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Abstract
The concept of Skin Model Shapes has been proposed as a method to generate digital twins of manufactured parts and is a new
paradigm in the design and manufacturing industry. Skin Model Shapes use discrete surface representation schemes, such as
meshes and point clouds, to represent surfaces, which makes them enablers to perform an accurate tolerance analysis and surface
inspection. However, online inspection of manufactured parts through use of Skin Model Shapes has not been extensively
studied. Moreover, the existing geometric variation inspection techniques do not detect unfamiliar changes within tolerance,
which could be the precursors to the onset of the manufacturing of out of tolerance part. To detect the unfamiliar changes, as
anomalies, and categorize them as systematic and random variations, some unique surface characteristics can be extracted and
studied. Random surface deviations exhibit narrow normal distributions, and systematic deviations, on the other hand, exhibit
wide, skewed, and multimodal distributions. Using those surface characteristics as key traits, machine learning classifiers can be
used to classify deviations into systematic and random variations. To illustrate the method, multiple samples from a truck
component manufacturing line were scanned and the collected 3D point cloud data was used to extract features. A prediction
score of 97–100% can be achieved by decision tree, k-nearest neighbor, support vector machines, and ensemble classifiers. The
purposed approach is expected to extend the existing online inspection approaches and applications of Skin Model Shapes in
quality control.
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1 Introduction

In the era of transition of manufacturing towards mass cus-
tomization [1] and mass personalization [2], there is a need to
inspect each manufactured product, preferably through auto-
mated online inspection systems. Application of automated
inspection systems is one of the key goals of manufacturing
industry in transition to Industry 4.0 [3, 4]. Specifically, auto-
mated surface inspection systems require inputs of detailed
digital representation of physical products to classify as within
or outside specifications.

In recent years, the concept of Skin Model, and its
operationalization through Skin Model Shapes, has been
proposed as representation of non-ideal surfaces [5] and dig-
ital twin of manufactured parts [6]. Skin Model Shapes have
applications in product development, manufacturing, and
inspection [7] and in linking the associated tolerance-
related interactions among these applications [8]. A single
digital representation of a product can be used to update as-
sumed geometric characteristics and perform tolerance anal-
ysis and finite element analysis [9]. Skin Model Shapes
(hereafter SMS) are obtained by discretizing nominal CAD
model into finermeshes or from tactile and optical devices in
the form of point clouds. The discrete representation scheme
enables capturing amore detailed geometric characteristic of
manufacturingparts. Thecentral focusofSMS is inclusionof
form errors in Computer Aided Tolerancing, while
conforming to Geometrical Product Specifications (GPS)
standards. The classical methods of conformance to specifi-
cation have been to fit primitive shapes that capture variation
of simple shapes only.
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Furthermore, for more complex shapes, like free-form
shapes, primitive shape-based tolerance inspection cannot be
applied [10]. As product profile becomes more complex, set-
ting up an appropriate threshold, like a profile envelope, to
identify unfamiliar variation within tolerance becomes a diffi-
cult task. This is one of the reasons that the manufacturing
industry still applies human inspectors to perform implicit
inspection to detect previously unseen but obviously defective
feature characteristics such as poor finishes, dents, wrong ori-
entations, and many other ill-defined faults [11]. However,
relative to human inspectors, many automated inspection sys-
tems perform better in terms of accuracy, consistency and
inspection speed, and the need to set a buffer for inspection,
as well as reducing labor costs, e.g., [10–14]. The advantage
of automated inspection system becomes more visible when
the number of to be inspected features increases.

Nonetheless, the random scattering of form errors, difficulty
of setting up appropriate thresholds for unfamiliar surface var-
iations, and possible presence of previously unseen errors make
it difficult to formulate exhaustive rules that can automatically
capture the anomalous geometric characteristics. Hence, as an
alternative, heuristic approaches can be applied [11].

One of the heuristic approaches specifically aimed at de-
tecting anomalous behavior is the concept of anomaly detec-
tion. Anomaly detection falls within general purpose of in-
spection, which is to determine if a product deviates from a
set of specifications [12] and obtain a pass/fail information
[11]. In terms of machine learning approaches, anomaly de-
tection refers to the process of finding patterns in data that do
not conform to expected behavior [15]. In this paper, anomaly
detection is applied in detecting deviations from the expected
normal behavior, that is, the surface deviations of parts pro-
duced in a stable manufacturing line.

Specifically, surface variations display unique characteris-
tics depending on whether they have systematic or random
variations. Systematic variations tend to show wide, skewed,
and multimodal distributions, while random variations exhibit
narrow and normal Gaussian distribution. Hence, the classical
machine learning classifiers can be applied to compare and
categorize those distribution into normal (random variation)
and anomalous (systematic variation) classes depending on
the similarity to a baseline distribution. In this regard, the
novelty of this paper lies in the methodology of detecting
unfamiliar surface variation independent of shape complexity.
The work extends the application of SMSs in quality control
and automated inspection systems.

This paper is organized as follows. Section 2 presents re-
lated works. Section 3 introduces a methodology. Sections 4
through 6 introduce the concepts of surface characterization,
deviation distributions, and supervised anomaly detection ap-
proaches. Section 7 presents an illustration case. Finally,
Sections 8 and 9 present discussion and conclusion of the
results of the proposed approach.

2 Related work

There is an extended interest in automated inspection systems
that stems from the need to inspect 100% of produced parts
and avoid statistical sampling approach. One of the commonly
applied inspection systems is image based [16]. However,
image-based approaches lack 3D representation and associat-
ed dimensional inspection capability.

Alternatively, point cloud data can be acquired from laser
and structured light scanners that can capture 3D geometric
information. Data acquisition methods for free-form have been
discussed in [10]. Specifically, point cloud data-based identifi-
cation has been applied in aircraft panel dent detection [17] and
in engine surface inspection [18]. Scanned data has also been
applied in surface defect detection through visual inspection of
color difference in [19, 20]. However, these are manual-visual
inspection approaches, which are relatively inefficient.

Recent efforts towards automated inspection system based
on point cloud data include defect detection by dividing selec-
tively growing region of interest and spatiotemporal control
charting approach [14]. A similar approach in detecting per-
forated sheet metals based onmachine learning techniques has
been presented in [21]. Such approaches specifically focus on
surface defect detection independent of process distribution.

Moreover, in an online inspection, change detection of pro-
cess distributions is difficult to monitor using statistical process
control methods, as the number of samples is significantly
smaller than the number of surface points to extract an accurate
process distribution [22]. Point cloud-based change detection
approaches focus computing distance between two registered
point clouds, e.g., [19, 23]. Nevertheless, comparison between
two point clouds alone is insufficient to extract the manufactur-
ing process trend. Explicit specification can be set using
Geometric Dimensioning and Tolerancing (GD&T) scheme
where a set of geometric limits is applied to control point devi-
ations [24]. However, such approaches are not aimed at detect-
ing process changes and surface defects within tolerance.

Alternatively, anomaly detection algorithms can be ap-
plied. Most of the anomaly detection approaches focus in
intrusion detection, fraud detection, and mechanical fault
detection [15]. The choice of these approaches depends on
the set of attribute that describe data [15]. Moreover, some
of the approaches use distance metric learning techniques,
like learning from Mahalanobis distance, which has been
applied in handwritten digit and face identification [25,
26], information retrieval and bioinformatics [27], and
anomaly detection in network traffic [28]. In manufactur-
ing, anomaly detection using a machine learning approach
utilizing manufacturing inspection, and aftersales data to
detect anomalous engines has been applied [29].
However, an anomaly detection approach aimed towards
automated inspection of geometric and dimensional
change in complex parts has not been extensively studied.
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3 Methodology

The methodology reported herein attempts to detect anoma-
lous geometric and dimensional deviations in SMSs of prod-
ucts produced in a stable production line. Figure 1 summarizes
the proposed methodology. The methodology follows the
classical supervised machine learning approaches. However,
since machine learning approaches are data intensive, produc-
ing parts with different types of errors for the mere purpose of
teaching a classifier is not practical. To overcome this draw-
back, point cloud data is generated with techniques and prin-
ciples applied in prediction and simulation of SMSs, as report-
ed in [7]. To generate an SMS, a nominal model is discretized
into a mesh and manipulated so that the surface closely repre-
sents a part.

Specifically, in this paper, five truck part samples from an
industrial production line were first scanned and a region of
interest was extracted from the point cloud data. The extracted
point cloud is fitted with corresponding discretized nominal
feature to acquire the orientation and positions of the scanned
feature. The nominal feature has vertices approximately close
to number of points of the scanned feature. Then waviness is
added to the discretized feature by adding Gaussian random
fields. Since each part is unique in terms of geometric charac-
teristics, multiple SMSs are generated that closely match the
orientation, position, and waviness of each scanned sample.

The generated SMS deviations from nominal model are
estimated by computing Euclidian distance or Hausdorff
distance [23]. The distance values are then organized in
histograms, which exhibit different distribution profiles
when they are from a defective part compared to a normal
part. To estimate the extent to which the two histograms are
different, Mahalanobis distance from a baseline histogram
is computed.

Moreover, as the deviation profile changes, the mean,
mode, and width of the histograms may change, which are
constructed as features (hereafter predictors). Thus, using
the four indicators as a machine learning feature vector
(hereafter predictor vector), the standard class of classi-
fiers is trained. The training and validation data set is
acquired from generated SMSs and the test sets are ob-
tained from a scanned model. When anomaly is detected,
an alarm is raised, or the part is redirected to a more
detailed inspection.

4 Surface characterization and extraction

4.1 Surface characterization

This work applies machine learning classifiers to detect
unfamiliar surface variation of a part produced in a stable
manufacturing line. However, machine learning models
require a lot of data, with normal and anomalous class,
to make accurate predictions. Producing physical parts
with defects to just train a model is expensive and diffi-
cult. Furthermore, the trained model would be biased to-
wards the normal behavior when excessive normal data,
and fewer anomalous data is used, as the class imbalance
reduces performance of the classical classifiers [30, 31].
The alternative is to generate synthetic data that closely
represents a manufactured part through simulation. The
synthetic data is then used to train a classifier and validate
the classification results, and the real data to test the
trained classifier.

To this end, surface characteristics that represent phys-
ical products can be generated through point deviation,
displacement, and orientation, in line with SMS prediction

Fig. 1 Methodology for detecting anomaly based on synthetic and real data
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and manipulation techniques discussed in [7]. ISO stan-
dard indicate that product geometric errors can be
expressed as superimposition of lay, waviness, and rough-
ness [32]. Surface roughness has a limited effect on the
functional effectiveness and tolerance of a part [33]. The
lay of the surface generally includes position and orienta-
tion errors, which can collectively be treated as systematic
variation. The surface waviness is considered as set of
form errors, which are randomly distributed along the sur-
face at different sizes and shapes. The larger form errors
have low waviness frequency and the smaller ones have
high frequency. The low frequency form errors can be
considered as systematic variations and the high frequen-
cy ones as the random variations.

To generate a systematic variation, a discretized nominal
model is rotated and displaced, points of Gaussian random
fields with large deviations are added, or a combination of all.
To represent the random behavior of form errors, Gaussian
random fields can be applied, by changing the correlation and
scale of point deviation [7]. For equal number of points with the
same x-y values, the z value can be added. For more complex
shapes, interpolation methods can be applied [34]. Figure 2
shows the summation of a nominal shape with orientation error
and generated using Gaussian random fields with equal number
of points. The sum of data points can be referred as a digital
twin of the physical feature. Since optical devices provide de-
tailed geometrical, dimensional, and surface variation informa-
tion, the derived vertices of SMSs from a point cloud data are
theoretically the same. Arguably, the derived vertices can be
used to closely approximate the physical part.

4.2 Procrustes registration

In the context of SMS, surface variations are captured using
optical or tactile devices, whereby point cloud deviations from
nominal model are used for further analysis. The scanned
models can be repositioned through matching and registration
steps of Generalized Procrustes Algorithm. A Procrustes-
based registration matches a corresponding feature’s points,
aka landmarks, by minimizing the distance between the points
[35]. Specifically, these landmarks should be set where the
fixtures are expected to come in contact so that the
manufacturing error is captured in reference to those land-
marks. As shown in Fig. 3, the manufacturing errors are

pushed to the other end relative to the landmark.
Mathematically, the Procrustes distance PD is estimated by,

PD A;Bð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑ A−Bð Þ2

q
ð1Þ

where A = {a1,…an} and B = {b1,…bn} are correspond-
ing landmarks with n points.

Moreover, only few features are likely to be the objects of
interest for inspection and analysis. Hence, the features of
interest must be extracted from the part, which could follow
different approaches of segmentation, e.g., [36]. Alternatively,
for known poses of a part, partitioning regions of interest of
the scanned models can be performed by including only the
coordinates that cover areas of interest.

4.3 Hausdorff distance

The deviation of data point to nominal model can be estimated
by Euclidean distance. However, there may not exist one to
one correspondence between point clouds and nominal modal
or between two-point clouds. Alternatively, the difference be-
tween nominal model and an SMS or between two SMSs can
be estimated using Hausdorff distance [37]. Mathematically,
for reference SMS vertices or point cloud A = {a1, … , an}

+ =

(a) (b) (c)

Fig. 2 Summation of systematic
deviation obtained from scanned
data and Gaussian random fields.
a Systematic deviation. b
Random deviation. c Total
deviation

Fig. 3 An illustration of an effect of registration at landmarks
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and observed point cloud B = {b1,…bn}, the Hausdorff dis-
tance is computed by:

HD A;Bð Þ ¼ max
aϵA

min
bϵB

∥A−B∥ ð2Þ

4.4 Geometric tolerances

The SMSs’ variation can be controlled explicitly through tol-
erance schema. According to ASME/ANSI standards’GD&T
schema, the variations are grouped into location, orientation
and form errors, profile, and runout tolerances [32]. Location
tolerance controls the variation the allowable displacement in
terms of a position, concentricity, and symmetry tolerance.
Orientational error is controlled by in angularity, parallelism,
and perpendicularity tolerances [24, 32]. Angularity controls
the angle of a toleranced feature from a datum feature. When
the referenced feature is vertical or horizontal relative to the

datum feature, perpendicularity or parallelism tolerances are
applied, respectively. Form errors, waviness of surfaces, can
be controlled by planarity or straightness, by placing two par-
allel planes or lines, respectively. Cylindricity tolerances also
control waviness of the surface, by placing the surface be-
tween two concentric cylinders. The radial difference between
the two cylinders is the measure of cylindricity [24, 32].

4.5 Free-form surfaces

The GD&T-based tolerance control methods have been ap-
plied as a de facto standard in quality control industry.
However, these methods are limited to utilization of primitive
shapes and cannot be applied to free-form surfaces [10], where
products have a complex profile. These shapes could be
shapes produced by additive manufacturing, similar to the
shapes shown in Fig. 4. In such cases, inspection through
geometric tolerance specifications is difficult to apply in con-
trolling the anomalous variation. Instead, the inspection sys-
tem can learn what normal variation is and what anomalous
variation from deviation distributions is.

5 Deviation distributions and similarities

5.1 Histogram-based deviation representation

As aforementioned, the deviations between data points and
nominal surface can be estimated by computing Hausdorff
or Euclidean distance. The distance values can be organized
into a histogram by grouping range of the data into smaller
ranges, aka bin(s). Histograms provide unique description of
surface characteristics that can be used to differentiate anom-
alous deviations from normal ones.

The point deviations of parts produced in an ideal produc-
tion process are small and found scattered around a nominal

Fig. 4 Point cloud of MathWorks® logo with induced systematic and
random deviations

Fig. 5 A 2D illustration of
scattering of random deviation
(green) and systematic deviations
(red) around nominal line for
planar and cylindrical features
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surface, like the green points shown in Fig. 5; hence, a normal
Gaussian distribution of points around the position of the
nominal model is expected. Since the deviation is small for
such cases, the resulting histograms show narrow distribu-
tions. A similar distribution can be expected for small form
errors, depending on the number and size of form errors.

By the same token, the position, orientation, and large form
errors, on the other hand, are likely to have wider, skewed,
mean-shifted distributions and a tendency to show abrupt
changes between consecutive bins. Furthermore, orientation
and large form errors have a tendency to change modality of
the distribution as the error values increase. It is worth noting
that in cases like the one shown in Fig. 5, where points with
approximately equal deviations lie in both sides of a nominal
surface, the mean of systematic and random deviations can be
close to the same value. Figure 6 shows wider and shifted
systematic deviation’s histogram relative to random devia-
tion’s histogram, based on rotation and translation of a feature
shown in Fig. 2. Similar distributions have been obtained in
experiments with point clouds of the MathWorks® logo and
hypothetical cylinders. In line with above argument, the fol-
lowing conditions hold:

∑n
1jdsi j−∑n

1jdri j > 0 ð3Þ

jmax drð Þ−min drð Þj≤ jmax dsð Þ−min dsð Þj ð4Þ

where dr ¼ dri∈ℝ : i ¼ 1;…; n
� �

is deviations of ran-

domly scattered points and ds ¼ dsi∈ℝ : i ¼ 1;…; n
� �

is
deviations of systematically scattered points. Those de-
viations can either be Euclidean or Hausdorff distance-
based estimates.

Moreover, the histogram-based representations of devia-
tions are further summarized in Fig. 7. The figure illustrates
correlation matrices of two features whose points were initial-
ly normally distributed around a hypothetical nominal plane
(Fig. 7a) and cylinder (Fig. 7c), in which later deviations were
induced. The point cloud of the plane was rotated so that it has
a parallelism value of 1.5 mm, 1.8 mm, and 3.1 mm relative to
a horizontal plane and displaced vertically so that it has loca-
tion error of 0.5 mm (Fig. 7b). Similarly, the cylinder of radius
of 50 mm (Fig. 7c) was manipulated so that it has a location
error of 0.25 mm, 0.5 mm, and 1.44 mm, and radial error of
1 mm (Fig. 7d).

Both matrices display change in correlation at different
location and orientation errors. Further, a change in surface
characteristic is marked by a shift from unimodal tomultimod-
al histograms as the deviation values increase from cell 1 to
cell 3. Those similarities become a basis for differentiating
normal and anomalous variation of geometric features, inde-
pendent of shape complexity.

5.2 Estimating similarities between histograms

In line with the above behavior of point deviations, the simi-
larity and closeness of two histograms can be quantified by
estimating a distance metric. Distance measures like
Euclidean and Mahalanobis distances can be used to measure
distance between corresponding bins of histograms (e.g.,
[28]). The Euclidian distance function measures bin-to-bin
distance without considering correlation between bins.
Mahalanobis distance [38], on the other hand, is a cross-bin
distance measure that takes into account the correlation be-
tween bins [39]. As shown in Fig. 7, the similarities and close-
ness between two histograms can be noticed by the extent of
changes of correlation resulted due to difference in set of

Fig. 6 Histogram of random deviations (green) and systematic deviations (red). a Wider distribution of systematic deviations due to change in
orientation. b A mean shifted distribution of systematic deviations due to change in position
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deviations. Hence, Mahalanobis distance can be applied to
study the similarity of histograms of SMSs. Mathematically,
for two histograms with bins P = {pi ∈ℝm : i = 1, … , n} and
baseline bins Q = {qi ∈ℝm : i = 1, … , n}, and covariance ma-
trixC ∈ℝn × n, where n is the number of bins andm number of
variables, Mahalanobis distance MD is defined as:

MD2 P;Qð Þ ¼ P−Qð ÞTC−1 P−Qð Þ ð5Þ

The variables that define histograms are frequency of the
deviation per bin and bin-edge values. The computation of the
Mahalanobis distance using these variables, the extent to

which two histograms are similar, can be estimated. The
Mahalanobis distance values are then used as features of a
supervised machine learning classification algorithm.

6 Supervised anomaly detection

6.1 Predictor vectors

Machine learning classification algorithms aim to categorize
data organized in the form of a predictor vector into corre-
sponding classes. Specifically, supervised anomaly detection
techniques mainly apply the classical supervised machine

Fig. 7 The correlation matrix of two features with and without systematic
variations. a Planar feature. bCorrelationmatrix of the planar feature with
cases of parallelism (Pa) 0 mm, 1.5 mm, 1.8 mm, and 3.1 mm, and
position (P) of 0.5 mm. c Cylindrical feature (green random deviation

and red systematic deviation). d Correlation matrix of the cylinder with a
position error (P) of 0.0 mm, 0.25 mm, and 1.44 mm and radial error of
1 mm (R49)
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learning approaches. This is expressed as follows: for input
vector xi with m variables and labeled class yi, to which xi
belongs to, the learning process for input space X and output
space Y, seeks to learn function f : X⟼ Y. Moreover, machine
learning seeks to generalize from previously seen data such
that for unseen data x, f(x) can predict the corresponding y
value. For n number of samples, the data set is organized as:

DS ¼ xi; yið Þ : xi∈ℝm; yi∈ℤf gni¼1 ð6Þ

In this work, the classifiers seek to learn fromMahalanobis
distance values, by treating each value as a predictor. For a
histogram with m bins, there are m Mahalanobis distance
points; the Mahalanobis distance from Eq. 7 then becomes a
predictor.

xi ¼ MD2
i P;Qð Þ ð7Þ

To compute Mahalanobis distance of random and system-
atic deviations’ histograms, three histograms are required: (1)
a baseline histogram with N(0, σ2) distribution, where the
variance is set to give an ideal variation, (2) a histogram of
observed random deviation, and (3) a histogram of observed
systematic deviation. Figure 8 shows the superimposition of
these histograms, where it is programmatically difficult to
delineate between yellow and red histograms. However, com-
putation of the corresponding Mahalanobis distance from the
baseline histogram makes it easier to delineate between the
two as shown in Fig. 9.

As pointed out, as the point deviations increase, the histo-
grams’ mean and mode(s) shift and the width increases;
hence, the change in distribution can be detected by tracking

those indicators of the data. The mean shift tends to be caused
by location error as all points are transformed in one direction,
and change in modality is due to orientation errors as the
points are distributed along both sides of a nominal surface.

Furthermore, another unique characteristic of surfaces is
that the difference between two extreme ends of geometric
features changes proportionally with rotation of the feature,
which increases the width of the distribution. In this paper, the
distributionwidth is referred as a delta predictor. The inclusion
of the predictor significantly improves the prediction score
related to orientation error. This predictor does not contribute
to the score for the cases of deviations due translational dis-
placement. Moreover, these parameters alone cannot be reli-
able indicators of change as these parameters can remain un-
changed even though the distribution has changed.

Thus, for a baseline histogram N, random deviations’ his-
togram R and systematic deviations’ histogram S, the predic-
tor vector of random deviations xri , predictor vector of system-
atic deviations xsi , and the total data set DS become:

xri ¼ MD2
i N ;Rð Þ;μr

i ;M
r
i ;Δ

r
i

� � ð8Þ

xsi ¼ MD2
i N ; Sð Þ;μs

i ;M
s
i ;Δ

s
i

� � ð9Þ

where μ, M, and Δ are mean, mode, and width of their
corresponding distributions, respectively.

DS ¼ xri ; yi ¼ 0
� �

; i≤k
xsi ; yi ¼ 1
� �

; otherwise

�
ð10Þ

where k is the number of random deviations’ histograms.

Fig. 8 Histograms generated from deviations induced to a MathWorks®
logo. A baseline histogram (green), histogram of observed random
deviation (yellow), and histogram of observed systematic deviations (red)

Fig. 9 Mahalanobis distance of random and systematic deviations’
histograms from a baseline histogram
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6.2 Machine learning classifiers

There are many potentially applicable machine learning clas-
sifiers for anomaly detection. In this work, based on the meth-
odology presented above, four classical classifiers that per-
formed well are briefly introduced below.

6.2.1 Decision trees

Decision trees are classifiers that extract rules underlying
training data by applying a sequence of Boolean logic to con-
struct hierarchical and sequential structures [40]. To construct
a tree, a predictor, selected as a root node, is iteratively split
until further splitting is unnecessary. The termination criteria
are either the outcome contains one class or all predictor nodes
have been decomposed. The sample data is classified follow-
ing the rules of the constructed tree [40].

6.2.2 Support vector machine

Support vector machine (SVM) is one of supervised machine
learning algorithms that are used for linear and non-linear
classification of given data. SVM seeks to find the largest
margin that separates points of two classes between which
an optimal hyperplane can be positioned. For high-
dimensional predictors, kernels embedded in SVM can project
a predictor into high dimensional feature space, where sepa-
ration is easier. During evaluation and testing, samples point
are scattered in the same feature space and classified based on
which side of the hyperplane the samples fall in [41].

6.2.3 k-nearest neighbors

k-nearest neighbors (kNN) is a model free algorithm, in which
sample data is classified based on closeness to the training
data. A distance from a sample point to each training point
is computed. The first k training points closest to the sample
point are then collected and the sample point is categorized to
the class of the most frequent points [42].

6.2.4 Ensemble

Ensemble learning combines multiple weak classifiers to im-
prove classification performance of the classifier in the ensem-
ble [43]. Class of algorithms are combined, or the alternative
is to use a single classifier with many instances of the algo-
rithm with different sort of training data [43]. The majority
vote of individual classifiers is then selected as the outcome of
learning. The common strategies are bagging and boosting.
Bagging is a random selection training set with replacement.
Boosting experiments sequence of algorithms by giving more
weight to the misclassified data during previous iterations.
These strategies almost always give better results than single
classifiers [43].

7 Illustration case

To demonstrate the method, both SMS-based synthetic data
and scanned data were considered. The scanned data was ob-
tained from an industrial production line that produces a truck
component shown in Fig. 10. This illustration focuses on ex-
tracted features B and C. The synthetic data was used to train
machine learning models and the scanned data to test the
models.

7.1 Training using synthetic data

To generate a synthetic data that is close to real data of a
manufactured part, a feature of interest, feature B, was first
extracted from the point cloud. Outliers were removed by
fitting the point cloud in a 0.5-mm-thick box. Following this
step, a discretized nominal model corresponding to feature B
was best fitted to obtain orientational and position errors.
Further, multiple point clouds based on Gaussian random
fields were generated, and the waviness was scaled to approx-
imate the planarity of scanned models by changing the

Fig. 10 A drawing of a part of considered for illustration Fig. 11 Generated SMS corresponding to feature B
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correlation and scaling towards the z direction. Then new
SMSs were generated by summation of the discretized nomi-
nal model and the generated Gaussian random fields, follow-
ing the approach presented in Section 4.1. Figure 11 shows an
example of generated SMS from its corresponding scanned
data. Each sample was set to contain around 140,000 points.

The generated SMS orientation and position was further
varied by adding small random orientation and position errors
with standard deviation of 0.001° and 0.001 mm, respectively.
This captures the presumed variation in the part produced in a
stable manufacturing line. These SMSs were stored as normal
training data and assigned to normal class. Furthermore, to
generate SMSs for the anomalous class, the generated
SMSs’ standard deviations were increased to a rotation of
0.1° and position deviation of 0.1 mm, and the Gaussian ran-
dom fields were generated and scaled in the z direction so that
the generated points will have planarity of more than
0.04 mm. In this way, 2100 SMSs with equal number of nor-
mal and anomalous classes were generated.

The generated SMSs’ deviations from the nominal model
were computed and organized in their corresponding histo-
grams of 20 bins. The Mahalanobis distances of the histo-
grams from a baseline histogram of N(0, 0.0022), the mean,
mode, and delta were computed for use as predictor vectors.
The data was divided into 80% training and 20% validation
sets. Six classical machine learning classifiers were evaluated,
and four that consistently performed higher prediction accu-
racy were selected for further evaluation. The classifiers

include decision tree, kNN, SVM, and Ensemble. The predic-
tion score of the four classifiers on validation data are shown
in the Table 1. In decision tree, a Fine Tree (FT) type with max
splits of 100 was used. In kNN, weighted kNN type with 10 as
the number of neighbors using Euclidean distance was ap-
plied. In SVM, cubic SVM type, and in Ensemble, bagging
strategy with decision tree learners were used.

Moreover, all the classifiers with principal component anal-
ysis (PCA)-enabled dimensional reduction did not have an
effect on improving the prediction accuracy. Normalization
of histograms did not contribute to a better result as the
Mahalanobis distance was estimated from the frequency per
bin, proportionally suppressing the difference between corre-
sponding histogram frequencies. Further, all experiments re-
ported in this work applied Matlab2018a’s implementation of
the classifiers, using a machine with processor Intel® Core™
i7-5500UCPU@ 2.4GHz 8 GBRAMWindows 10 operating
system.

7.2 Testing trained classifiers on real data

To test the classifiers, a scanned data with and without outliers
from the industrial manufacturing line was used. The two
extracted features, features B and C, were machined in two
different setups, resulting to two different sets of variations.
Those features had not been seen by the classifiers that were
initially trained on synthetic data.

To predict classification of the real data, first, the devi-
ation of points from nominal of the samples shown in
Fig. 12 was organized in the histogram, and Mahalanobis
distance, mean, mode, and delta values were computed.
The trained classifiers applied these values to predict the
class of each of the geometric features. The number of
correct predictions by the classifiers on eight test sets of
five samples are summarized in Table 2.

Table 1 Score of classifiers based on extracted data from generated
SMSs

Classifier FT kNN SVM Ensemble

Score 100% 98.6% 97.4% 100%

Fig. 12 Five extracted data points. a Feature B. b Feature C
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8 Discussion

In inspection, surface deviations are often controlled by
GD&T schema that applies a set of primitive shapes.
However, this does not apply when it comes to free-form
surfaces and detecting changes within tolerance. In an attempt
towards coming up with a generic anomaly detection method,
which is independent of shape complexity, supervised anom-
aly detection approach was proposed. Mainly, the learning is
based on a distribution change detection technique. We
established that the unique distribution profiles are applicable
in both large and small features as well as simple and complex
features, such as MathWorks® logo.

Using the approach, the trained classifiers were found
to be very sensitive in detecting anomaly related to pla-
narity, parallelism, and position of the feature shown in
Fig. 12a. Figure 13 summarizes the sensitivity of the
trained classifiers. For the three error types, 10 separate
data sets of 100 SMSs were used to extract variation in-
formation and train multiple classifiers. To represent ac-
ceptable normal variation, half of each data set was gen-
erated in such a way that they fall below a hypothetical
threshold.

The planarity value up to of 0.04 mm was considered as
normal variation of the SMSs. Change of 0.02mm in planarity
due to form errors can be detected at a prediction accuracy of
100% as shown in Fig. 13a. When the features were rotated so
that they have parallelism change shown in Fig. 13b, the clas-
sifiers were able to detect a change of 0.04 mm at a prediction
accuracy of 100%. Similarly, data sets of SMS samples were
displaced in z directions equivalent to make position errors
shown in Fig. 13c. A change of 0.01 mm could be detected
at a prediction accuracy of 100%.

The above results are based on synthetic training data spe-
cifically separated for parallelism, planarity, and position er-
rors. Figure 14 shows the differences between random and
systematic variations plotted with respect to the predictor vec-
tor. Few of the first, the last, and the middle Mahalanobis
distances contribute in planarity and parallelism error detec-
tion. Delta has more contribution in planarity error detection.
The mean and mode contribute more in position error detec-
tion. This is in line with an expected shift of mean and mode
due to change in position error.

However, when the training data is combined, the classi-
fiers become less sensitive. This is due to the insensitivity of
mean values to parallelism change and mode to planarity
change. Hence, application of the three separate anomaly de-
tection classifiers, specifically trained for those errors, in se-
quence is much likely to improve the sensitivity.

Moreover, the accuracy of the method is dependent on the
size of region of interest and an accurate setting of the thresh-
old value. When the focus is on a small region of a feature, the
training can be performed for that region, similar to extraction
regions of interest through small grid and adaptively growing
grids (e.g., [14, 18]). Further, there was variation on the vali-
dation and test result, particularly with kNN and SVM classi-
fiers. For instance, kNN prediction on a specific sample of
feature B with outliers was treated as normal by a trained
model and as anomalous by the subsequent trained model.
The SVM prediction accuracy fluctuates between 97 and
99%. This could be attributed to the randomness induced by
Gaussian random fields.

Table 2 Number of correct predictions on data sets of five samples

Class+ FT kNN SVM Ensemble

Feature B* 0 5 4 1 5

Feature C * 1 5 5 5 5

Feature B ** 1 5 3 4 5

Feature C ** 1 5 5 5 5

Feature B *** 1 (5,5) (5,5) (4,5) (5,5)

Feature C *** 1 (5,5) (5,5) (5,5) (5,5)

*Without outliers

**With outliers

***With induced variation without outliers (rotation of sample by 0.1°,
displacement by 0.1 mm)
+ 0—familiar variation, 1—unfamiliar variation

Fig. 13 Sensitivity of trained classifiers to change in planarity, parallelism, and position. a Planarity change. b Parallelism change. c Position change
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With a combined data of form, parallelism, and position
error data, the classifiers took around 10 s to train and validate.
Moreover, it took less than 1 s per feature to test on the real
data. Thus, the classifiers can be applied for online detection
without becoming a bottle neck to a production line that pro-
duce products similar to the one discussed in this work. This is
aside from time spent in extracting the geometric features.
Furthermore, it is the cautious belief of the authors that dum-
my histograms can be obtained by distribution-fitting of the
real data, so that the steps of generation of SMSs are skipped.

9 Conclusion

In transition to Industry 4.0, automated inspection system is
one of the core activities. In this work, we showed that unfa-
miliar orientation, position, and form errors can be detected by
applying the classical machine learning classifiers, aimed for
use in an automated inspection system. First, SMSs that rep-
resent normal variation were generated by summation of sur-
face that capture orientation and position errors of scanned
parts, and Gaussian random fields to approximate form errors.
A similarly generated set of SMSs was manipulated so that
they acquire different levels of planarity, parallelism, and po-
sition errors, representing anomalous deviations. From both
normal and anomalous deviations, a predictor vector that in-
cludesMahalanobis distances, mean, and mode and a range of
deviations were derived. Based on the predictor vectors, four
classifiers were trained and scored more than 97% accuracy in
detecting change of 0.02 mm planarity, 0.04 mm parallelism,
and 0.01 mm position. Specifically, the decision tree and en-
semble classifiers scored 100% on a synthetic validation data
and real industrial data. Since the proposed approach is inde-
pendent of shape complexity, it can enable an automated in-
spection to be performed on free form surfaces.

The weakness of the approach is that the system is expected
to learn threshold beyond which variation should not exceed.
This may require lot of training data. In future, we will inves-
tigate how this approach can be applied for detection of

surface defects on small regions of a feature and how the
prediction accuracy changes based on variable bin number
per histogram.
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