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Abstract
Robotized laser beam welding of closed-square-butt joints is sensitive to how the focused laser beam is positioned in relation to
the joint, and existing joint tracking systems tend to fail in detecting the joint when the gap and misalignment between the work
pieces are close to zero. A camera-based system is presented based on a high dynamic range camera operating with LED
illumination at a specific wavelength and a matching optical filter. An image processing algorithm based on the Hough transform
extracts the joint position from the camera images, and the joint position is then estimated using a Kalman filter. The filter handles
situations, when the joint is not detectable in the image, e.g., when tack welds cover the joint. Surface scratches, which can be
misinterpreted as being the joint, are handled by a joint curve prediction model based on known information about the nominal
path defined by the robot program. The performance of the proposed system has been evaluated off line with image data obtained
during several welding experiments.
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1 Introduction

Automated laser beam welding (LBW) is one important en-
abler for the manufacturing industries to produce high quality
welds [1]. However, the drawback is that the LBW process
requires strict fit up tolerances and also accurate joint prepa-
ration, fixturing, and robot motion. Heat-induced distortions
occurring during welding might also result in joint deviations
from its initial nominal position, denoted as offset in this pa-
per. These drawbacks are particularly severe in welding of
technically zero gap square-butt-joints, since a small offset
between the laser beam spot and the joint may cause lack of
side wall fusion within the resulting seam. An example is
shown in Fig. 1, where welding has been conducted with an
offset of 1 mmbetween the laser beam spot and the actual joint
position. Lack of side wall fusion is a very serious defect that

gives a weak weld, and it is difficult to detect even when using
non-destructive test methods such as ultrasonic testing, due to
the flatness and orientation of the defect.

To overcome this issue, it is common to use joint tracking
systems that detect the joint position and adjust the laser beam
spot onto it by somemoving actuator. Commercially available
joint tracking systems often use structured light constituting
laser triangulation to get a distance profile perpendicular to the
joint [2–4]. Although this method works well for many joint
configurations, in the case of technically zero gap closed-
square-butt joints with technically zero misalignment, this
method is prone to fail to detect the joint position.

The issue of joint tracking during technically zero gap
square-butt welding has been addressed by several re-
searchers. A novel approach, using a magneto-optical sensor,
was used in [5] to detect tight-butt joints during LBW. Good
results were shown, however in industrial applications, their
sensor setup, requiring a magnet on the back side of the work
piece, can be difficult. Avision-based 3D path teaching meth-
od for closed-square-butt joint welding is presented by Zeng
et al. [6]. Joint tracking is here conducted by fusing informa-
tion from two images obtained by the same camera under
different illumination for arc welding, not LBW. This requires
a camera off-axis with careful positioning relative the welding
tool. Regaard et al. [7] present different concepts and
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principles regarding sensors for joint tracking and introduce a
multi-sensor concept using a CMOS camera with a low power
laser source for illumination, for tracking and also for measur-
ing the displacement between the LBW tool and the work
piece. A method using a CCD camera and a vision algorithm
to track closed-square-butt joints are described in [8] with
promising results shown for an arc welding application.
Krämer et al. [9] use a CMOS camera to capture images dur-
ing LBW, and a texture-based algorithm is suggested where
the difference in surface texture of the two work pieces is used
to find the joint position. Good results are shown; however,
the proposed algorithm is time-consuming and might not be
applicable for real-time applications. A joint tracking method
for closed-square-butt joints using three laser stripes is pre-
sented by Shao, Huang, and Zhang [10]. Two laser stripes
are used for measuring a 3D profile using optical triangulation
and the third laser stripe is used as illumination for a grayscale
image. Results are only shown for straight welds. In [11] an
infrared camera, placed off-axis, was used and showed prom-
ising results for joint tracking during LBW. However, the off-
axis configuration lowers the flexibility of the LBW tool com-
pared to solutions where the sensors are integrated in the tool.
Xu et al. [12] present a visual control system to track narrow
butt joints in CO2 arc welding. Results are shown for linear
welds; however, the sensor setup using 150-mm offset be-
tween the camera and the torch is not suitable for curved
joints. A passive vision sensor is used by Ma et al. [13] for
joint tracking in thin plate closed-gap butt arc welding. Good
results are shown for real-time joint tracking; however, results
are only for arc welding of straight welds. Fan et al. [14]
propose a joint tracking method in both horizontal and vertical

direction for narrow butt joints. Arc welding experiments
show promising results; however, it is only applied to straight
welds. Although showing promising results, none of the sys-
tems referred to prove to be a robust-enough solution for joint
tracking of technically zero gap closed-butt joints in an indus-
trial environment. This applies especially for LBWof complex
geometries with limited access, which requires the sensor sys-
tem to be integrated into the LBW tool.

In a real industrial welding situation, there will be several
factors affecting the tracking system, e.g., varying surface
structure or scratches near the joint that can be misinterpreted
as the joint, tack welds covering the joint, and evaporated
metal fumes clouding the camera image. Another problem that
may arise when welding complex geometries is the relatively
large position error caused by the fact that the sensing area has
to be placed at a certain distance in front of the joint when
welding is not done in a straight line. A novel vision-based
system is presented that addresses the above issues. It includes
a robust algorithm based on a modified Hough transform, a
Kalman filter, and a joint curve prediction model based on
prior knowledge of the nominal joint path. Eight welding
cases were conducted on Alloy 718 specimens to evaluate
the robustness of the system. The aim of the tracking system
is to ensure a joint offset that is less than half the diameter of
the laser beam focus spot. The system is evaluated off-line
based on images acquired during welding.

2 Materials and methods

The tool manipulation was conducted using an industrial ro-
bot, ABB IRB4400, and the tool center point (TCP)
corresponded to the laser beam spot on the work piece. The
laser source used was a 1070-nm wavelength fiber laser (IPG
YLR-6000-S) and the LBW tool was from Permanova Laser
System AB. The optical delivery fiber used was 600 μm in
diameter, and by using a 160-mm focal length collimating lens
and a 300-mm focal length focus lens, a laser beam spot di-
ameter of 1.12 mm, and a Rayleigh length of 13.7 mm was
obtained. The laser beam spot was focused on the surface of
the work piece resulting in keyhole welding and a narrow
seam waist.

The work piece material used was 2-mm thick sheet metal
plates of Alloy 718. Each work piece was made of two differ-
ent sheets where an ellipse was laser-cut out from one and a
corresponding elliptical hole was cut out from the other. The
hole in the second plate was made somewhat smaller in order
to get a very tight fit between them, see Fig. 3. The two plates
were tack-welded to constrain heat-induced distortions in the
joint gap during welding. Argon gas was supplied to the top
side and in a root gas channel in the fixture, as well as in front
of the LBW tool focus lens for protection against spatters. A
tube was sucking out the plasma plume from the process

Fig. 1 Cross section of a weld seam when welding has been conducted
with a beam offset of 1 mm from the actual joint position. Lack of
sidewall fusion is seen in the waist of the weld seam
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interaction zone in order to stabilize the process and to im-
prove the sight for the camera. The laser power used during
the experiments was 2300Wand the robot welding speed was
15 mm/s.

2.1 Machine vision system

A high dynamic range (HDR) (120 dB) CMOS camera has
been integrated coaxially in the LBW tool as shown in Fig. 2.
The HDR makes it possible to acquire a very broad range of
luminance with high contrast in the image. This is desirable
when monitoring LBW since it facilitates to capture geomet-
rical features around the weld pool (liquid and solid metals,
joint position, surface texture, etc.) despite the very intense
light from the laser-generated plasma plume. The camera
and an external, off-axis configured, LED illumination were
synchronously controlled by a trigger module at a frame rate
of 200 frames per second. Each image had a pixel area of
640 × 300, and the corresponding spatial pixel resolution on
the work piece surface was 25 × 25 μm giving a field of view
of 16 × 9 mm on the work piece since a pinhole camera model
is assumed.

It has been shown in earlier investigations [15] that the
spectral range between 400 and 500 nm causes minimal inter-
ference from the LBW process spectral emissions. Also, at
this spectral range, the sensitivity of the camera sensor is still
sufficient. Therefore, two power LEDs with a center wave-
length of 450 nm illuminated the work piece and a matching
optical band pass filter was placed in front of the camera. The
power LEDs were synchronized with the camera, and only

activated during the short exposure time of the camera
(200 μs). In this fashion, it was possible to obtain a higher
light intensity during the exposure time of the camera com-
pared to continuous mode LED illumination. This enables
LED overdrive during the given duty cycle limited by the
camera exposure time. By using this setup, the image infor-
mation in the area in front of the melt pool was enhanced.

The image data was acquired during welding by a PC run-
ning a LabVIEWapplication, and later analyzed off line using
Matlab.

2.2 Welding procedure

The nominal welding path is an ellipse as shown in Fig. 3.
The work pieces have been prepared to challenge the sys-

tem. The plates were first tack-welded, which introduced sev-
eral areas in the joint path where the joint position cannot be
seen. Then the plates were scrubbed to remove oxides, which
introduced a lot of small scratches near the joint. In addition,
several deep scratches were engraved by a knife.

Three different test cases were evaluated: test case A using
the nominal robot path with zero offset relative to the joint, test
case B where the robot path was translated 1 mm in x-
direction relative to the joint (Fig. 4a), and test case C where
the robot path was translated 1 mm in y-direction relative to
the joint (Fig. 4b).

3 Image processing

This section describes a novel algorithm that addresses the
issue of robustly finding the joint position in welding of tech-
nically zero square-butt-joint configurations. It considers sur-
face scratches, uncertainty during tack welds, and welding of
curved joints. Also, estimating the joint position where the
laser beam hits the work piece eliminates the geometrical issue
that occurs when the sensor measures a certain distance ahead
of the laser beam spot (called sensor forerun in [7]). The so-
lution is based on an implementation of the Hough transform
[16], a Kalman-based filter [17] and a joint curve prediction
model based on prior knowledge of the nominal welding path.
Figure 5 shows an overview of the algorithm and the input and
output of each step. The various parts are described in the
coming subsections.

3.1 Machine vision algorithm

An image processing algorithm is used to extract the joint
position from the image I for each time instant k in the area
in front of the keyhole. Figure 6 shows that when welding
curved joint shapes, the joint cannot be correctly modeled as
a straight line but as a curve. It is proposed to model the jointFig. 2 The LBW tool, the camera, and the LED illumination
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as a second-order polynomial with the ability to represent
curvatures that are relevant for the aim of the joint tracking.

The camera pose is fixed and integrated in the LBW coax-
ially through the optics, see Fig. 2, so the position of the laser
beam spot center, where the keyhole is formed, will be the
same in all images.

The first step is to select a relevant area in front of the
keyhole where the joint is visible to the camera. By defining
a region of interest (ROI), as shown in Fig. 7, the number of
pixels that need to be processed in the following steps will be
greatly reduced. This will significantly reduce the processing
time, which is crucial for the real-time performance. The se-
lected IROI is a square of 200 × 200 pixels.

The second step is to identify the pixels that correspond to
the joint, which is done by applying an edge detection algo-
rithm to the IROI. The Canny method [18] is chosen for this
since it is a robust algorithm using two different thresholds
(high Ch and low Cl) to find the intensity gradient in an image.
In the Canny method, the image is first filtered using a
Gaussian filter to remove noise, before the intensity gradients
of the image are found. Then a double threshold is applied to
the intensity gradient image to determine possible edges. All
pixels above the high threshold level Ch are considered as
edge pixels. However, for the low threshold Cl only pixels
that relate to pixels found using the high threshold are consid-
ered as edge pixels. This is suitable for this application since

the intensity of the curve representing the joint can vary be-
tween different images. The selection of the Canny threshold
parameters is crucial for the following steps and are used as
tuning parameters for the algorithm. If the thresholds are set at
a too high level, not enough edge pixels representing the joint
will be found. On the other hand, if the thresholds are set to a
too low value, too many edge pixels will be found (due to
uneven surface characteristics, scratches, etc.) and this will
slow down the algorithm since all edge pixels are evaluated
in the following step. The result from the edge detection is a
binary image, Iedge, ideally only containing the edge pixels
representing the joint curve. Figure 8 shows Iedge obtained
by edge detection of IROI from the image I in Fig. 7. Here,
the edge pixels belonging to the joint are clearly visible.
However, edge pixels from scratches and other irrelevant sur-
face texture features are also present.

The third step is to match a parametric model to the joint
curve by applying a version of the Hough transform. The
standard Hough transform [16] converts edge pixels from
the Iedge image space to a parameter space using a parametric
model of a straight line in the Hesse normal form: r = x cos
Θ+ y sinΘ, where r is the distance from the Iedge origin to the
closest point on the straight line, and Θ is the angle between
the x-axis and the line connecting the origin with that closest
point. It is also suggested in [16] that any curve that can be
represented by a parametric model can be used in the Hough

Fig. 3 Tack-welded work pieces
before welding. Welding is
performed counterclockwise. The
work piece width is 200 mm (x-
axis) and the height is 120 mm (y-
axis)

(a) (b)

Fig. 4 The robot path and the joint in different test cases. The black solid ellipse is test case Awith the nominal robot path aligned to the joint; a: the
dotted ellipse is the robot path in test case B; b: the dotted ellipse is the robot path in test case C
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transform. Other implementations of the Hough transform
have been suggested based on different parametric represen-
tations, such as the circular [16] or elliptical [19] Hough trans-
form. In our algorithm, a second-order polynomial is
employed for x- and y-coordinates in the image:

y ¼ ax2 þ bxþ c ð1Þ

Adding one dimension in the parameter space (from two
parameters for a line representation to three parameters for a
second order curve) increases the computation time. If the
number of edge pixels in Iedge is np, and na and nb are the
number of values for parameters a and b, then the total number
of calculations will be ntot = npnanb. Hence, to get a computa-
tionally efficient algorithm, it is crucial to limit the number of
possible values in the a and b set and make sure that the Iedge
does not contain more than a sufficient number of pixels, np.
This can be achieved based on two assumptions. The first is
that the joint curve always starts within the range of y-values
defined by the IROI. The c parameter, in the interval [c1, …,
cn], will therefore be limited to 200 possible integer values
with the resolution of 1 pixel. The second assumption is that
the curve inclination at x = 0 in IROI, defined by the b param-
eter, and the rate of curvature, defined by the a parameter, are
limited by the minimum radius of the welding path. Therefore,
starting from the known minimum joint path radius, it is

possible to calculate parameters a and b, whose quantization
step will affect the accuracy of the curve detection. A smaller
step size will increase the accuracy, at the expense of the
computation and processing time.

The binary image, Iedge, defines a set of, np, edge pixel
points {[x1, y1], …, [xnp, ynp]}and the objective is to find a
polynomial that fits those points. The points (xi, yi) are thus
first transformed into the a-b-c parameter space derived from
Eq. (1). Then, for each pixel in the image (xi, yi), all combina-
tions of the sets a = {a1, ..., ana} and b = {b1, ..., bnb} are used
to calculate a number of j possible curve segments and their
corresponding c parameter according to:

c j ¼ yi−a jx2i −bjxi ð2Þ

The parameter values (aj, bj, and cj) are then saved in an
accumulator matrix together with a counter that evaluates the
number of times each given value of c has been found for a
specific combination of a and b values. Therefore, concurrent
edge pixels that best fit a second-order curve with parameters
Ω∗ = {a∗, b∗, c∗} are found by searching for the maximum
counter value naccmax in the accumulator. The joint position
is then estimated by applying this second-order polynomial to
the original image I and extrapolating it to the x-position of the
laser beam spot, as shown in Fig. 9. The output ym,k represents
the measured joint position ym for image k.
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Fig. 6 Image I showing the weld
pool, keyhole, joint, and a scratch

Fig. 5 The structure of the algorithm for joint position estimation
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3.2 Joint curve prediction based on known nominal
path

Since the nominal welding path is defined in advance by a
CAD file or from the programmed robot path, it is possible to
extract the nominal joint curve parameters as a second order
polynomial. This information is particularly useful for
distinguishing between the joint and a surface scratch, a prob-
lem that is highlighted in Fig. 6.

In principle, without prior knowledge of the nominal joint
path curvature, it is not possible to distinguish between the
joint and the scratch in Fig. 6, since the scratch starts in the
joint and is almost parallel to it just ahead of the keyhole.
However, when considering the total curve segments and their
Hough transform parameters, it is possible to decide which
one corresponds to the actual joint, since the joint curve pre-
diction provides a closed intervalΩ in which those parameters
must be.

Figure 10 shows the complete welding path defined by the
robot motion program. The red circle indicates a position,
which is the same as shown in Fig. 6. The magnified area
around the current position (red circle in Fig. 10) is shown

in Fig. 11. The area has been oriented into the tangent direc-
tion of the nominal curve, since the laser tool is oriented to
follow the tangent to the joint. From the curve in Fig. 11, it is
then possible to extract the parameters of a second-order curve
that closely represents the nominal path.

The steps for obtaining the joint curve prediction in each
position from the programmed points of the welding path and
comparing it with the result from the camera image are:

1. Read out the TCP position and orientation from the robot
controller.

2. Search for the nearest point in the programmed welding
path definition (the red circle in Fig. 10).

3. Select a number of programmed points around the TCP
from the welding path definition.

4. Rotate these points to align them to the TCP orientation at
position from step 1, see Fig. 11.

5. Do a polynomial fit of the points to obtain a parametric
second order curve in the ROI.

6. Define a parameter spaceΩ from the parameters in step 5
that restricts the feasible curvature of the joint curve
polynomial.

Steps 3 to 5 can be rather time-consuming. However,
for each point in the robot program the polynomial pa-
rameter values can be calculated in advance and stored in
a lookup table. When executing the algorithm, it is then
possible to search the nearest point in this table based on
the TCP value readout from the robot controller in step 1.

3.3 More thresholding for robustness

The maximum counter value naccmax from the accumulator ma-
trix in the Hough transform is an indicator of the goodness of fit
of the parametrized curve, since it shows how many pixels from
Iedge fit to the nominal curve. This value is thresholded to accept
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Fig. 7 IROI is marked by the black
rectangle in I
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Fig. 8 Binary image Iedge obtained by the Canny method
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only results with enough edge pixels connected to the joint curve
estimate. The threshold is called Tpmin and is used to decide
whether the joint is detected or not in an edge image Iedge. The
importance of this passage is when a tack weld or interference
from the plasma plume is covering the joint. In this case, not
enough pixels will be found that match a second-order curve.

Two more threshold parameters are used to make the
algorithm more robust. Both indicate the maximum
change in the position between two consecutive frames.
The first parameter, Tcmax, indicates the maximum change
between two consecutive frames when the joint was de-
tected in the first frame |ym, k − ym, k − 1|. The second pa-
rameter, Ttmax, indicates the maximum change between
two consecutive frames when the joint was not detected
in the first frame. Increasing the threshold Ttmax is bene-
ficial to detect the joint, e.g., after passing a tack weld.
The threshold parameters, Tpmin, Tcmax, and Ttmax, are
used to evaluate if the measurements, ym, k, should be
trusted or not, by setting the noise variance of the

measurement, Rk, to a value based on the outcome of
the threshold ing process . The output f rom the
thresholding is the joint offset measurement ym,k and a
parameter that is used in the following Kalman filter as
a measurement noise variance Rk. When the joint can be
detected by the vision algorithm, i.e., ym, k exists, the
measurement noise variance R0m is estimated from n mea-
surements obtained from a sequence following the nomi-
nal joint position during welding:

R0m ¼ 1= n−1ð Þ∑n
i¼1 ym;i−ym

� �2
ð3Þ

where the estimated mean value is ym ¼ 1
n ∑

n

i¼1
ym;i.

The thresholding can be summarized at time instant k as:

ym;k−1 was found in image k−1 ðCaseÞ

Rk ¼ R0m if naccmax > Tpmin∧ ym;k−ym;k−1
�� �� < Tcmax∧Ω*∈Ω

� �
106 otherwise

�

ð4aÞ
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Fig. 9 The red curve is the
estimated joint. The blue circle is
the laser beam spot position
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Fig. 10 The welding path defined by the robot program. The red circle
indicates the position corresponding to the TCP in Fig. 6
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Fig. 11 The programmed welding path interpreted as pixels at current
position
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& Case ym, k − 1 not exist but ym,last is the last detected point

Rk ¼ R0m if naccmax > Tpmin∧ ym;k−ym;last
�� �� < Ttmax∧Ω*∈Ω

� �
106 otherwise

�
ð4bÞ

Now the algorithm has a parameter, the measurement noise
variance Rk, to be used in the Kalman filter indicating if the
measurement should be trusted or not.

3.4 Kalman filtering

The machine vision algorithm finds the joint position ym,k,
when possible, but when it is not found a model based esti-
mate will be used to enhance the performance of finding the
joint. This is addressed by using a stochastic state estimator
implemented as a Kalman filter [17], which combines infor-
mation from a motion model (based on the TCP movement)
and measured data to get a filtered estimate ξk of the position
ym,k. By defining the model state variance Q and the measure-
ment variance Rk, in Eq. (3), the filter can handle situations
when the measurements cannot be trusted, i.e. when Rk is very
large. This one-dimensional problem is represented by a con-
stant position motion model [20] which assumes that there is
no significant motion between two consecutive image frames.
However, a noise component is added to allow for unpredicted
motion between two consecutive images k and k + 1.

The scalar state vector ξk represents the true joint position
to be tracked at time instant (image frame index) k. The
discrete-time motion model is defined as:

ξkþ1 ¼ ξk þ Twk

yk ¼ ξk þ vk
ð5Þ

where wk and vk are the state and measurement noise, respec-
tively, and T is the sampling time (reciprocal of the frame rate
of the camera). The state andmeasurement noises are assumed
to be independent random variables, both with zero mean and
normal distribution ~N(0,σw) and ~N(0,σv) respectively.

The filtering equations for the Kalman filter are defined for
each time instant k by a measurement update equation and a
time update (prediction) equation based on former time instant
k-1. The measurement update equation is:

ξ̂̂kjk ¼ ξ̂̂kjk−1 þ Pkjk−1 Pkjk−1 þ Rk
� 	−1 ym;k−ξ̂̂kjk−1

� �
Pkjk ¼ Pkjk−1−Pkjk−1 Pkjk−1 þ Rk

� 	−1Pkjk−1
ð6Þ

where ξ̂k is the mean value and Pk the covariance of the new
normally distributed random variable based on the measured
position ym, k. Rk is the measurement noise variance at time
instant k. The state update (prediction) equation is (based on
the assumption on small changes between consecutive im-
ages):

ξ̂̂kþ1jk ¼ ξ̂̂kjk
Pkþ1jk ¼ Pkjk þ T2Q

ð7Þ

with Q being the state noise variance. A state noise variance,
Q, is needed to capture possible inaccuracies in the robot
movement and welding process induced distortion. This is
considered as a tuning parameter of the filter, since it is diffi-
cult to derive.

The vision system output is the offset from the actual joint
position at time instant k, which is calculated as the difference
between the laser beam spot center, i.e. the TCP, and the esti-

mated joint position ξ̂k obtained from the Kalman filter.
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Fig. 12 Result from one of the
reference welding experiments,
case A

Table 1 Parameter values used
for welding of Alloy 718 Tcmax [mm] Ttmax [mm] Tpmin [pixels] Q R Cl Ch a b
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4 Results

The performance of the system has been evaluated off-line
post process by analyzing data from eight experiments (two
of test case A, three of test case B, and three of test case C).
Reference data for the actual joint was obtained for each test
case by manually defining the joint position in every hun-
dredth image and linearly interpolated to give a reference to
all estimated data points. Table 1 shows the algorithm param-
eter values used during the welding experiments. The param-
eters Tcmax and Ttmax are based on the maximum expected
movement between two consecutive image frames. Tpmin,
Cl, and Ch have been experimentally derived from data. R is
estimated from n measurements obtained from a sequence
following the nominal joint position during welding, and Q
is tuned from experimental data based on assumptions of in-
accuracies in the robot movement and the welding process
induced distortion. The ranges for the parameters a and b have
been derived from the minimum radius of the welding path.

The tuning parameter values are depending on, e.g., different
surface properties and spectral emissions during the process.

Figure 12 shows the estimated offset from test case A. The
dotted line is the manually measured reference joint offset,
and the solid line is the estimated offset. Figure 13 shows
the difference between these values, as an offset error. Since
the laser beam spot diameter used during the welding experi-
ments is 1.12 mm, this error should not exceed 0.56 mm (half
the spot diameter). This limit is indicated by the horizontal
dotted lines in Fig. 13, which indicates that the error is well
within the limit for the complete weld.

Figure 14 shows a histogram of the total number of position
errors (40,000 data points) from all eight carried out welding
experiments. The position errors are approximately Gaussian
distributed with a mean around + 0.1 mm and a standard de-
viation well within the limit of 0.56 mm.

Table 2 shows a summary of all eight welding experiments,
each consisting of 5,000 images where the maximum and
mean errors are given.

Fig. 14 Distribution of position
errors for all experiments
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Fig. 13 Position error from the
same welding experiment as
shown in Fig. 12
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5 Discussion

After discussing the performance, a capability study is also
presented and discussed.

5.1 Performance

As shown in Table 2, the mean, and also the majority of the
maximum errors for all welds are within the maximum
allowed error of 0.56 mm. It was found that the system is able
to estimate the joint position with an absolute max error sig-
nificantly less than 0.56 mm in all test cases except for exper-
iment 3 (marked with a red rectangle in the Table 2). The
reason for this relatively large error is that the tack weld was
hiding the joint at this position. See Fig. 15 where the refer-
ence joint position and the estimated joint position are shown,
and the deviation is large where the motion of the laser beam
spot went out from the joint, as indicated by a red rectangle.
Figure 16 shows a typical image where the TCP encountered a
tack weld. The problem is particularly clear here since the
movement of the TCP away from the actual joint position is
started before the tack weld and continues during and after the
tack weld is passed. In this situation, the system cannot detect
the joint position, which is estimated based only on the model

in the Kalman filter. The model assumes that there is no mo-
tion deviation from the joint; therefore, a large position error
will remain until the tack weld is passed. However, this prob-
lem is considered to be of limited importance when a closed-
loop control is implemented for controlling that the TCP is
correctly adjusted to the joint position before entering the area
of the tack weld. The only critical situation is then if the offset
starts exactly at the tack weld, and this is considered relatively
unlikely. Also, as suggested in [21], a second sensor system
based on spectrometer data that is not sensitive to tack welds
could be used in addition to the camera to robustify the track-
ing. The system can successfully estimate the joint position
with an error less than 0.56 mm except for this specific situa-
tion. From the results, it is verified that it can handle scratches
and tack welds in a robust way during the conditions of the
evaluation and it is able to find the joint position even for
complex geometries when welding with curves with a small
radius.

The evaluation reveals a small systematic error in the esti-
mates of the joint position. This could be explained by the
mounting of the external LED illumination on the welding
tool where an imperfect alignment could cause an uneven
shadowing effect in the joint. Another explanation could be
a possible small systematic misalignment between the work
piece members also resulting in an uneven shadowing. This
issue is not considered as critical at this point since the perfor-
mance of the joint offset estimate is sufficient. However, it
should be further investigated in the future work.

5.2 Capability

A process capability index [22] is used for evaluation of the
system. The process capability is defined as:

Cp ¼ min
USL−μ
3σ

;
μ−LSL
3σ

� 

ð8Þ

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Image #

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

O
ffs

et
 [m

m
]

Estimated offset
Reference offset

Fig. 15 Estimated and nominal
joint position along the ellipse in
experiment 3. The red rectangle
emphasizes that the estimation
failed after a tack weld

Table 2 Results from the eight welding experiments

Experiment # Max absolute error [mm] Mean error [mm]

1 (Case A) 0.31 0.08

2 (Case A) 0.40 0.13

3 (Case B) 0.57 0.10

4 (Case B) 0.42 0.09

5 (Case B) 0.41 0.09

6 (Case C) 0.42 0.11

7 (Case C) 0.42 0.13

8 (Case C) 0.43 0.12
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where USL and LSL are the upper and lower limits for the
error (i.e., deviation between reference and estimate), which in
this case are 0.56 mm and − 0.56 mm, respectively. σ is the
estimated standard deviation calculated as:

σ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N−1
∑N

i¼1 εi−μj j2
r

ð9Þ

where εi is the error in image i,N is the total number of images
from the calculations, and μ is the estimated mean of the
errors, εi, calculated as:

μ ¼ 1

N
∑N

i¼1εi ð10Þ

The larger value of Cp, the better the performance of the
system. To evaluate the importance of the model-based ap-
proach using a Kalman filter, the capability index is calculated
both with and without the Kalman filter. The results for the
three different test cases are presented in Table 3.

Table 3 shows the potential in using the Kalman filter esti-
mate. Without the Kalman filter all measurements are consid-
ered valid, which means that tack welds and scratches are
misleading.

6 Conclusions

A camera-based joint offset estimation system has been devel-
oped and evaluated by experiments with respect to its

performance during LBW of technically zero gap square-butt
joints. The system is capable of distinguishing the joint from
surface scratches and it continues the joint offset estimation suc-
cessfully even when tack welds or other process disturbances
cover the joint. By using a high dynamic range camera integrated
in the LBW tool, external LED illumination, and matching opti-
cal filters, it was possible to obtain sufficient image information
from the area in front of the melt pool where the joint is visible to
the camera. A novel image-processing algorithm utilizing the
Hough transform, a model-based joint curve prediction and a
Kalman filter is proven robust enough for joint position estima-
tion during industrial LBW. The selection of the Hough trans-
form used for curve detection is motivated by the real-time and
robustness requirements of the welding application investigated.
The Kalman filter was selected to enable model-based estimation
and to prepare for future sensor fusion implementations. A capa-
bility analysis has been conducted that shows the great potential
in using the Kalman filter to estimate the joint offset. This joint
finding system shows to be promising for implementation in a
joint tracking system, where the TCP is manipulated to the right
position based on this algorithm.
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