, whereby

the wavenumbers are k̄w = 1, 2 and 20, which correspond
to wavelengths L̄ = 6.28, 3.14 and 0.314, respectively,
in accordance with Eq. 39. These profiles were studied
previously in [21] using the parametric 3D printing model.

In contrast to the parametric model, in which the imper-
fection profile is treated as a continuous function, see Eq. 37,
in the FEM model the displacement calculated from the im-
perfection profile at the half-height of each layer is applied
uniformly across the layer height. In other words, in the
FEM model, each layer is subjected to a specific horizon-
tal shift. Figure 9a and b respectively show the buckling
responses calculated with the parametric model and the
FEM model, by plotting the dimensionless wall length l̄

Fig. 8 Idealised sinusoidal
imperfection profile
wc,0 = ŵc,0(x) used in the
parametric model, which is
characterised by the amplitude
w

c,0
m and wavelength L, where

L = nt tl , with tl the height of an
individual printed layer and nt

the number of layers. The left
and right graphs illustrate the
cases nt = 2 and nt = 4,
respectively. The figure has been
reprinted from [21]
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Fig. 9 Wall length l̄ versus wall top deflection w̄c for a free wall
with geometrical imperfections, with a the buckling response from the
parametric model, and b the buckling response from a non-linear FEM
analysis. The short-dashed line indicates the corresponding bifurcation
buckling length. The imperfection amplitude is w̄

c,0
m = 0.05, and the

wavenumbers (wavelengths) of the imperfection profiles considered
are k̄w = 1, 2 and 20 (L̄ = 6.28, 3.14 and 0.314). The free wall is
subjected to a linear curing process at a relatively high curing rate,
ξ̄ l
E = 2.0. Figure 9a has been reprinted from [21]

as a function of the dimensionless horizontal deflection w̄c

at the wall top, X̄ = 0. Clearly, the results of the two
models are comparable, and show that the responses com-
puted for the different wavenumbers at growing hori-
zontal deflection all approach the corresponding bifurca-
tion buckling length (taken from Fig. 5a). For the interme-
diate wavenumber k̄w = 2 (corresponding to L̄ = 3.14),
the critical bifurcation length is reached at a relatively large
wall top displacement, while for the smallest and largest
wavenumbers, k̄w = 1 (L̄ = 6.28) and kw = 20 (L̄ =
0.314), the horizontal displacement only starts to growwhen
the wall length l̄ is already relatively close to the bifurcation

buckling length l̄cr . As argued in [21], the stage at which the
horizontal displacement starts to grow is determined by the
specific interplay between the two length-scales L̄ and l̄cr .

3.4 Buckling of a rectangular wall structure

Consider now a wall structure with a rectangular
layout, composed of two primary walls of width b

and two secondary, supporting walls of width d, whereby
the thickness of the walls is h and the bending stiffness is
D∗ (see Fig. 10). The rectangular wall structure is subjected
to a linear curing process, with the values for the curing
rate selected as ξ̄ l

E = 0.02, 0.5 and 1.5. The wall widths
of the primary and secondary walls are b = 800 mm and
d = 300 mm. The values of the other parameters character-
ising the printing process are listed in Table 1. In accordance
with Eqs. 18 and 19, the computation of the critical buckling
length of this structure starts by calculating an expression

for the dimensionless rotational stiffness k̄r = ˆ̄kr(X̄) to
determine the number of half-waves ny∗ and the constraint
factor cy∗. As discussed in [21], the rotational stiffness can
be conveniently formulated in a dimensionless form as:

k̄r = ˆ̄kr(X̄) = b k̂r (X̄)

D∗
= b k̂r (X̄)

D0 ˆ̄g∗(X̄)
, (40)

with the initial bending stiffness D0 given by Eq. 16
and the curing function ˆ̄g∗(X̄) presented by Eq. 10.
For the rectangular wall layout, the rotational stiffness,
Eq. 40, characterises the rotational constraint imposed by a
supporting wall d on a primary wall b, which, for a linear
curing process, can expressed as [21]:

k̄r = ˆ̄kr(X̄) = 2bDs
0

dD0

1

F̂ (X̄)
with − κ ≤ X̄ ≤ 0 , (41)

*
D

b
d > 1

b

dh

Fig. 10 Rectangular wall-layout composed of two primary walls of
width b and two secondary, supporting walls of width d. The thickness
of the walls is h, and the bending stiffness is given by D∗
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with

F̂ (X̄) =
[
4 sin(ψ)cos(ψ)

(
exp(ψ)+ exp(−ψ)

)

+ 2 cos(ψ)

(
exp(2ψ) − exp(−2ψ)

)

− 2 sin(ψ)

(
exp(2ψ) + exp(−2ψ)

)
− 4 sin(ψ)

− exp(3ψ) + exp(−3ψ) − exp(ψ) + exp(−ψ)

]

×
[
ψ

(
4 cos2(ψ)

(
exp(ψ) + exp(−ψ)

)

− exp(3ψ)− exp(−3ψ)−3
(
exp(ψ)+ exp(−ψ)

))]−1

, (42)

whereby:

ψ = ψ̂(X̄)=
[
30

4

(
X̄2 − 12X̄κ+15κ2−14X̄+42κ+28

)
(X̄ − 1)

]1/4

×
[
−73X̄5−15X̄4κ+390X̄3κ2+530X̄2κ3+195X̄κ4−3κ5

+ 350X̄4 + 840X̄3κ + 420X̄2κ2 − 280X̄κ3 − 210κ4

− 280X̄3 − 840X̄2κ − 840κ2X̄ − 280κ3
]−1/4

. (43)

It can be confirmed that the function F̂ (X̄) is 0 at the
clamped support X̄ = −κ , which, in accordance with
Eq. 41, indeed results in k̄r → ∞. Inserting the above
expression for k̄r into Eq. 19 leads to the corresponding
functions n̂y∗(X̄) and ĉy∗(X̄), which in turn are substituted
into the equilibrium equation, Eq. 13, and the natural
boundary conditions, Eq. 22, to solve for the buckling
response of the rectangular wall geometry (see [21] for more
details).

Figure 11 1shows the dimensionless wall length l̄ as
a function of the dimensionless deflection w̄c evaluated
at the top of the wall, adopting a linear curing process
and selecting three different dimensionless curing rates,
ξ̄ l
E = 0.02, 0.5 and 1.5. The FEM results are computed
for one symmetrical quarter of the rectangular wall layout,
using meshes in between 240,000 and 566,000 tetrahedron
elements equipped with a 1-point Gauss quadrature. For
all the three curing rates considered, the results from the
parametric model and the FEM bifurcation analysis are in
excellent agreement, with the relative difference varying
between 0.5% (for ξ̄ l

E = 0.5) and 2.4% (for ξ̄ l
E =

0.02). The non-linear buckling analysis approaches the
critical buckling length under increasing wall deflection,
and subsequently crosses it due to a membrane-stiffening
effect in the wall structure. The membrane-stiffening effect
becomes stronger under a higher curing rate and, as

Fig. 11 Wall length l̄ versus wall top deflection w̄c for a rectangular
wall layout with ground plane dimensions b × d = 800 × 300 mm2.
The wall is subjected to a linear curing process at curing rates ξ̄ l

E =
0.02, 0.5 and 1.5. The short-dashed and long-dashed lines indicate the
bifurcation buckling lengths obtained from the parametric model and
an FEM bifurcation analysis, respectively, and the solid line represents
the buckling response from a non-linear FEM analysis

illustrated for ξ̄ l
E = 1.5, at some stage may lead to a

substantially larger wall length than the critical wall length
following from the bifurcation analysis. The buckling shape
calculated from the FEM bifurcation analysis for ξ̄ l

E =
0.5 is shown in Fig. 12, with the colours representing
the relative magnitude of the local out-of-plane deflection.
For this symmetric buckling shape, the maximal deflection of
the primary wall b indeed is substantially larger than that of
the secondary, supporting wall d, namely a factor of 6.6.

Fig. 12 Deflection profile computed from a FEM bifurcation analysis
for a rectangular wall layout subjected to linear curing at a moderate
curing rate, ξ̄ l

E = 0.5. The colours represent the relative magnitude of
the local out-of-plane displacement, with the maximum displacement
of the primary wall that buckles being a factor of 6.6 larger than that
of the secondary, supporting wall
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3.5 Plastic collapse

The transition from failure by elastic buckling to plastic
collapse can be clearly demonstrated via a specific selection
of the properties of the printing material. Plastic collapse is
assumed to occur in accordance with the Mohr–Coulomb
failure criterion, with the values for the initial cohesion c0
and the initial friction angle φ0 presented in Table 2. These
strength values are representative of fresh concrete used in
3D printing processes [33]. During 3D printing processes,
failure by plastic collapse typically takes place at the bottom
of the wall, at which the stress generated under dead weight
loading is maximal and at a certain stage reaches the mate-
rial yield strength. In the analysis, the bottom layer is consi-
dered to be unconstrained in the longitudinal direction, which
is representative of a layer deposited on an ideally smooth
surface. In the Mohr–Coulomb failure criterion given by
Eq. 30, this corresponds to a coefficient of lateral stress
Ky = 0. The simplification made here for the unknown and
complicated surface conditions in the 3D printing process
is reasonable, since the present purpose is to compare the
results of the FEM model to those of the parametric model
by means of a basic, illustrative example, rather than to
simulate the surface conditions as realistic as possible.

The transition from failure by elastic buckling to failure
by plastic collapse will be illustrated by considering two
cases characterised by a linear curing process, which are
specified in Table 2 as Case 1 and Case 2. The two cases
differ by the choice of the curing rate for the yield strength,
which are ξ̄ l

σ = 0.4 (Case 1) and ξ̄ l
σ = 0.5 (Case 2).

The specific failure mechanism that will occur is set by the
criterion in Eq. 36, for which the parameters are determined
as follows: Substituting the values for φ0 and c0 listed in
Table 2, together with Ky = 0, into the Mohr–Coulomb
model, Eq. 30, leads to an initial yield strength of σp,0 =
3.48 kPa. In accordance with the data presented in Table 1,
the initial bending stiffness follows from Eq. 16 as D0 =
0.589 Nm. Inserting the values for the initial yield strength

Table 2 Material and printing parameters used for indicating the
transition from failure by elastic buckling (Case 1) to plastic collapse
(Case 2)

Parameter Value

Initial friction angle φ0 = 20o

Initial cohesion c0 = 1.22 (kPa)

Case 1

Curing rate elastic stiffness ξ̄ l
E = 2.0 (–)

Curing rate yield strength ξ̄ l
σ = 0.4 (–)

Case 2

Curing rate elastic stiffness ξ̄ l
E = 2.0 (–)

Curing rate yield strength ξ̄ l
σ = 0.5 (–)

and the initial bending stiffness, and the values for ρ and
h provided in Table 1 into Eq. 36 leads to � = 1.99.
Subsequently, the critical buckling length of the free wall
is calculated with Eq. 24, which, with the value for ξ̄ l

E

provided in Table 2, results in a dimensionless buckling
length of l̄cr = 3.71. The dimensionless length for plastic
collapse is obtained from Eq. 32, and, using the curing rates
for the yield strength listed in Table 2, equals l̄p = 1.67
for Case 1 and l̄p = 2.00 for Case 2. Correspondingly,
for Case 1, the ratio l̄cr/l̄p = 3.71/1.67 = 2.22, which is
larger than � = 1.99, so that in accordance with Eq. 36 it
may be concluded that the wall will fail by plastic collapse.
For Case 2, the ratio l̄cr/l̄p = 3.71/2.00 = 1.86, which is
smaller than � = 1.99, as a result of which Eq. 36 dictates
that the wall will fail by elastic buckling. The two different
failure mechanisms were indeed confirmed by the FEM
simulations, whereby the critical failure lengths for plastic
collapse (Case 1) and elastic buckling (Case 2) only differ
by, respectively, 0.01% and 1.20% from the above values
calculated with the parametric model. For a more general
consideration of the competition between elastic buckling
and plastic collapse of the free wall, the reader is referred
to [21], in which the parametric 3D printing model has been
used to construct failure mechanism maps for a wide range
of printing process parameters.

4 Experimental validation

In order to illustrate the usefulness of the parametric model in
predicting and understanding the structural failure behaviour
in real 3D printing processes, a series of experiments was
performed whereby free wall structures were built layer-by-
layer using extrusion-based 3D concrete printing. The experi-
ments were carried out with the 3D concrete printing facility
at the Eindhoven University of Technology (see Fig. 13).

Fig. 13 3D concrete printing facility at the Eindhoven University of
Technology, including a 4-axis gantry robot, a control unit and a con-
crete mixer and pump (inset). The figure has been reprinted from [24]



580 Int J Adv Manuf Technol (2019) 104:565–584

Table 3 Printing process parameters for the free wall

Parameter Value

Wall widths b = 1.0, 5.0, 10.4 (m)

Wall thickness h = 60.0 (mm)

Height of individual layer tl = 9.5 (mm)

Concrete density ρ = 2100 (kg/m3)

Velocity of printer head vn = 6250 (mm/min)

The walls were printed at room temperature, and the effect
of the dimensionless curing rate on the failure response
was examined by considering three different widths, namely
b = 1.0 m, 5.0 m and 10.4 m (see Table 3 for an overview of
these and other process parameters). From initial predictions
made with the parametric 3D printing model, it has been
a priori estimated that with these process parameters plas-
tic collapse does not become critical, so that the three free
walls tested all may be assumed to fail by elastic buckling.
As argued in [21], the geometrical accuracy of the printing
process is sufficiently high to ignore the effect of imper-
fections on the value of the critical buckling length. Note
hereby that, at a given printing velocity, a wall of a larger
width allows the individual layers to have more time to cure
during the printing process, which is expected to lead to a
higher critical buckling length.

The custom-designed concrete (Weber 3D 145-2) used
in the experiments is composed of Portland cement (CEM
I 52.5 R), a siliceous aggregate with a maximum particle
size of 1 mm, limestone filler, rheology modifiers, additives
and a small quantity of polypropylene fibres [33]. The
composition was mixed with water into a homogeneous
viscous substance, and subsequently pumped via a hose
towards the printer head, at which it was discharged from
the printing nozzle to form a layer. The calculated path
followed by the printer head was conducted by a motion-
controlled gantry robot with 4 degrees of freedom, i.e. 3
mutually perpendicular translations and 1 rotation about the
vertical axis. The setting of appropriate process parameters,
such as the concrete viscosity, the printing velocity, the
pump pressure, the printing rotation angle, the height of the
printer head above the printed layer and the properties of the
nozzle opening, was achieved by means of an extensive test
program (see [20] for more details).

4.1 Results

In accordance with the process parameters listed in Table 3,
the volume of fresh concrete discharged per unit time can be
calculated as Q = vnhtl = 59375 mm3/s, and the period for
the printing of an individual layer equals Tl = b/vn = 9.6
s, 48.0 s and 99.8 s for the walls of 1.0 m, 5.0 m and 10.4
m width, respectively. Substituting these values into Eq. 3

leads to corresponding wall growth velocities of l̇ = 0.990
mm/s, 0.198 mm/s and 0.095 mm/s, respectively.

The evolution of the stiffness properties of the concrete
was measured by performing uniaxial compression tests in
accordance with the ASTM D1266 [34]. As described in
detail in [33], specimens were prepared at four different
curing times, i.e. 15, 30, 60 and 90 min, and were loaded
in a displacement-controlled fashion in an Instron test rig
by applying a loading rate of 15 mm/min. At each curing
level, five to six different specimens were tested to take
into account the statistical spread in material properties. The
relation between the elastic stiffness (in kPa) and curing
time (in min) has been established by applying a least-
squares procedure to the experimental data (see Fig. 14).
Accepting a linear best fit with R2 = 0.96 on the average
values of the measured stiffness moduli gives the following
relation:

Ê∗(t) = 39.5 + 1.705t

with E∗ in kPa and t in min . (44)

Comparing the above relation to the expressions for linear
curing given by Eqs. 4 and 5, the initial stiffness modulus
follows as E0 = 39.5 kPa and the linear curing rate of
the stiffness becomes ξ l

E = 1.705/39.5 = 0.0432 min−1

= 7.2 × 10−4 s−1. Adopting Poisson’s ratio of ν = 0.3,
which is a realistic value for fresh concrete used in 3D
printing processes [21, 24, 33], from Eq. 16 the initial wall
bending stiffness can be calculated as D0 = 0.781 Nm.
With Eq. 233, the dimensionless curing rates related to the
free walls with widths b = 1.0 m, 5.0 m and 10.4 m
become ξ̄ l

E = 0.062, 0.312 and 0.650, respectively. In the
3D printing experiments, the walls with b = 1.0 m, 5.0

Fig. 14 Elastic stiffness E∗ measured in uniaxial compression tests
(black dots) at 4 different curing times, i.e. 15, 30, 60 and 90 min,
together with the linear approximation, Eq. 44, of the average values
of the test data (dashed line). The relative standard deviation of E∗
fluctuates between 10 and 22% within the range of considered curing
times
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m and 10.4 m buckled after printing 21, 27 and 46 layers,
respectively. Figure 15 depicts the buckling response of the
wall with width b = 1.0 m, showing the process from
buckling initiation towards full collapse during the printing
of the final layer. The buckling responses for the walls with
widths 5.0 m and 10.4 m are comparable, and are omitted
here for brevity. With a layer height of tl = 9.5 mm, the
above-mentioned number of layers at wall buckling for b =
1.0 m, 5.0 m and 10.4 m turn into buckling lengths of lcr =
199.5 mm, 256.5 mm and 437.0 mm, respectively, and,
with Eq. 233, to dimensionless buckling lengths of l̄cr =
2.32, 2.99 and 5.09. In Fig. 16, these three experimental
values for the dimensionless buckling length are plotted
versus the corresponding dimensionless curing rates (black
dots), together with predictions from the parametric model
(black lines) using a linear curing function, Eq. 5, and a

Fig. 15 Experimental buckling response of the free wall with width
b = 1.0 m at three stages of failure: a buckling initiation, b buckling
development and c full collapse

Fig. 16 Dimensionless critical buckling length l̄cr versus the
dimensionless curing rate ξ̄ l

E for a free wall, illustrating experimental
results (black dots) and the results from the parametric model (black
lines). The curve related to the linear curing function follows from
Eq. 47 with β = 0.0 (dashed line), and the curves related to the
quadratic curing function follow from a numerical simulation (solid
line), and Eq. 47 with β = 2.5 (dashed-dotted line)

quadratic curing function. The quadratic curing function is
obtained by extending the linear curing function, Eq. 5, with
a quadratic term:

ĝ
q∗ (t) = 1 + ξ l

Et + β
(
ξ l
E

)2
t2 , (45)

where the term β
(
ξ l
E

)2
may be interpreted as the “curing

acceleration”, with β being a dimensionless calibration
parameter. In accordance with the coordinate transformation
given by Eqs. 7 and 8, the quadratic curing function can be
expressed in terms of the dimensionless Eulerian coordinate
X̄ as:

ˆ̄gq∗
(
X̄

) = 1 − X̄ + βX̄2 with X̄ = ξ l
EX

l̇
. (46)

The numerical solution representing the buckling curve
for the quadratic curing function (solid line) has been
calculated by substituting Eq. 46, using β = 2.5, into the
weak form of the homogeneous form of the equilibrium
equation, Eq. 13, and the boundary conditions, Eqs. 21 and
22, and solving these equations by applying the combined
analytical–numerical solution procedure described in [21].
The numerical curve presented in Fig. 16 can be accurately
approximated by extending the closed-form buckling curve
for linear curing, Eq. 24, as:

l̄cr = l̄cr,0 + c
(
ξ̄ l
E

)m
,

with c = ĉ(β) = 0.996 + 2.328β + 0.268β2 ,

and m = m̂(β) = 0.793 + 1.300 (1 − exp(−2.762β)) ,

(47)
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where l̄cr,0 = 1.98635. This closed-form expression has
been found from calibrating the buckling curves computed
numerically with the parametric model in the range of
0 ≤ β ≤ 5.0, whereby the R2 value varies between 0.982
and 0.997 for a curing rate ranging up to ξ̄ l

E = 1.0. It
can be easily confirmed that for β = 0 Eq. 47 indeed
reduces to the buckling curve for linear curing, Eq. 24.
Figure 16 shows that for relatively low dimensionless curing
rates, in the range of 0 ≤ ξ̄ l

E ≤ 0.2, the buckling curves
related to the linear and quadratic curing functions are in
close correspondence, and provide a good estimate for the
experimental buckling length measured at ξ̄ l

E = 0.062.
Specifically, the experimental buckling length corresponds
to 21 layers, whereas the parametric model predicts
buckling to occur at 19 layers, which results in a relative
difference of 10%. This accuracy is similar to that found
in the experimental model validation presented in [21] for
wall configurations printed at a comparable curing rate. For
higher dimensionless curing rates, ξ̄ l

E > 0.2, Fig. 16 shows
that the buckling curves for the linear and quadratic curing
functions tend to diverge, whereby the buckling curve
for linear curing strongly underestimates the experimental
buckling lengths measured at ξ̄ l

E = 0.312 and 0.650.
Conversely, the buckling curve for quadratic curing, which
accounts for an increase in curing rate with time, closely
matches these two experimental values, whereby the relative
difference with each experimental value is about 7%. The
reason for the increase in curing rate can be sought in the
temperature rise induced during the relatively long printing
session; specifically, due to the process of continuously
mixing and pumping the cementitious material, the 3D
concrete printing system heats up substantially over time.
Heat generation speeds up the chemical reaction, which
enlarges the curing rate and thereby the elastic stiffness
of the material, thus leading to a larger buckling length
compared to the case whereby the curing rate remains
constant.

The effect of heat generation on the initial material
stiffness can be demonstrated by comparing the results of
ultrasound pulse velocity measurements on samples of fresh
concrete (i.e. the material state as it comes out of the printing
nozzle) taken at the beginning and the end of the printing
sessions. The result of these measurements is depicted in
Fig. 17, illustrating that after about 20 min of printing the
pulse velocities—and thus the elastic stiffnesses—of the
two fresh concrete samples start to diverge. Comparing this
period to the total printing times of the walls with b = 5.0
m (21.6 min) and b = 10.4 m (76.5 min) makes it indeed
plausible that the buckling lengths measured for these walls
are influenced by an increasing curing rate caused by
thermal heating of the 3D printing facility. Note, however,
that the thermal boundary conditions of the sample in the
ultrasound pulse velocity tests differ from those of a wall in

Fig. 17 Ultrasonic pulse velocity versus total time of printing session
for samples representative of the fresh concrete deposited at the
beginning (solid line) and end (dashed line) of a printing session

the 3D printing facility, from which it is concluded that the
outcome of the ultrasone tests only provides a qualitative
indication of the heat effect on the curing rate; a quantitative
study of this effect is a topic for future research.

With the calibrated values of the initial stiffness, E0 =
39.5 kPa, and the parameters for the quadratic curing
function, ξ l

E = 7.2 × 10−4 s−1 and β = 2.5, a combination
of Eqs. 4 and 45 illustrates that for the case b = 10.4
m the stiffness modulus at the bottom of the wall obtains
a maximum value of E∗ = 1.2 MPa at the end of the
printing process (i.e. after 76.5 min). Note that this value
is still very small compared to the stiffness modulus of a
fully cured concrete, which is in the order of 104–105 MPa.
Nevertheless, it is about a factor of 7 higher than the value
of E∗ = 0.17 MPa depicted in Fig. 14 for a linear curing
process at 76.5 min.

5 Conclusions

This contribution studies failure by elastic buckling and
plastic collapse of wall structures during the process
of extrusion-based 3D printing. Results obtained by the
parametric 3D printing model recently developed by
Suiker [21], which include closed-form expressions useful
for engineering practice, are validated against results of
dedicated FEM simulations and 3D concrete printing
experiments. In the comparison with FEM simulations, the
configurations analysed are a free wall (i.e. a wall without
support along its vertical edges), a simply supported wall, a
fully clamped wall and a rectangular wall layout. Two types
of time-dependent curing processes of the printing material
are considered, namely linear curing and exponentially
decaying curing, which are subjected to three different
curing rates (or printing velocities). The predictions of
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the critical buckling lengths of the free wall and the
simply supported wall are in excellent agreement with
the values following from the FEM simulations. For the
fully clamped wall, the relative difference in the predicted
critical buckling length is small at a low curing rate,
but somewhat grows when the curing rate increases. This
difference can be ascribed to the cosine approximation
adopted in the parametric model for the horizontal buckling
shape of the fully clamped wall, which starts to lose its
accuracy at growing distance from the bottom of the wall.
For a rectangular wall layout, the critical buckling lengths
computed by the parametric model and FEM simulations
are in close correspondence. The effect of imperfections on
the buckling behaviour of the free wall is also similar for
the two models, and indicates that the response computed
for different imperfection wavelengths under increasing
horizontal wall top deflection correctly approaches the
corresponding bifurcation buckling length. Further, under a
specific change of the material properties, the parametric
and FEM models predict a similar transition in failure
mechanism, from elastic buckling to plastic collapse.

For the validation of the parametric model with 3D con-
crete printing experiments, free walls were manufactured at
three different widths, which allows for studying the effect
of the curing rate (or printing velocity) on the wall buck-
ling response. The buckling length measured at the smallest
curing rate agrees well with the prediction by the paramet-
ric model under the application of a linear curing function.
For the two experiments performed at higher curing rates,
the model predictions based on a linear curing function lose
their accuracy, which can be solved by extending the linear
curing function with a quadratic term. The use of a quadratic
curing function can be motivated from the observation that
accelerated curing takes place as a result of thermal heat-
ing of the 3D printing facility under relatively large printing
times. This thermal effect is relevant for most extrusion-
based 3D printing processes, and therefore is an interesting
topic for future research.

In correspondence with the above results, the present
validation study confirms that the parametric 3D printing
model presented in [21] provides a useful research and
design tool for the prediction of failure of straight wall
structures during the process of extrusion-based 3D prin-
ting. The model can be applied to quickly and systemat-
ically explore the influence of individual printing process
parameters on the failure response of 3D-printed walls,
which can be translated to directives regarding the optimi-
sation of material usage and printing time. For the analysis
of structures with more complicated geometries than the
straight wall structures examined in this communication, the
equations following from a parametric modelling approach
may easily become relatively complex and unmanageable;
hence, for such geometries, the accurate modelling of 3D

printing processes requires the use of FEM modelling, as,
for example, is done for the cylindrical wall structures
analysed in [24].
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