Skip to main content

Advertisement

Log in

Comparative analysis of component design problems for integrated hydraulic transformers

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Energy-saving research of hydraulic system has become a central issue recently. This paper has made a comprehensive review of the hydraulic transformer (HT) which is the key component in common pressure rail (CPR) hydraulic energy-saving system. First, the invention process and basic working principle of the HT are introduced. Then, HTs are divided into three categories to discuss the current development in accordance with the different structures for realizing the control angle regulation. In addition, the problems existing in the research of HTs are summarized and a new variable displacement HT is proposed for the first time. Finally, the future development of the HT is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shen W, Huang H, Pang Y, Su X (2017) Review of the energy saving hydraulic system based on common pressure rail[J]. IEEE Access 5:655–669

    Article  Google Scholar 

  2. Lee S. (2018) System configuration and control using hydraulic transformer[D]. Doctoral dissertation, Minnesota:University of Minnesota, 1–12

  3. Nikolaus H (1977) Anmibssstem mit hydrostatiseher krattubertrangung[P]. Deutsehes Patent P2739968(4)

  4. Zhang H, Liu X, Wang J, Karimi HR (2014) Robust H∞ sliding mode control with pole placement for a fluid power electrohydraulic actuator (EHA) system[J]. Int J Adv Manuf Technol 73(5):1095–1104

    Article  Google Scholar 

  5. Zhang R, Yu X, Hu Y, Zang HJ, Shu W (2018) Active control of hydraulic oil contamination to extend the service life of aviation hydraulic system[J]. Int J Adv Manuf Technol 96(5):1693–1704

    Article  Google Scholar 

  6. Lin T, Huang W, Ren H, Fu S, Liu Q (2016) New compound energy regeneration system and control strategy for hybrid hydraulic excavators[J]. Autom Constr 68:11–20

    Article  Google Scholar 

  7. Koivumäki J, Mattila J (2015) High performance nonlinear motion/force controller design for redundant hydraulic construction crane automation[J]. Autom Constr 51:59–77

    Article  Google Scholar 

  8. Kouns H (1971) Hydraulic transformer[P], United States Patent, 3627451

  9. Achten P (1997) Hydraulic system with a hydromotor fed by a hydraulic transformer. World Patent 98:54468

    Google Scholar 

  10. Achten P (1997) Pressure transformer[P]. World Patent 97:31185

    Google Scholar 

  11. Werndin R, Achten P, Sannelius M et al (1999) Efficiency performance and control aspects of a hydraulic transformer[C]. 6th Scand Int Conf Fluid Power:395–407

  12. Vael G, Achten P, Fu Z (2000) The innas hydraulic transformer the key to the hydrostatic common pressure rail[R]. SAE Technical Paper

  13. Achten P, Fu Z (2000) Valving land phenomena of the innas hydraulic transformer[J]. Int J Fluid Power 1(1):39–47

    Article  Google Scholar 

  14. Achten P, Vael G, van den Oever J et al (2001) Shuttle technology for noise reduction and efficiency improvement of hydrostatic machines[C]. 7th Scand Int Conf Fluid Power:269–275

  15. Malsen R, Achten P, Vael G (2002) Design of dynamic and efficient hydraulic systems around a simple hydraulic grid[R]. SAE Technical Paper

  16. Werndin R, Palmberg J (2001) Controller design for a hydraulic transformer[C]. 5th Int Conf Fluid Power Trans Control 1:56–61

    Google Scholar 

  17. Schäffer R (2001) Hydrotransformator [P], Deutsehes Patent 10025248A1.

  18. Schäffer R (2001) Hydrotransformator [P], European Patent 1172553A3

  19. Schäffer R (2002) Hydrotransformator [P], European Patent 1172553A2

  20. Schäffer R (2002) Hydrotransformator [P], Deutsehes Patent 10034238A1

  21. Schäffer R (2002) Hydrotransformator [P], Deutsehes Patent 10034239A1

  22. Jiang J, Yang G (2016) Development and research status of hydraulic transformer in hydraulic system[J]. J Changan Univ (Natural Science Edition) 36(6):118–126

    Google Scholar 

  23. Ouyang X (2005) Research on the hydraulic transformer[D] Doctor dissertation. Zhejiang University, Hangzhou

    Google Scholar 

  24. Yang H, Ouyang X, Xu B (2003) Development of hydraulic transformer[J]. Chin J Mech Eng 39(5):1–5

    Article  Google Scholar 

  25. Jiang J, Lu H, Zhou R et al (2006) Development of hydraulic transformer in constant pressure rail system[J]. J Southeast Univ 36(9):869–874

    Google Scholar 

  26. Lu H (2008) Theoretical analysis and experiment of electric control bent axial piston hydraulic transformer[D]. Doctoral dissertation. Harbin, Harbin Institute of Technology

    Google Scholar 

  27. Liu S, Chen Y (2011) Inner open type hydraulic transformer and pressure variable method[P]. Chinese patent 101614226

  28. Liu C, Jiang J (2011) Torque characteristics of plate-inclined plunger-type hydraulic transformer[J]. J South China Univ Technol 39(6):24–28

    Google Scholar 

  29. Liu C, Jiang J (2012) Flow characteristic of inclined plate and axial plunger type hydraulic transformer[J]. J Jilin Univ (Engineering and Technology Edition) 42(1):85–90

    Google Scholar 

  30. Liu C, Jiang J, Gao L et al (2013) Valve plate’s buffer slot in electro-hydraulic servo plate-inclined plunger hydraulic transformer[J]. J Harbin Inst Technol 45(7):53–56

    Google Scholar 

  31. Zhang Z, Wei C, Li Y, Liu Z (2017) Study on ratio characteristics of hydraulic transformer with combined valve plate[J]. Chin Hydraul Pneum 10(3):77–80

    Google Scholar 

  32. Liu C, Liu Y, Liu J et al (2016) Electro-hydraulic servo plate-inclined plunger hydraulic transformer[J]. IEEE Access 4:8608–8616

    Google Scholar 

  33. Hu J, Li X, Wei C (2010) A study on the transformation ratio characteristics of the hydraulic transformer [J]. Trans Beijing Int Technol 2:1–11

    Google Scholar 

  34. Li X, Yuan S, Hu J, et al. Mathematical model for efficiency of the hydraulic transformer[C]. Power and Energy Engineering Conference, 2009. APPEEC 2009. Asia-Pacific. IEEE, 2009: 1–5

  35. Jing C, Wei C, Li X (2009) Research on efficiency characteristic of angle type hydraulic transformer[J]. Trans Chin Soc Agric Mach 40(12):237–241

    Google Scholar 

  36. Chen Y, Liu S, Miao M et al (2010) Research on control performance of valve plant of hydraulic transformer [J]. Mach Tool Hydraul 21:4–11

    Google Scholar 

  37. Lv X, Jing C, Wu W, Yuan S (2012) Researches on steady characteristic of rotate-plate hydraulic transformer [J]. WORLD SCI-Tach R&D 2:1–4

    Google Scholar 

  38. Wu W, Jing C, Hu J et al (2013) Characteristics of dual-cylinder hydraulic transformer with rotatable wash plate[J]. J Mech Eng 49(22):144–149

    Article  Google Scholar 

  39. Liu Y, Yu J, Huang Y et al (2013) Development of the hydraulic transformer controlled by rotary cylinder[J]. Ship Sci Technol 2:22–29

    Google Scholar 

  40. Liu Y, Huang Y, Yu J (2012) A swash plate cylinder type hydraulic transformer controlled by swing cylinder[P]. Chinese patent 20122039570504

  41. Liu Y, Yu J, Huang Y et al (2013) Response characteristics analysis of the load-sensing hydraulic transformer[J]. Ship Sci Technol 8:10–19

    Google Scholar 

  42. Huang Y, Yu J, Liu Y (2012) A load sensitive hydraulic transformer[P]. Chinese patent 201210352559(1)

  43. Jing C, Zhou J, Yuan S et al (2018) Research on the pressure ratio characteristics of a swash plate-rotating hydraulic transformer[J]. Energies 11(6):1–10

    Article  Google Scholar 

  44. Achten P, van den Brink T, van den Oever J et al (2002) Dedicated design of the hydraulic transformer[J]. Proc IFK 3:233–248

    Google Scholar 

  45. Achten P, Van den Brink T, Paardenkooper T et al (2003) Design and testing of an axial piston pump based on the floating cup principle[C]. The Eighth Scandinavian international Conference on Fluid Power, Finland, Tampere, pp 80–95

    Google Scholar 

  46. Vael G. (2003) Cylinder control with the floating cup hydraulic transformer[J]. Proc. of SICFP'03 : 175–189

  47. Achten P, Schellekens M, Murrenhoff H, et al. (2004) Efficiency and low speed behavior of the floating cup pump[R]. SAE Technical Paper

  48. Achten P (2004) Power density of the floating cup axial piston principle[C]. ASME 2004 International Mechanical Engineering Congress and Exposition. Am Soc Mech Eng:11–22

  49. Achten P, van den Brink T, Potma J, et al. (2009) A four-quadrant hydraulic transformer for hybrid vehicles[C]. 11th Scandinavian International Conference on Fluid Power, Linköping, Sweden

  50. Achten P, Van den Brink T (2012) A hydraulic transformer with a swash block control around three axis of rotation[C]. 8th International Fluid Power Conference. : 26–28

  51. Vael G, Achten P (1998) The Innas fork lift truck: working under constant pressure[C]. 1st International Fluid Power Conference

  52. Shi H, Gong G, Yang H (2009) Design of energy-saving system for shield thrust with hydraulic transformer[J]. Design and Calculation 40(5):36–41

    Google Scholar 

  53. Dong D, Deng H, Ma W (2010) Power allocation analysis of hydraulic system with single pump and multiple motors of multifunctional snow-plough[J]. Trans Chin Soc Agric Eng 26(7):140–146

  54. Chen Y, Liu S, Shang T et al (2011) Research on control strategy for energy-saving optimization algorithm of the hydraulic hybrid vehicle[C]. Adv Mater Res Trans Tech Publ 201:2229–2237

    Google Scholar 

  55. Liu C (2013) Electro-hydraulic swash-plate piston hydraulic transformer[D]. Doctor dissertation. Harbin industrial university, Harbin

    Google Scholar 

  56. Wu W, Hu J, Yuan S et al (2016) A hydraulic hybrid propulsion method for automobiles with self-adaptive system[J]. Energy 114:683–692

    Article  Google Scholar 

  57. Liu T, Gong G, Peng Z et al (2016) Hybrid cutterhead driving system for TBM based on hydraulic transformer [J]. J Zhejiang Univ (Engineering Science) 50(3):419–427

    Google Scholar 

  58. Shen W, Jiang J, Su X et al (2014) A new type of hydraulic cylinder system controlled by the new-type hydraulic transformer[J]. Proc Inst Mech Eng C J Mech Eng Sci 228(12):2233–2245

    Article  Google Scholar 

  59. Shen W, Jiang J (2013) Dynamic analysis of boom system based on hydraulic transformer [J]. Trans Chin Soc Agric Mach 44(04):27–32

  60. Shen W, Jiang J, Su X, Reza Karimi H (2015) Control strategy analysis of the hydraulic hybrid excavator[J]. J Franklin Inst 352(2):541–561

    Article  MATH  Google Scholar 

  61. Shen W, Jiang J, Su X et al (2013) Energy-Saving Analysis of Hydraulic Hybrid Excavator Based on Common Pressure Rail. In: Energy-saving analysis of hydraulic hybrid excavator based on common pressure rail[J]. The Scientific World Journal

    Chapter  Google Scholar 

  62. Vael G, Eggenkamp S, Achten P (2011) The E-hydrid[C]. 12th Scandinavian International Conference on Fluid Power, Tampere. 19–33

  63. Wu B, Qiu L, Wang Z (2005) Four wheels driven independently by one pump driving four hydraulic motors[J]. Chin J Mech Eng 18(2):232–236

    Article  Google Scholar 

  64. Achten P, Van D, Schellekens M (2005) Design of variable-displacement floating cup pump[C]. 9th Scand Int Conf Fluid Power 5:1–3

  65. Achten P, Vael G, Sokar M et al (2008) Design and fuel economy of a series hydraulic hybrid vehicle[C]. Proc 7th JFPS Int Symp Fluid Power 2008(7):47–52

  66. Achten P, Van D, Potma J, et al. (2009) A four-quadrant hydraulic transformer for hybrid vehicles[C]. 11th Scandinavian International Conference on Fluid Power, Linköping, Sweden

  67. Achten P, Vael G, Heybroek K (2011) Efficient hydraulic pumps, motors and transformers for hydraulic hybrid systems in mobile machinery[C]. Wissensforum VDI

  68. Sgro S, Inderelst M, Murrenhoff H (2010) Energy efficiency of mobile working machines[C]. Proceedings of the 7th International Fluid Power Conference

  69. Achten P (2016) Vehicle with a hydraulic drive system[P]. US Patent 9:321,339

    Google Scholar 

  70. Wu W, Di C, Hu J (2016) Dynamics of a hydraulic-transformer-controlled hydraulic motor system for automobiles[J]. Proc Inst Mech Eng Part D J Automob Eng 230(2):229–239

  71. Ning C, Chao Z, Li H et al (2018) Control performance and energy-saving potential analysis of a hydraulic hybrid luffing system for a bergepanzer [J]. IEEE Access 6:34555–34566

    Article  Google Scholar 

  72. Niu X, Ji P, Yang Y et al (2012) Pressure and flow pulsation characteristics of dual discharging axial piston pump[J]. J Vib Meas Diagn 32(1):151–156

  73. Xu B, Sun Y, Zhang J, Sun T, Mao ZB (2015) A new design method for the transition region of the valve plate for an axial piston pump[J]. J Zhejiang Univ-Sci A 16(3):229–240

    Article  Google Scholar 

  74. Ye S, Zhang J, Xu B (2018) Noise reduction of an axial piston pump by valve plate optimization[J]. Chin J Mech Eng 31(1):57–65

    Article  Google Scholar 

  75. Ivantysynova M, Baker J (2009) Power loss in the lubricating gap between cylinder block and valve plate of swash plate type axial piston machines[J]. Int J Fluid Power 10(2):29–43

    Article  Google Scholar 

  76. Zecchi M, Mehdizadeh A, Ivantysynova M (2013) A novel approach to predict the steady state temperature in ports and case of swash plate type axial piston machines[C]. 13th Scandinavian International Conference on Fluid Power; June 3-5; 2013; Linköping; Sweden. Linköping University Electronic Press, (92): 177–187

  77. Schenk A, Ivantysynova M (2015) A transient thermoelastohydrodynamic lubrication model for the slipper/swashplate in axial piston machines[J]. J Tribol 137(3):1–10

    Article  Google Scholar 

  78. Zhang J, Chen Y, Xu B et al (2018) Effect of surface texture on wear reduction of the tilting cylinder and the valve plate for a high-speed electro-hydrostatic actuator pump[J]. Wear 414:68–78

    Article  Google Scholar 

  79. Shen W, Su X (2016) Controller design for network-based Markovian jump systems with unreliable communication links[J]. Complexity 21(S2):623–634

    Article  MathSciNet  Google Scholar 

  80. Shen W, Pang Y, Jiang J (2018) Robust controller design of the integrated direct drive volume control architecture for steering systems[J]. ISA Trans 78:116–129

    Article  Google Scholar 

  81. Karimi HR, Maralani PJ, Lohmann B, Moshiri B (2005) H∞ control of parameter-dependent state-delayed systems using polynomial parameter-dependent quadratic functions. Int J Control 78(4):254–263

    Article  MathSciNet  MATH  Google Scholar 

  82. Rubió-Massegú J, Rossell JM, Karimi HR, Palacios-Quinonero F (2013) Static output-feedback control under information structure constraints. Automatica 49(1):313–316

    Article  MathSciNet  MATH  Google Scholar 

  83. Zhang J, Chao Q, Xu B, Pan M, Chen Y, Wang Q, Li Y (2017) Effect of piston-slipper assembly mass difference on the cylinder block tilt in a high-speed electro-hydrostatic actuator pump of aircraft[J]. Int J Precis Eng Manuf 18(7):995–1003

    Article  Google Scholar 

  84. Ho T, Ahn K (2012) Design and control of a closed-loop hydraulic energy-regenerative system[J]. Autom Constr 22:444–458

    Article  Google Scholar 

  85. Hippalgaonkar R, Ivantysynova M (2016) Optimal power management of hydraulic hybrid mobile machines—part I: theoretical studies, modeling and simulation [J]. J Dyn Syst Meas Control 138(5):051002

    Article  Google Scholar 

  86. Shen W, Huang H, Wang J (2018) Robust backstepping sliding mode controller investigation for a port plate position servo system based on an extended states observer[J]. Asian J Control. https://doi.org/10.1002/asjc.1885 (in press)

  87. Zhang H, Huang X, Wang J, Karimi HR (2015) Robust energy-to-peak sideslip angle estimation with applications to ground vehicles, Mechatronics 30, 338–347

  88. Wang R, Jing H, Karimi HR, Chen N (2015) Robust fault-tolerant H∞ control of active suspension systems with finite-frequency constraint, Mechanical Systems and Signal Processing 62, 341–355

Download references

Funding

The National Natural Science Foundation of China (51505289) and Open Foundation of the State Key Laboratory of Fluid Power and Mechatronic Systems (GZKF-201708) contributed to this work and partly by the Program of Introducing Talents of Discipline to Universities under Grant B17017.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamid Reza Karimi.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, W., Karimi, H.R. & Zhao, R. Comparative analysis of component design problems for integrated hydraulic transformers. Int J Adv Manuf Technol 103, 389–407 (2019). https://doi.org/10.1007/s00170-019-03543-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-019-03543-2

Keywords

Navigation