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Abstract
The manufacturing of parts from nickel-based superalloy, such as Inconel-800 alloy, represents a challenging task for industrial sites.
Their performances can be enhanced by using a smart cutting fluid approach considered a sustainable alternative. Further, to innovate
the cooling strategy, the researchers proposed an improved strategy based on the minimum quantity lubrication (MQL). It has an
advantage over flood cooling because it allows better control of its parameters (i.e., compressed air, cutting fluid). In this study, the
machinability of superalloy Inconel-800 has been investigated by performing different turning tests underMQL conditions, where no
previous data are available. To reduce the numerous numbers of tests, a target objective was applied. This was used in combination
with the response surface methodology (RSM) while assuming the cutting force input (Fc), potential of tool wear (VBmax), surface
roughness (Ra), and the length of tool–chip contact (L) as responses. Thereafter, the analysis of variance (ANOVA) strategy was
embedded to detect the significance of the proposed model and to understand the influence of each process parameter. To optimize
other input parameters (i.e., cutting speed of machining, feed rate, and the side cutting edge angle (cutting tool angle)), two advanced
optimization algorithmswere introduced (i.e., particle swarm optimization (PSO) alongwith the teaching learning-based optimization
(TLBO) approach). Both algorithms proved to be highly effective for predicting the machining responses, with the PSO being
concluded as the best amongst the two. Also, a comparison amongst the cooling methods was made, and MQL was found to be a
better cooling technique when compared to the dry and the flood cooling.
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1 Introduction

Nowadays, a great opportunity has arisen to produce robust
parts for aerospace and the turbine sector with advanced perfor-
mances (high mechanical strength at elevated temperatures and
high resistance against corrosion) made of nickel-based superal-
loys (e.g., Inconel-800) [1] and titanium-based superalloys (e.g.,
Ti-6Al-4V) [2]. However, during machining processes, they
raise challenges because of high toughness, low heat transfer
coefficient, and very poor work hardening [3]. These later fea-
tures obstruct the efficiency and generate moderate surface qual-
ity; in addition, they bring down the manufacturing time and
increase cost. They even require careful environmental consid-
eration, for example, on human health and safety. To increase
the proficiency, a fundamental understanding is required that
permits extending the cutting speed, keeping for longer tool life
integrity, and controlling the scrap [4].

The nickel-based superalloy’s machining ability depends on
numerous input factors; amongst them, suitable lubrication (e.g.,
coolants) is the critical one [5]. It can have a major contribution
to the total costs of production [6]. Furthermore, in this process,
a suitable lubrication permits controlling the surface integrity
characteristics and extends the tool life; however, its constituents
are harmful to the environment [7]. Scientists started to over-
come the cutting fluid concerns. They propose a sustainable
solution while reducing and/or eliminating the use of cutting
fluids by applying innovative methods (i.e., dry and minimum
quantity lubrication (MQL) strategy) [8].

Dry machining that is an alternative to the classical process
has partial benefits with a lot of drawbacks in terms of surface
finishing and tool wear [9, 10]. The sticking progress that occurs
is often generated by a combination between low modulus of
elasticity and weak heat transfer coefficient along with the
chemical bonds’ affinity that create a barrier on dry manufactur-
ing of Inconel alloy [11]. Similarly, in the MQL condition, the
lubrication is performed under an optimized manner within a
controlled mixture of compressed air and limited cutting fluids
[12, 13]. Kamata and Obikawa [14] confirmed greater surface
quality when turning experiments were conducted on the
Inconel-718 alloy using MQL conditions. They noted a big
improvement on machining cost when comparing to dry or
wet machining. This strategy (MQL) was a valuable solution
for machining by turning Inconel-725 alloys. It demonstrates
efficiency in the reduction of cutting forces, improvement of
surface roughness, and ensuring higher integrity for the tools
as shown by Tazehkandi et al. [11]. The research performed
by Pusavec et al. [15, 16] using the Inconel-718 alloys revealed
that application ofMQL can reduce the cutting forces, tool wear,
and chip breakability along with the increased productivity.

Tazehkandi et al. [17] developed spray techniques to further
increase the machining performances when manufacturing the
Inconel-706. Overall, a carefully application ofMQLwhen used
the turning routine proved its beneficial results as decreasing
tool wear activity, controlling the cutting forces, obtaining a
constant cutting temperature, and higher surface quality. The
turning performance of Inconel-800 superalloys dependsmainly
on controlling its process parameters. Therefore, the ideal pro-
cedure is obtained by embedding a suitable optimization strate-
gy for selecting the best parameters [18].

Some traditional optimization techniques (geometric pro-
gramming, nonlinear programming, sequential programming,
goal programming, dynamic programming, etc.) were intro-
duced to obtain the best features of process parameters [19].
However, the proposed strategies generate only a local opti-
mal combination with limited accuracy and robustness risk.
Moreover, the actual algorithms are very limited operationally
for complex and nonlinear problems where it is required to
easily manage the input parameters and to obtain qualitative
output responses [20, 21].

Novel advanced strategies offer consistent solution to elim-
inate these incompatibilities. Thus, some powerful meta-
heuristic algorithms, namely, particle swarm optimization
(PSO), genetic algorithm (GA), artificial bee colony (ABC),
teaching learning-based optimization (TLBO), etc., were inte-
grated in order to optimize machining parameters [22–25].
Although the meta-heuristic algorithms perform better than
traditional optimization algorithms, they are subjected to sev-
eral disadvantages. The major disadvantage of these algo-
rithms originated from insufficiency of achieving the global
optimum solution because they do not have the ability to ob-
tain the optimum parameters for the algorithm’s simulation.
The most prominent approach (i.e., GA) is an evolutionary
optimization technique. This technique can generate a near
optimal process within a complex manner problem formed
from numerous numbers of variables and constraints. Its lim-
itation is determined by the obstruction to achieve an optimum
manageable parameter once determined the crossover andmu-
tation rates. In the same manner, ABC can encounter some
challenges identifying the optimum balance between the num-
ber of bees (i.e., engaged in the process, the scout and/or
onlookers) and its limit. Architectural modifications and hy-
bridization can increase further the complexity [24]. A smart
optimization technique using less parameters in the algorithms
may enable achieving suitable control of manufacturing pro-
cess parameters.

The meta-heuristic algorithms (i.e., particle swarm optimi-
zation (PSO) and/or teacher learning-based optimization
(TLBO)) can provide greater functionality for machining
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process control. It permits rapid convergences toward the
global optimum solution and exploits with accuracy.
Considering the online optimization of dynamic neural net-
works (NNs) structured under PSO, Scheffer et al. [26] detect-
ed the amount of tool wear for some conventional materials
(i.e., 100Cr6 and 54CrV4 steel) generated by hard turning.
Besides, their algorithms produce details regarding the moni-
toring system against possible disturbances. Further, the PSO
were applied by El-Mounayri et al. [27] to improve the end
milling process (i.e., optimize and predict the surface rough-
ness). The GA and NNs were engaged by Ocktem and
Erzurumlu [28] to control surface roughness in general milling
operation. The TLBO algorithm was applied by Abhishek K
et al. [29] to obtain a parametric optimization when machining
CFRP composites. A multi-objective TLBO algorithm was
developed by Li et al. [30] to enhance the assembly line con-
taining multiple constraints. A more complex algorithm based
on TLBO that incorporated the feedback phase response,
structural mutation crossover, and a chaotic perturbation
mechanism was embedded in a complex numerical model
by Yu et al. [31]. Later on, Chen et al. [32] using an improved
algorithm of TLBO and modeling under artificial neural net-
works obtained a global optimization solution.

Therefore, the PSO and TLBO strategies prove a great
success when it is required to tackle complex engineering
application derived from experiments with multi-response
control. However, only few researches were detected to use
PSO and TLBO techniques to enhance the machining process.
There is hardly any evidence of optimization of turning pa-
rameters for machining of Inconel-800 alloys by combining
both meta-heuristic algorithms and MQL condition. For that
reason, this assessment proposes a strong investigation of the
benefits of using this later combination (optimization through
meta-heuristic algorithms using MQL condition) for machin-
ing Inconel-800. The outcomes of this work prove the poten-
tial of creating a greener and cleaner machining production.
Furthermore, a comparison amongst the cooling methods was
made to evaluate which method performs best amongst dry,
flood, and MQL.

2 Experimental setup and process strategy

2.1 Workpiece materials and cutting inserts

In this work, the machining process of the nickel-based alloy
has been analyzed. The specimens used in the experiments
had a total length of 150 mm and a diameter of 50 mm from
a commercial Inconel-800 (hardness, ~ 35 HRC). A spectro-
scopic analysis was performed to obtain details of material
chemical composition. The chemical composition results were
inserted in Table 1. The cubic boron nitride inserts with the
following characteristics: CCGW09T304-2, having a positive

angle of 7°, with the clearance 80°, rhombic form and a nose
radius of 0.4 mm, were engaged in the experiments. During
the experiments, the inserts were rigidly mounted in the tool
holders that are included in a lathe tool dynamometer.

2.2 Turning experiments using the MQL strategy

The turning experiments on the Inconel-800 alloys were per-
formed under a CNC turning lathe machine (“BATLIBOI
Sprint 20TCmodel”). The machine allows varying the spindle
speeds between 30 and 4000 RPMwhereas it is possible to set
the maximum spindle power up to 11 kW. The NOGA make
MQL set up was integrated in the actual protocol. To obtain a
suitable condition in the machining routine, the water-soluble
cutting oil in a ratio 20:1 was introduced. Some parameters
were kept constant over entire experiments as follows: the
flow rate of 300 ml/h, an air flow rate of 60 l/min, and an
imposed pressure of 5 bars. To distribute the cutting fluid, at
the interface of the tool–chip, via a hybridized pattern through
the nozzles set was used a reciprocating compressor that con-
tains an air-flow rotameter.

2.3 Measurements

To produce accurate results, the main characteristics (e.g.,
flank wear morphology (VBmax) and profile of surface rough-
ness (Ra)) generated during this machining routine were eval-
uated every 30 s. Besides, this parameter has extensive appli-
cation in industrial field due to its broad tolerability, i.e., more
than 50% usage [33]. Considering the maximum tool life,
specified on the ISO 3685 standard, the process was
interrupted whenVBmax ≥ 0.60mmwas reached and the insert
was replaced with a new one. The ISO 4287 normwas used as
proof guide to evaluate the surface roughness. The optical
measurements were made using a Mitutoyo microscope and
Mitutoyo SJ 301 surface roughness tester. The cutting force
(Fc) was recorded via a TeLC DKM2010 dynamometer con-
nected to the XKM software. The workpiece after machining
was investigated in three different points along tool direction
movements, hence generating consistent results. The overall
contact length, shown in Fig. 1, between tool–chip interface
was determined by applying the classical Eq. (1) [34]:

L ¼ t* 2:05*ξ–0:55
� � ð1Þ

where ξ = coefficient of chip thickness, t = thickness of unde-
formed chip = f*sinφ, ξ ¼ 1

ζ ¼ t
tc
, f = feed rate in millimeters

per revolution and φ = cutting tool angle in degrees, and tc =
end chip thickness in millimeters.

Five different points of measurement were considered for
each studied sample to produce statistical relevance. The chip
thickness was determined by the average values. Some metal-
lographic specimens were generated from the machined
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surface. The details of the morphological surface were inves-
tigated by a scanning electron microscope (SEM, Jeol). The
patterns of the worn cutting tool and surface of the chips were
considered for microscopy investigation. Figure 2 presents an
overview of the entire architecture of the methodology.

2.4 Machining parameters

The machining tests were performed simulating three cutting
speeds (i.e., 200, 250, and 300 m/min) and generating suitable
responses to detect critical machining conditions. The 300 m/
min limit was imposed because of an initial tool damage noted
when the cutting speed is over this condition (> 300 m/min).
Despite this, a lower limit was imposed as regards industrial
benefits. According to the state of the art and manufacturing
industry, the feed rate was imposed as follows: 0.10, 0.15, and
0.20 mm/rev. A fixed cut depth of 1 mm was considered
throughout the entire trial protocol.

2.5 Design of the experiment

The response surface methodology (RSM) strategy that in-
cludes a Box–Behnkens algorithm was applied. Table 2 pro-
vides details of the number of turning trials (17) using a CBN
cutting tool that allows evaluating the machining parameters
and their responses. The methodology was organized as fol-
lows: in the first instance, it was to generate a perturbation
graph through RSM obtaining the distribution of each

parameter on the same specific response. Then, a predictive
statistical model was built using ANOVA. Combined objec-
tives from multiple regression analysis were developed, and
the results were optimized using PSO, TLBO, and the desir-
ability technique. In the end, the established models were
compared and validated against experimental results.

3 Results and discussions

The PSO and TLBO algorithms were generated on the
MATLAB code. Design-Expert software was used to generate
the desirability function model. Table 2 presents data from the
experimental protocol and simulated process. In the following
subsection is presented an outline of obtained results for each
section.

Cutting forces The cutting forces produce major instability on
the machine tool equipment that is later transmitted to the
workpieces as errors and tolerance violations. The overall var-
iation depends on specific parameters as workpiece material
properties, geometry and material of the tool, cutting fluid
performances, method of application, and cutting fluid condi-
tions. Applying MQL conditions permits reducing the influ-
ence of the cutting force by variation of the feed rate and
cutting speed (Fig. 3a). A higher cutting speed generates a
potential increase in the cutting temperature which allows a
decrease in the cutting forces. Further, once the feed rate is
increased, the chip load or the chip area increases that results
in high cutting forces. Otherwise, a large approach angle per-
mits as well as decreases the cutting forces. The Inconel-800
superalloy has a low heat transfer coefficient, which during
turning progress allows a significant amount of heat to be
dispersed on the cutting area causing poor machinability.
The dispersed heat is accumulated in the workpiece surface.
As such, that generates material softening with some elastic
deformation in the subsurface. This later activity (softening
and elastic deformation) induces uncontrollable cutting forces.

Surface roughness The guidelines of ISO 4287 standard were
used to evaluate the surface roughness values (Ra)—taken as
averages. It was determined arithmetically from the absolute
variance profile as a mean from all “surface valleys” and
“peaks” expressed in micrometers. The Ra values can vary
during turning operation when the cutting speed and feed rate
rise (Fig. 3b). Because a higher feed rate is offset on the ma-
chined surface by producing wider and higher peaks and val-
leys, the surface roughness is increased. Likewise, a fasterFig. 1 Schematic diagram of chip–tool contact length

Table 1 Chemical composition
of Inconel-800 Ni Cr Fe C Al Ti Al + Ti

30.0–35.0 19.0–23.0 39.5 min 0.10 max 0.15–0.60 0.15–0.60 0.30–1.20
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cutting speed may produce some vibrations in the system,
provide the harder and tougher nature of Inconel material,

and generate a huge amount of local heat. An improvement
in the Ra profile/values is possible by increasing the cutting

Fig. 2 Schematic diagram of
experimental setup

Table 2 Machining parameters
with the experimental design and
their results

Sr.
no.

Machining parameters Responses C.O.

vc (m/min) f (mm/rev) φ deg. (°) Fc (N) Ra (μm) VBmax (mm) L (mm)

1 200 0.2 75 266 1.14 0.44 0.6188 1.5468

2 250 0.1 60 192 0.89 0.30 0.5292 1.1594

3 250 0.1 90 171 0.94 0.25 0.5817 1.1136

4 250 0.15 75 221 1.10 0.41 0.5591 1.3976

5 250 0.2 90 244 1.21 0.48 0.6058 1.5634

6 250 0.15 75 222 1.09 0.42 0.5548 1.4042

7 250 0.2 60 251 1.26 0.51 0.5547 1.5957

8 300 0.15 90 210 1.19 0.46 0.5456 1.4490

9 250 0.15 75 223 1.11 0.41 0.5591 1.4041

10 200 0.1 75 148 0.86 0.27 0.5594 1.0587

11 250 0.15 75 220 1.10 0.42 0.5548 1.4037

12 200 0.15 90 230 0.96 0.33 0.6180 1.3198

13 300 0.15 60 247 1.32 0.52 0.5109 1.5955

14 200 0.15 60 238 1.00 0.32 0.5858 1.3199

15 250 0.15 75 222 1.08 0.42 0.5548 1.4012

16 300 0.2 75 240 1.38 0.56 0.5601 1.6654

17 300 0.1 75 144 0.83 0.39 0.5128 11,412
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tool angle. Once this maneuver is embedded, it will be possi-
ble to obtain a uniform distribution of the cutting forces and
the heat will be spread uniformly on a large portion of the
contact area that will produce more evenly Ra.

Tool wear (VBmax) It is well known that the machining process
activates heat generation because of hard contact between
tool–chip interfaces. This has a major impact on tool life and
chip geometry and leads to potentially unpredictable cutting
forces. There, the tool damage is stimulated by the adhesion,
abrasion, or diffusion mechanisms. However, the influence of
the cutting speed and feed rate on tool wear (VBmax) is obvi-
ous (Fig. 3c) and it plays a bigger role in comparison to the

cutting tool angle. In fact, the cutting speed and feed rate allow
increases in the chip size contact and produces higher friction
between its interfaces (of tool–chip), thus simulating more
VBmax. The high speed–feed combination could act more det-
rimental if there is any coating that fails or adhesive bonding
progress because it forges the amount of flank wear.

Tool–chip contact length (L) The contact path that forms at
the interface of the chip tool permits determining the over-
all area of contact and becomes essential to understand the
region of the heat transfer zone. From experience, the di-
mension of the tool chip contact varies as a function of
cutt ing speed, feed rate, and cutt ing tool angle.

a b

c d
*Actual Factors, A: Speed = 250.00, B: Feed = 0.15, C: Cutting tool angle = 75.00

Fig. 3 Effect of process parameters on a cutting forces, b surface roughness, c tool wear, d tool–chip contact length
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Information about chip details produced during MQL con-
ditions is presented in Fig. 3d. When machining Inconel-
800 superalloy, it was observed that an increase in the
cutting speed generated a reduction of the contact length
between the tool and chip. An increase in the cutting speed
produces more plastic deformation that becomes even
more pronounced because of accumulation of heat on the
cutting zone; therefore, shorter tool–chip will occur.
Instead, the cutting tool angle and feed rate lead into a
longer contact path between the tool and chip. The larger
cutting tool angle with the feed rate kept increasing may
create a local sliding mode between the tool and chip in-
terface that produces quasi longitudinal grooves at the ex-
tremities of the contact area following the chip flow trajec-
tory. Thus, an irregular sliding flow occurs toward a con-
tinuous chip that has influence over the tool rake face that
generates a long continuous tool–chip contact. The higher
feed rates accumulated with more intense cutting speed
produce a large portion of chips to plow that further in-
creases the tool–chip contact length.

4 Analysis and optimization

4.1 Model robustness

Table 3 presents data obtained using ANOVA determination
in order to prove the validity, in terms of statistical rele-
vance, of employed models. The numerical R-squared values
are almost equal to 1 while Adj-R2 prediction and Pred-R2

seem to fit very well. An adequate precision value over 4
demonstrates its consistency. According to F-values, the re-
ported results generated by the regression procedures are
statistically valid. Later on, a diagnostic protocol was con-
ducted to check the robustness of our created models. The
cutting force (Inconel-800 superalloy) trend was generated
through the normal plot distribution (Fig. 4a). Most of the
residuals permit building a straight line with minor deviation
on the extremities which are found in agreement with exper-
imental determination. Further verification of model robust-
ness was built using residuals versus predicted values (Fig.
4b). The trend was found similar to the normal plot distri-
bution confirming the ANOVA process stability. Other re-
sponse variables investigated in this survey were simulated
under ANOVA, and they indicated the same trend which
proves the strategy robustness.

Table 3 ANOVA results for cutting force, surface roughness, tool wear,
and tool–chip contact length

Factors Responses

Fc (N) VBmax (mm) Ra (μm) L (mm)

R-squared 0.8201 0.9488 0.8622 0.9258

Adj. R-squared 0.7786 0.9369 0.8304 0.9086

Pred. R-squared 0.6289 0.8972 0.7140 0.8575

Adeq. precision 13.208 31.326 17.624 22.928

Model F-value 19.75 80.25 27.11 54.03

Fig. 4 For cutting forces; a normal plot of residuals, b plot of residuals vs. predicted

Table 4 Comparison of combined objective values for both materials
by PSO, TLBO, and desirability function approach

Method Best Worst Average Avg. time taken % success

PSO 1.04998 1.06532 1.04909 8.09 90

TLBO 1.10014 1.10865 1.10158 2.12 80

Desirability function 1.20624
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4.2 Optimization

The PSO, TLBO, and desirability analysis were then applied
in order to further optimize the input parameters. In the initial
stage, a combined target objective was built based on Eq. (2).

Min C:O: ¼ W1
* CF=CFminð Þ þW2

* SR=SRminð Þ
þW3

* TW=TWminð Þ þW4
* L=Lminð Þ ð2Þ

Here, W1, W2, W3, and W4 permit releasing a weight from
major responses (i.e., cutting forces (CF), surface roughness
(SR), tool wear (TW), and tool–chip contact length (L)). The
sum of their weights is equal to 1 [35]. It is possible to generate
as much as possible random combinations to determine the

weightages applied in Eq. 2. Each weight response can vary
between 0.1 and 0.5, generating a final sum equal to 1.0. In this
survey, a weightage equal to 0.25 was allocated for every indi-
vidual target response. A combined objective (C.O.) strategy al-
lows obtaining results that are unique in relation to the individual
esteem. It denotes an essential principle of favorable position to
use the C.O. strategy.

4.3 Desirability technique

Theminimal objective values were generated using a desirability
technique [36, 37]. It allows identifying an optimum parametric
combination from a single or multiple responses generated in the
experiment. This technique permits generating a simple solution
without any clashing of responses. Besides, it allows varying the
input parameters in a large range of variability. The overall ad-
vantage when this is used as a combined objective tool is that it
allows obtaining the best results. Typically, results generated
through the desirability approach are inserted in Table 4.

4.4 PSO and TLBO

The regression simulation was conducted in order to detect the
fitness function of the optimizedmodels, a function derived from
the combined objective. Then, the entire strategy that includes
the fitness function incorporated in both meta-heuristics algo-
rithms as was produced using a modern MATLAB code. The
boundary conditions were set up from the response minimiza-
tion. Therefore, the optimum parameters were determined using
a general C.O. for both models as shown by Eq. 3.

C:O: ¼ 0:43487þ 1:51155E−003*vc

þ 4:74907* f −1:87380E−003*φ ð3Þ

Fig. 5 Flow chart of PSO

Table 5 Parameters of PSO

Parameters Specification

General parameters

Number of variables 3 (dimension of search space)

Number of particles 46

Number of iterations 100

Inertia weight, W 0.7

Learning Rate

C1max = C2max 1.7

C1min = C2min 0.5

C1 = C2 = Cmin + R*(Cmax −Cmin) Where R = Current
iterations/Total iterations

Xmin [200 0.1 60]

Xmax [300 0.2 90]
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PSO The speed of cutting (vc), value of feed rate ( f ), and
opening of the cutting tool angle (φ) are considered as the
particles on the PSO simulation. The PSO algorithm is struc-
tured as

First step: parameter bounds: The particle values (i.e., vc,
f,φ) need to be generated randomly from the value ranges
(i.e., from minimum to maximum) which are expressed
by following Eqs. (4) to (6).

200≤vc≤300 ð4Þ

0:10≤ f ≤0:20 ð5Þ

60≤φ≤90 ð6Þ

Second step: The speed of particles was selected random-
ly from the value ranges (i.e., starting with minimum to
maximum) of the particle values (i.e., vc, f, φ).
Third step: An objective function value for each “parti-
cle” investigated was determined, then the pbest and
gbest were allocated.
Fourth step: A new objective function value was deter-
mined for the updated particle positions. Consequently, a
novel and better pbest and gbest were identified.
Fifth step: The iterations are repeated until the best con-
vergence is obtained.

Figure 5 summarizes the PSO within a flow process chart.
Details of the projected algorithm are inserted in Table 5.

TLBO Equation 3 described for C.O. was used in TLBO algo-
rithm for parametric optimization. The boundary conditions for
the parameters are collected from the Eqs. (4) to (6). The opti-
mum values that permit controlling the main common parame-
ters (i.e., population size and iteration numbers) were simulated
for various number of time and using different population sizes
until the convergence was determined. The identified solution
was based on the teaching/learning approach. The potential
multiple solutions were removed and updated randomly. The
entire numbers of function evaluated as described as {(2 * size
of population * iterations number) + (function target to activate
the removal of duplication)}. This pseudo-formula permits
counting the entire number of evaluations during TLBO execu-
tion. However, it is difficult to detect with accuracy when du-
plication occurs. For robustness, the experiments were run
using different population sizes and 1000 function evaluation
to obtain the best convergence. Figure 6 shows the flow chart
for TLBO. Figure 7 presents details of the convergence charac-
teristics chart of the TLBO and PSO models.

A summary of optimal results generated from investigated
techniques, together with themost important values of C.O. (i.e.,
the best, worst, and its average values), is present in Table 4. The
high percentage of accuracy combined with an optimal time of
simulationwas detected after 100 runs. The PSO demonstrated a
better rate of success (90%) compared to TLBO that achieved
only 80%. It is due to a search space that is guided by the pbest
and gbest values. However, the PSO requires 8.09 s to achieve
the global optimal value while the TLBO needs only 2.12 s,
respectively. The freedom of algorithm-specific parameters
(i.e., no need of a defined algorithm parameter for execution)
implies less time, thus permitting faster convergence in respect
to PSO (details on Fig. 7). An experimental validation was

Fig. 6 Flow chart of TLBO
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produced for the results obtained in the optimization process. It
is worth noticing that the values generated through optimization
models (i.e., PSO or TLBO) prove higher accuracy in compar-
ison to the one obtained from desirability function approach
(Table 6). Therefore, the efficiency of using optimization was
demonstrated through the meta-heuristic algorithms (i.e., PSO
and TLBO) in order to improve the machining characteristics of
some specific Inconel-800 superalloy produced with the MQL
conditions.

5 Evaluation of machinability during dry, wet,
and MQL strategy

The four main responses (i.e., cutting forces values, amount of
tool wear, profile of surface roughness, and the contact length
of tool–chip) were identified to indicate the overall machin-
ability while machining Inconel-800 superalloy using MQL,
dry, and wet strategy, respectively. First, the performance of
the cutting force is compared and shown in Fig. 8. The x-axis
of this figure is showing the values of the cutting parameters
as in order. For instance, the 200/0.2/75 stands for speed
(m/min)/feed (mm/rev)/cutting tool angle (°), respectively. In
other words, the cutting speed is 200 m/min, the feed rate is
0.2 mm/rev, and the approach angle of the cutting tool is 75°.
The performance found for machining on dry and/or wet ma-
chining conditions projects slightly higher cutting force values

in respect to MQL technology (Fig. 8). This is because the
lubrication condition created within the MQL becomes better
on the cutting zone whereas the tool generates a “perfect”
contact with the workpiece. They reduce the sticking mecha-
nism and induce a meaningful shear process. Besides, there
the friction is reduced because by using the MQL system the
coolant is properly distributed, in the cutting area, achieving a
boundary lubrication condition. Patterns of tool wear and the
cutting inserts after processing the Inconel-800 superalloy un-
der MQL, dry, and wet conditions are presented in Fig. 9. The
rake faces reveal deep craters caused by the temperature/
friction variation when machining by dry and/or wet machin-
ing and significant fracture patterns on the cutting edge (Fig.
9). The size of crater patterns generated during MQL is much
smaller compared to dry and/or wet machining due to proper
lubrication. Further, the MQL lubrication allows decreasing
the quantity of the flank wear.

Fig. 7 Convergence
characteristics of PSO and TLBO

Speed (m/min)/Feed (mm/rev)/Cutting tool angle (o)

Fig. 8 Cutting forces under dry, wet, and MQL conditions

Table 6 Optimal parameter settings

Parameters vc (m/min) f (mm/rev) φ deg. (°) C.O.

PSO 215 0.10 82 1.04909

TLBO 215 0.10 82 1.10158

Desirability 215 0.10 82 1.20624

Experimental 215 0.10 82 1.03486
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The process capabilities were investigated as well as in terms
of surface roughness profile (Fig. 10) to obtain quantitative
information. Here, the x-axis is showing the values of the cut-
ting parameters as in order. For instance, the 200/0.2/75 stands
for speed (m/min)/feed (mm/rev)/cutting tool angle (o), respec-
tively. In other words, the cutting speed is 200 m/min, the feed
rate is 0.2 mm/rev, and the approach angle of the cutting tool is
75°. Further qualitative evaluation was detected from the

optical micrographs performing SEM analysis (Fig. 11). The
surface conditions are closely related to the performances of the
cooling strategy. A higher surface profile is generated by dry
and wet machining when comparing to MQL. Further, the
MQL provides reduced chip length formation while the chips
break into smaller parts generating a minimum rubbing contact.
As a result, the surface roughness is reduced in MQL-assisted
machining. Further, the surfaces machined under MQL condi-
tions do not contain any cavities or metal debris. Details of the
contact path between the tool and chip are presented in Fig. 12.
Here, the x-axis is showing the values of the cutting parameters
as in order. For instance, the 200/0.2/75 stands for speed
(m/min)/feed (mm/rev)/cutting tool angle (°), respectively. As
such, the cutting speed is 200 m/min, the feed rate is 0.2 mm/
rev, and the approach angle of the cutting tool is 75°. It reveals
the potential of the MQL strategy to reduce the tool–chip con-
tact length over the other two methods investigated in this sur-
vey. In fact, a reason of this phenomenon is that the chips are
broken when MQL-induced static pressure is in action.
Presumably, such static pressure is not typical for dry and wet
machining. The chip breakage produced during dry and wet
strategy comes from hard contact between the chip parts and
a potential obstructer that is generated in a shear plane fracture
cause of negative bending moment. Therefore, the chips’
breakability generated during MQL is formed as a short helical
spring-like structure (Fig. 13). Further, the blue colors of the
chips from the dry and wet strategy reveal potential generation

(a) (b)

(c)

Crater wear: 

deep and wide Crater wear: semi-

deep but wide

Crater wear: low-

depthandnarrow

Fig. 9 SEM of tool surface while
machining Inconel-800 alloy at
vc = 300 m/min, f = 0.2 mm/rev,
and φ = 75°. aDry, bwet, cMQL

Speed (m/min)/Feed (mm/rev)/Cutting tool angle (o)

Fig. 10 Surface roughness values under dry, wet, and MQL conditions
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of high temperature near the deformation zone. In contrast, a
light golden color was identified on the chips created by MQL,
which indicates a less temperature on the interface of contacted
parts (tool/chip). The surfaces of rake parts were analyzed by
SEM after machining with all three processes used in this sur-
vey. Figure 14 shows that a more refined chip morphology is
attained in the MQL condition. Such refinement includes even-
and-regular chip edges. On the other side, typical chips for dry
and wet conditions revealed harsh edges with asymmetrical
dimensions, uneven distribution of material, and irregular
saw-teeth profile chips.

6 Summary

The results gathered in this work and from previous published
work were presented and debated. The following segments
provide these details.

6.1 Literature’s approaches

& Kamata and Obikawa [14] performed experimental turn-
ing research on Inconel-718 alloy by considering process-
es under conventional dry, wet, and/or minimal quantity
lubrication (MQL).

& Tazehkandi et al. [11] proposed a solution to eliminate the
cutting fluids on machining Inconel-725 by using an in-
novative coating tool.

& Pusavec et al. [15, 16] introduced the coated carbide tool
for better machining/turning of Inconel-718 alloy on dry,
wet, and minimum cutting fluid methods.

& Likewise, Tazehkandi et al. [17] used spray strategy on
eco-friendly vegetable oil as lubricant and MQL within
turning of Inconel-706 (considered a very hard-to-
machine material).

& Scheffer et al. [26] proposed an online optimization tech-
nique based on dynamic neural network (NNs) approach
to reduce the tool wear while simulated the hard turning of
100Cr6 and 54CrV4 steel.

& El-Mounayri [27] applying PSO optimization technique
generated an improvement in the surface roughness pro-
duced by end milling routine.

(a) (b)

(c)

Fig. 11 SEM micrographs of
machined surfaces at vc = 300 m/
min, f = 0.2 mm/rev, and φ = 75°.
a Dry, b wet, c MQL

Speed (m/min)/Feed (mm/rev)/Cutting tool angle (o)

Fig. 12 Tool–chip contact length values obtained under dry, wet, and
MQL conditions
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& Ocktem and Erzurumlu [28] combining neural network
techniques and genetic algorithms detected the optimum
surface profile for some milling operation.

& Abhishek K et al. [29] embedded a TLBO algorithm to
obtain a parametric evaluation that permits optimizing the
turning processes for CFRP composites when it is used a
single point cutting tool.

& Li et al. [30] introduced amulti-objective TLBO algorithm
to generate a balance for a two-sided line assembly that
contains multiple constraints.

& Yu et al. [31] used a complex TLBO algorithm based on
feedback phase, mutation crossover operation, and chaotic
perturbation activity to provide a solution for complex
numerical and engineering challenges.

& Chen et al. [32] considered artificial neural networks and
some global optimization techniques on the TLBO algo-
rithm that contain a variable population scheme.

6.2 Model robustness over literature’s approaches

& In this paper, the Box–Behnkens response surface meth-
odology (RSM) design was favored because for each var-
iable only three levels are sufficient to provide fruitful
results in the simplest manner. Moreover, the least tenden-
cy to corruption such as those caused by the experimental
setup and operation are attained. As such, economic

(a) (b)

(c)

Fig. 14 SEM of chips at vc =
300 m/min, f = 0.2 mm/rev, and
φ = 75°. a Dry, b wet, c MQL

Fig. 13 Chip samples obtained
under dry, wet, and MQL
conditions at vc = 300 m/min, f =
0.2 mm/rev, and φ = 75°
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benefits are achieved due to the reduction of the number of
total experiments—attainment of commercial advantage.

& The literature review shows lack of data in terms of turn-
ing of Inconel-800 superalloy using different solutions as
dry, wet, and MQL strategy.

& In addition, it was noted that no research regarding process
optimization using meta-heuristic algorithms for turning
parameters of Inconel-800 and that too when MQL plays
along, respectively.

& In that respect, the proposed research brings a quite unique
strategy considering an advanced optimization technique
along an MQL condition to better turning of Inconel-800
in a sustainable production manner.

7 Conclusions

The turning experiments were conducted on difficult-to-cut
nickel-based superalloy such as Inconel-800 considering var-
ious cutting conditions. The experimental work together with
the optimization algorithms permits a better control of differ-
ent input variables (three cutting speed levels, together with
different feed rates and variation of the cutting tool angle) and
generating the following conclusions:

1. The performance ofmeta-heuristic algorithms implement-
ed (i.e., PSO and TLBO) here operates in a better manner
in respect to the traditional desirability function approach.
Therefore, the meta-heuristic algorithms prove to have a
great potential in the detection of the best machining pa-
rameters for improved machinability of Inconel-800 su-
peralloy considering the MQL condition.

2. When comparing the cooling conditions, the cooling strat-
egy of deploying minimum quantity cutting fluid has been
found beneficial for machining difficult-to-machine
nickel-based superalloy such as Inconel-800. It helps to
reduce the cutting forces, tool wear, surface roughness,
and tool–chip contact length while turning the Inconel-
800 superalloy.

3. The decrease in the cutting forces duringMQLmachining
occurs once the cutting speed and cutting tool angle are
raised and the feed rate is reduced. Nonetheless, when the
cutting speed and feed rate raised were detected that an
increased amount of tool wear and surface morphology in
terms of roughness growth. The contact length between
tool and chip diminishes when the cutting speed is high
while a bigger feed rate along with a larger approach angle
generates a large chip–tool contact area.

4. The validity/relevance of ANOVA simulation was deter-
mined by a high coefficient (e.g., 0.9). Thus, the model
used is capable of predicting the responses with high ac-
curacy for the proposed machining parameters range.

5. When machining Inconel-800 superalloy, by turning
using MQL conditions, it is necessary to employ a para-
metric setting as the cutting speed ~ 215 m/min and feed
rate ~ 0.10 mm/rev along with a cutting tool angle ~ 82°
to generate superior quality in terms of Fc, Ra, VBmax,
and L. By applying the later condition, it will be possible
to obtain an economic and ecological process of
advantage.
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