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Abstract
The current study presents an effective framework for automated multi-objective optimization (MOO) of machining
processes by using finite element (FE) simulations. The framework is demonstrated by optimizing a metal cutting process
in turning AISI-1045, using an uncoated K10 tungsten carbide tool. The aim of the MOO is to minimize tool-chip interface
temperature and tool wear depth, that are extracted from FE simulations, while maximizing the material removal rate. The
effect of tool geometry parameters, i.e., clearance angle, rake angle, and cutting edge radius, and process parameters, i.e.,
cutting speed and feed rate on the objective functions are explored. Strength Pareto Evolutionary Algorithm (SPEA2) is
adopted for the study. The framework integrates and connects several modules to completely automate the entire MOO
process. The capability of performing the MOO in parallel is also enabled by adopting the framework. Basically, automation
and parallel computing, accounts for the practicality of MOO by using FE simulations. The trade-off solutions obtained by
MOO are presented. A knowledge discovery study is carried out on the trade-off solutions. The non-dominated solutions are
analyzed using a recently proposed data mining technique to gain a deeper understanding of the turning process.

Keywords Machining · Turning simulation · Multi-objective optimization · Cutting parameters · Tool geometry

1 Introduction

Optimization of manufacturing processes has been an
attractive topic for research. A considerable number of
attempts have been made to optimize different manufac-
turing processes [1–4]. Machining is one of the five main
groups of manufacturing processes, along with casting,
forming, powder metallurgy, and joining [5]. It involves
removing parts of a metal workpiece to create a desired
design. The removed parts are extracted in the form of
chips. Turning is one of two major groups of machining
cutting processes, i.e., the traditional machining processes.
The other group which is modern machining processes
includes electrical discharge machining (EDM) and abra-
sive water jet (AWJ). Since John Wilkinson introduced the
cannon-borring machine in 1775, the machining process has
undergone significant development. Optimization of metal
cutting process is one of the major fields that attracted many
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researchers’ attention to improve the quality of machin-
ing products [6]. In the review paper by Mukherjee and
Ray [6], the focus is on optimization tools and techniques
grouped into conventional and non-conventional techniques.
Optimization of machining parameters by using several
different optimization techniques has been studied in a lit-
erature review paper by Aggarwal and Singh [7]. In most
of the studies, the optimization process is based on the
actual process (experiment), mathematical material model,
or some form of simulation (e.g., finite element method,
FEM). The researchers applied various optimization tech-
niques on an approximated mathematical model or on a
cost and computational expensive experiment or computer
simulation. However, the optimization studies including
two or more objective, i.e., multi-objective optimization
(MOO), are limited. In a state-of-the-art study by Tutum
and Hattel [8], MOO of manufacturing process based on
thermo-mechanical simulations is thoroughly reviewed.

The approaches towards solving a multi-objective opti-
mization problem (MOOP) are classified into two groups
[9]: (1) the preference-based approach or a priori tech-
nique and (2) the ideal approach or posteriori technique.
In the first approach, by using some higher-level infor-
mation a preference vector transforms the MOOP into a
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single-objective optimization. The preference-based approach
is used in two research papers [10, 11], to study multi-
objective optimization of cutting parameters. The ideal
approach towards multi-objective optimization is to obtain
a set of solutions in the form of Pareto-optimal solutions,
where the desired solution is selected according to some
higher-level information of the problem. In this approach,
the decision maker will have a better understanding of the
decision variables, objectives, and the relations between the
two. In addition, it provides the freedom to analyze the
results before selecting a preferred solution. Evolutionary
algorithm (EA), due to their characteristic of using a pop-
ulation of solution that evolve in each generation, is well
suited for the ideal approach in solving multi-objective opti-
mization problems. However, it should be pointed out that in
most practical applications, the solutions obtained by EAs
may not be truly Pareto-optimal. Moreover, it is impossible
to verify whether the solutions are Pareto-optimal when the
objectives and constraints lack analytical forms. Therefore,
it is customary in optimization literature to refer to solutions
obtained using EAs a trade-off solutions.

The ideal approach was incorporated in [12], where they
optimized the production rate and tool life in turning process
by using an algorithm based on micro-GA. The objec-
tives were generated by mathematical equations in terms of
cutting depth, feed, and speed. Recent applications (2007–
2011) of evolutionary optimization techniques in optimiza-
tion of machining parameters have been reviewed by Yusup
et al. [13]. In one study, Sultana and Dhar [14] minimized
cutting temperature and cutting force in turning AISI-4320
steel by using a MOO algorithm based on GA subjected
to keeping the surface roughness less than a constant
value. Experimental study along with predictive models
was implemented under response surface method (RSM).
The cutting variables they considered were cutting speed,
feed rate, pressure, and flow rate of high-pressure coolant.

Another study by Umer et al. [15] minimizes cutting
force and tool-workpiece interface temperature by using
three different surrogate models (RSM, radial basis func-
tions (RBF), and neural networks) and a multi-objective
optimization genetic algorithm (MOGA2) implemented in
MODEFRONTIER. The objectives were obtained by mod-
eling the oblique turning process in Abaqus FEM software.
In another paper [16], cutting force and tool wear of a
high-performance micro-milling process were generated
by running 2D finite element simulations (in DEFORM-
2D software). They were used as inputs for optimizing
tool path and process parameters along with burr forma-
tion and surface roughness data, extracted from exper-
iments. The multi-objective particle swarm optimization
(MOPSO) techniques was employed for the optimization.

The evolving population of EAs during the optimiza-
tion generations requires numerous objective function

evaluations. In most of the studies, the objectives are
extracted from the actual experiment, and consequently, per-
forming several hundreds of turning operation experiments
is practically impossible. Therefore, computer simulations
predominantly FE ones shall be incorporated in MOO of
turning operation. However, simulating a turning operation
to represents the actual process to a certain extent requires
computationally expensive FE models. The optimization
algorithm can be integrated with metamodels of the FE sim-
ulation to reduce the optimization time. Nevertheless, there
are two sources of approximation error in modeling the
actual turning operation: one from simulating the operation
with FE method and the other by modeling the FE simula-
tion with metamodels. Therefore, being able to perform a
MOO of a turning operation by using FE simulations effi-
ciently and reducing the contiguity of adopting metamodels
is an interesting area for research.

In this paper, we only deal with the second source of error
because the purpose here is only to demonstrate, present,
and analyze the developed framework. However, it is worth
pointing out that without a proper analysis of modeling
error, the trade-off solutions obtained in this study should
not be considered as Pareto-optimal.

The above described multi-objective optimization of the
turning process helps us find trade-off solutions with respect
to the multiple objectives. Knowledge of these solutions
is essential for informed decision making. However, often
the decision-making process usually ends with the selection
of a single trade-off solution for practical implementation.
To gain a deeper understanding of the turning process
and help identify or create high-performing solutions for
similar applications in the future, it is essential to analyze
the trade-off solutions using data mining and machine
learning techniques. Such a process has been referred to
as innovization in the past [17], which is a portmanteau of
“innovation through optimization,” implying that analysis
of solutions from optimization can lead to innovations in
constructing high-performing initial solutions for similar
problems in the future.

Innovization was initially proposed as a manual process
of visually identifying correlations and performing regres-
sion to obtain explicit relations between various combina-
tions of variables and objectives. This procedure, though
tedious and largely subjective, showed that innovations can
indeed be made. For example, in [18], the authors show
that all Pareto-optimal solutions of the brushless DC motor
design use the same type of winding. With this knowledge,
a future design can start with this winding type for all candi-
date solutions, thus intelligently reducing the search space.
Following the proof-of-principle of innovization, data min-
ing and machine learning techniques have been used to auto-
mate the process of post-optimal knowledge discovery. The
techniques include classification trees [19], regression trees
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[20, 21], rough sets [22, 23], association rule mining [24],
self-organizing maps [25–27], and genetic programming
[28] for automated innovization [29]. A survey of these
and several visualization techniques can be found in [30].

In this paper, we developed a framework for perform-
ing an automated multi-objective optimization of machining
processes by using FE simulations. This framework elimi-
nates the time spent in the manual tasks during FE model
setup and MOO and enables parallel computing. Both will
expedite performing MOO by using FE simulations. The
framework is presented by optimizing a simple metal cut-
ting process in a turning operation by using DEFORM-2D
software. The geometrical and process parameters, e.g.,
clearance and rake angel, cutting edge radius, and cut-
ting speed and feed rate, respectively, are the variables and
material removal rate, tool-chip interface temperature, and
wear depth are the objectives. Genetic algorithm is used for
the optimization and two of the objectives are computed
from running the turning simulation in DEFORM-2D. The
trade-off solutions are obtained and explicit knowledge is
extracted from them using a recently proposed algorithm.

2 Framework

In this work, a framework is developed and presented for
automated multi-objective optimization of metal cutting
processes, specifically turning process. The framework is
initiated by a parametrized CADmodel. The model contains

all the design requirements including geometrical bounds,
constraints, shape, and topology. The parametric model
is used to generate different designs of DoE as solid
CAD model. This property will enable the implementation
of shape or topological optimization with machining
simulations. The framework is based on interactions
between different pieces of a block, which we call modules.
Each module consists of input and output parameters and
a method which processes the inputs and generates the
outputs. Here, the methods are different software, e.g., CAD
software, meshing software, computing, and FE simulation
software. The modules’ interaction are automated and
controlled by an automation system. The framework and
the consisting modules, namely, geometry generator, mesh
generator, process KEY file generator, FE file generator,
FE simulation, result extractor, multi-objective optimizer,
and knowledge extractor, are illustrated in Fig. 1. In the
next subsections, the modules and the automated system are
described in detail.

2.1 Geometry generator

The geometry generator creates one or several designs
of different parts in a manufacturing process based on
the design requirements, limits, and constraints in a CAD
model format. In this study, FreeCAD is used to create
the geometry of the cutting tool and workpiece. Shape,
rake angle, clearance angle, and nose radius of cutting tool,
and dimension and shape of the workpiece are examples
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of the parameters that can be set by geometry generator.
Furthermore, the relative position of the tool and the
workpiece and some of the process parameters such as
depth of cut and feed rate can be defined in the CAD
model. The geometry generator exports the design to a
suitable file format, e.g., IGES or STL. Since DEFORM-
2D software accepts a specific type of GEO file, the design
is exported as IGES file, which is read by an IGES file
reader in DEFORM-2D and exported as a file format (OUT)
that is closely similar to the accepted GEO file. However,
the OUT file must be slightly modified to be accepted by
DEFORM-2D as a geometry.

2.2 Mesh generator

The exported geometry by the geometry generator is
imported to the mesh generator. The mesh generator module
meshes different parts based on predefined parameters such
as type of element, number of elements, and mesh density.
In this study, the final GEO file generated in the previous
module is imported to mesh generator of DEFORM-2D,
and the mesh file is created. Nevertheless, the mesh can be
created by other software such as Gmsh, or for 3D parts,
the geometry and the mesh can be imported as a single
STL file.

2.3 KEY file generator

This module generates or modifies the already existing files
required by the next module, i.e., the FE file generator, in the
form of KEY file. The KEY file is a text-based file which
contains different keywords and the corresponding values
to that keyword. Material parameters including mechanical
and thermal properties are set in this module. Process
parameters, e.g., cutting speed, can also be defined here.

2.4 FE file generator

For running a FE simulation, boundary conditions, contact,
FE step data, and type of FE simulation are required to
be defined. Type of FE simulation and steps and stopping
criteria can be defined by using the keywords in a KEY
file. However, to set the boundary and contact conditions,
it is necessary to identify and parametrize the generated
mesh. Therefore, the mesh created in the mesh generator is
imported in Matlab™ and triangulated to identify all aspects
of the geometry, e.g., edges and corners. Now, boundary and
contact conditions can be defined to the related elements
and nodes of the mesh as a KEY file. Finally, all the KEY
files are combined. The FE file that can be imported by
DEFORM-2D in the form of DATABASE (DB) format is
generated and exported.

2.5 FE simulation

DEFORM-2D/3D is the software used for simulating the
turning process. All essential inputs to run a DEFORM-2D
simulations are included in the database file generated by
the previous module. After the simulation is run and reaches
the specified stopping criteria, the final DB file is exported
to result extractor. The 2D turning process implemented in
this study is described with details in Section 3.

2.6 Result extractor

The final DB file is used to extract the results and calculate
the objective functions. Result extractor will extract the
required KEY file from any step of the DB file and
calculates the objective function accordingly. In addition,
this module validates the simulation result to be compliant
to the constraints and experiment settings. For instance, in
this study, the cutting length is the stopping criteria which
must be checked. Therefore, the last step of the simulation is
extracted as a KEY file. The corresponding mesh of the cut
workpiece is imported into Matlab™ and the coordinates
of the corner points, as depicted in Fig. 2, are compared
to a pre-specified distance (stopping criteria) to validate
the results. If difference is larger than a threshold, the
objective function values related to that specific DoE are
penalized.

2.7 Multi-objective optimizer

Multi-objective optimization (MOO), unlike single-objec-
tive optimization methods require several evaluations
of each objective within the design space. There are
several methods for solving multi-objective optimization
problem (MOOP); however, evolutionary algorithms (EAs)
are one of the most studied methods in this field.
The EA methods start with a population that evolve
through generations by employing evolutionary operators,
e.g., crossover and mutation, mimicking the evolution
present in nature. In this study, we employ an in-house
implementation of the well-known strength Pareto EA
(SPEA2) as the MOO solver with the following parameter
values:

– Initial population size, 40
– External set population size, 40
– Cross over probability, 0.8
– SBX Crossover distribution index [31], 2

The method is proven to have some advantages compared to
other existing techniques for problems with more than two
objectives [32]. The SPEA2 has previously been used for
optimizing real-world engineering problems [33, 34].
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Fig. 2 Final shape of the
workpiece (chip) after 7 mm of
cut, and identification of the
corner points
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2.8 Knowledge extractor

In this module, we use the recently proposed flexible pat-
tern mining (FPM) [35] approach to extract rules that
distinguish the obtained trade-off solutions from the other
feasible solutions obtained during the optimization pro-
cess. FPM works on the same principle as frequent itemset
mining that is used often on market basket data. Given a
list of transactions containing multiple sets of items pur-
chased by different customers at different instances, fre-
quent itemset mining can identify sets of items that are often
bought together. FPM treats the solutions of multi-objective
optimization as “customers” and the variables as “transac-
tions” and uses the apriori algorithm [36] to find clusters of
solutions that take the same values for a subset of variables.
For ordinal or continuous variables, FPM can also find clus-
ters of solutions that take the same range of values for a
subset of variables. These ranges of values for any variable
x can be represented using rules such as x > a or x < b.

2.9 Automation system

The automation system as shown in Fig. 3, is a cloud-based
Windows script that controls and distributes the modules to
computational devices. As stated in MOO section, objective
evaluation of the population (DoE) in each generation of the
optimizer is computationally expensive. This is due to the
high computational time of FE simulations that will increase
with more detailed models. Therefore, one approach of
resolving this issue is to distribute the FE simulations
(jobs) to several FE solvers across many computational
workstations. Figure 3 shows the allocation of modules

across parallel workstations (PWs) by the main workstation
(MW). The PWs are basically FE solvers and result extrac-
tors. The results are stored in a shared cloud, when all the
simulation results of the DoEs in an optimization gener-
ation are extracted the MW analyses the results and runs
the multi-objective optimizer. The optimizer generates the
DoE for the next iteration as a set of parameters. The geo-
metry, meshm, and KEY file generators create the required
files based on the new set of parameters and FE file gener-
ators create the DB files for all the population. Afterwards,
the DoE distributor allocates the FE files to different PWs,
based on their computational power. This loop continues
until the optimizer reaches the specified stopping criteria.

The automation system’s executable files and the script
files used to generate the FE are appended to the paper. The
detailed procedure of the practical implementation and
the description of the appended files are discussed in the
Appendix.

3 FE simulation of turning process

To illustrate how the developed framework is applied to a
MOO of a turning operation, a multi-objective optimization
of a 2D turning operation by using FE simulation and
DEFORM-2D software is carried out. The FE model
is based on Lagrangian method. Figure 4 illustrates a
schematic diagram of a 2D cutting operation. The variables
considered in the study are the tool geometry parameters
including clearance angle γ , rake angle α, and tool cutting
edge radius r. Cutting speed ν and feed rate f are the
the process parameter that are indicated in Fig. 4. We
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considered three objectives, which were extracted from the
simulation after 7 mm of cut length, e.g., minimizing tool
wear depth, minimizing the tool-chip interface maximum
temperature and maximizing the material removal rate
(MRR). MRR is calculated by

MRR = νfd (1)

where ν (mm/sec) is the cutting speed, f (mm/rev) is the
feed rate, and d (mm) is the depth of cut. The depth of cut is
in the third dimension; thus, it is kept constant. A summary
of the variables and objecitves are shown in Table 1. Table 2
shows the upper and lower limits of the variables.

3.1 Boundary conditions

The tool is fixed and the cutting is done by the movement
of the workpiece towards the tool. The vertical speed of
the workpiece is set to zero (fixed in y direction), and
horizontal speed (in x direction) is assigned to the nodes
on the bottom edge of the workpiece. The two edges of the
workpiece in contact with the tool are in heat exchange with
the environment and the temperature of the nodes of the two
other edges are kept constant at 20 ◦C. In the same way
for the tool, heat exchange is defined for the two edges in
contact with the workpiece. The temperature of the nodes
on the other two edges is set to room temperature.

Fig. 4 Schematic diagram of turning operation
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Table 1 Variables and objectives

Variables Clearance angle γ (◦) Rake angle α (◦) Cutting edge radius r (mm) Cutting speed ν (mm/sec) Feed rate f (mm/rev)

Objectives Material removal rate
(MRR) Maximize

Wear depth (ω)
Minimize

Maximum interface tem-
perature (Tint) Minimize

3.2 Material properties

The turning process simulates the cutting of a plain carbon
steel workpiece (AISI-1045) by an uncoated tungsten
carbide (K10) cutting tool. The material properties for
the workpiece and the tool are shown in Table 3. The
Johnson-Cook (JC) constitutive model is used to simulate
the workpiece material behavior within the range of strain
rate, strain, and temperature during the process by:

σ = (
A + Bεn

) [
1 + C ln

(
ε̇

ε̇0

)] [
1 −

(
T − T0

Tm − T0

)m]

(2)

were σ is the flow stress, ε is the true strain, ε̇ is the true
strain rate, ε̇0 is the reference true strain rate, T is the work
piece temperature, T0 is the ambient temperature, Tm is the
workpiece material melting temperature, and A, B, C, n,
and m are the model constants. The material model data
for AISI-1045 are taken from [38], in which the calibration
of Johnson-Cook constitutive model was carried out by
using the SHPB high strain rate test. Table 4 shows the JC
parameters for the workpiece incorporated in this study. The
tool is assumed to be rigid.

3.3 Thermal properties

The thermal properties of AISI-1045 taken from [39] and
K10 acquired from [40] are shown in Table 5. To reach a
thermal steady-state condition, the simulation needs to be
run much longer than specified 7-mm cut length used in
this study. This will increase the computational time and
storage capacity greatly, which makes the study imprac-
tical. Therefore, perfect contact condition in the interface
of tool and workpiece is assumed in this study. This is
accomplished by setting the heat transfer coefficient in
DEFROM2D to a high value (hint = 100, 000 KW/m2 ◦C).
An ideal contact condition has been utilized and experimen-
tally verified in several studies [41–43]. Furthermore, Iqbal
et al. [44] investigated the effect of interface heat transfer
coefficient on high-speed machining. Figure 5 plots the

variation of the interface temperature in terms of cutting
time for four different DoEs. The plot shows that the inter-
face temperature reaches a relatively thermal steady state at
the end of the simulation.

3.4 Contact and frictionmodel

The model incorporated for simulating the frictional
condition at the tool-chip interface is vital for an accurate
chip formation process. Malakizadi et al. [45] studied the
influence of the friction model on FE simulation results. All
friction models resulted to an identical range of minimum
average error. In this study, two types of contact are utilized
in the FE simulations: (i) sticking model and (ii) sliding
model. The sticking friction model is defined by τ =
mk, where m is the shear friction coefficient (sticking
coefficient) and k is the shear flow stress of the work
material. The sliding friction model is defined by τ =
μσn where μ is the Coulomb friction coefficient (sliding
coefficient) and σn is the interface normal pressure.

The contact between the chip and workpiece is assumed
to be governed by the sliding model with a constant sliding
coefficient of μ = 0.8. The tool and workpiece are assumed
to undergo a hybrid contact consisting both friction models,
namely sticking-sliding model defined by:

τ =
{

μσn μσn < mk (Lst ≤ x ≤ Lsl)

mk μσn ≥ mk (0 ≤ x ≤ Lst )
(3)

where Lst and Lsl are the sticking and sliding contact
length, respectively. The constant sticking and sliding
coefficients assigned for this study are m = 1.0 and μ =
0.6, respectively.

3.5 Tool wear model

Usui’s wear rate model [46] is adopted in this study. The
model is defined by:

ω̇ = D1σnVSe−(D2/T ) (4)

Table 2 Lower and upper bounds of the variables

Variable γ (◦) α (◦) r (mm) ν (mm/sec) f (mm/rev)

Range 2–15 0–15 0.01–0.1 1667–5000 0.05–0.4
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Table 3 Material properties for the workpiece and the tool

Material properties AISI-1045 K10 [37]

Density (g/cm3) 7.85 14.95

Young’s modulus (GPa) f(Temp) 600

Poisson’s ratio 0.3 0.25

Hardness (HRC) 7 81.4

where σn is the normal stress, T is the temperature, and Vs

is the sliding velocity of the predicted nodal data of tool
contact surface. The wear constants D1 and D2 are given in
[47] for plain carbon steels and uncoated tungsten tools:

D1 = 7.8 × 10−9, D2 = 5.302 × 103. (5)

Tool wear depth and maximum nodal temperature are
extracted from simulations after more than half of the
workpiece length is cut by the tool, i.e., 7 mm of cut
length. The FE step length, number of steps, and total
simulation time are defined accordingly for each simulation.
The third objective, i.e, MRR, is calculated by using (1).
The result extractor validates the result to conform with
7 mm traveled distance with the tolerance of ε = 1e−3. This
is accomplished by result validation in the result extractor
module (see Fig. 1), where the position of corner 2 of the
workpiece (shown in Fig. 2) at the last step of the simulation
is calculated and compared with the stopping criteria to
check if the simulation has been completed successfully.

3.6 Mesh convergence

In FE modeling, the size of the mesh affects the
accuracy considerably. A finer mesh generally results in
a more accurate solution, at the same time increases
the computational time. Therefore, a mesh convergence
study determines a balanced mesh size and computational
time. In this study, the effect of six different mesh sizes
and consequently number of elements are investigated.
They range from a coarse mesh and fast simulation to
a very fine mesh with high number of elements and
computationally expensive simulation. The mesh data
including the minimum element size, number of elements,
simulation time, and the extracted objectives are shown in
Table 6. Mesh number 5 is chosen for this study, since
a more refined mesh (mesh number 6) did not affect the

objectives noticeably. The simulation time for this mesh
size varies between 250 and 600 min depending on the
set of variable combinations. Thus, by considering the
capability of running 20 simulations at a same time, in the
parallel workstations, and 40 DoEs at each generation (the
population of the archive set in SPEA2 algorithm), each
optimization generation takes around 15 to 20 h. The trade-
off solutions both in objective and decision variable space
seem to be converged after 17 generations. The results from
the last generation of the optimization are extracted and
presented in the next section.

It should be noted that obtaining the objective functions
most accurately is not the purpose of the FE simulation
in this study. As mentioned earlier, the FE simulation is
adopted to demonstrate the framework and simulate the
correct physical phenomenon of a basic turning operation.

4 Analysis of the framework and discussion

The potentials of the framework in investigating different
aspects of a metal cutting process is discussed in this
section. As mentioned before, the FE model used in this
study only serves the purpose of demonstrating, presenting,
and analyzing the developed framework and method for FE
simulation-based MOO of a metal cutting operation. Hence,
the following results and solutions should not be considered
optimal before validation with physical experiments.

The final chip shape and temperature distribution on the
tool and workpiece are shown in Fig. 6. The 40 trade-off
solutions obtained using SPEA2 are shown in Fig. 7. The
front reveals the conflicting nature of the MRR with other
objectives. For instance, by accepting an increase in Tint and
subsequently in ω, a more efficient process in terms of time
can be achieved. Furthermore, the direct relationship of Tint
and ω is realized from the trade-off solutions. This is the
reason why the trade-off front is redundant, i.e., the front is
a curve instead of a surface.

A helpful graphical tool for studying the relations
between variables and objectives of the trade-off solutions
is the correlation matrix plot in Fig. 8. Scatter plots of
all pairs of variables-objectives appear in subplots along
with the correlation coefficients related to each pair. The
correlation coefficients measure the strength and direction
of the linear relationship between each pair of variable

Table 4 The Johnson-Cook material parameters for AISI-1045 [38]

JC parameters A (MPa) B (MPa) C n m ε̇0 T0 (◦C) Tm (◦C)

AISI-1045 553.1 600.8 0.0134 0.234 1 1 20 1500
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Table 5 The thermal properties of the workpiece and the tool material

Thermal parameters λ (W/m K) ρ × Cp (J/cm3 K)

AISI-1045 [39] 25 ◦C < T < 600 ◦C: 25 ◦C < T < 600 ◦C:
3.91 × 10−8T 3 − 4.74 × 10−5T 2 − 0.0121T + 46.1 4.685 × 10−6T 2 + 1.527 × 10−3T + 3.664

T > 600 ◦C: 26 T > 600 ◦C: 6.28
K10 [40] 80 5.7

and objective. The linear relation of MRR with speed and
feed can be seen in the related subplots, confirmed by the
high correlation coefficient of the two subplots. Speed and
interface temperature are almost linearly correlated with
a lower correlation coefficient, where the lower limit on
the speed generates the trade-off solutions in an almost
vertical line in the ν − Tint subplot. By observing the
three subplots corresponding to γ , two clusters of solutions
concentrated around clearance angles of 6 and 11◦ are
noticeable. The subplots related to feed show that most
of the trade-off solutions are spread out on the upper
limit of the feed rate. Analyzing the results further by
focusing on the correlation coefficient provides some useful
information, about the trade-off solutions to this multi-
objective optimization problem (MOOP). For instance, high
correlation coefficient of cutting speed, 0.96, 0.94, and
0.88 with regard to ω, MRR, and Tint respectively, reveals
the greater influence of ν on all objectives compared to
other variables. Nevertheless, feed rate with correlation of

0.87, 0.80, and 0.71 with regard to Tint, MRR, and ω

respectively has the second major effect on the objectives.
The objectives have the least dependency to rake angle
followed by the cutting edge radius. The clearance angle
has a moderate effect on the objectives. The sign of the
correlation coefficient determines the direction of the linear
relationship. The positive correlation coefficients indicated
a direct influence and a negative correlation shows the
inverse influence. The clearance angle γ has an inverse
effect on all objectives. In other words, by increasing γ , the
values of all objectives will decrease.

Parallel coordinate plots are another useful tool for
analyzing MOO results as shown in Figs. 9, 10, and 11.
An application of coordinate plot is to study any trade-off
solution across all objectives and variables. For example,
solutions 13, 20, 23, and 39 are selected and highlighted
in Fig. 9. Tooling engineers can choose any solution based
on their interest on the value of any variable or objective
and find the value of other corresponding variables and

Fig. 5 Variation of tool and
workpiece maximum
temperature at the tracking
points near the contact interface
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Table 6 The mesh convergence study data

Mesh Min. element size (mm) No. of elements Simulation time (min) Interface temp. (◦C) Wear depth (mm)

Mesh1 0.04 1181 55 831.00 1.55E−07

Mesh2 0.025 1508 66 829.72 1.40E−07

Mesh3 0.01818 1917 165 819.10 1.32E−07

Mesh4 0.01414 2495 200 804.90 1.24E−07

Mesh5 0.01176 3203 335 795.31 1.18E−07

Mesh6 0.01 4042 560 795.51 1.17E−07

Fig. 6 Chip shape and temperature distribution of 4 different trade-off solutions

Fig. 7 Trade-off solutions in
objective space
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Fig. 8 Matrix plot of trade-off solutions between variables and objectives

objectives to that solution. For instance, solution 20 is
generated with a high feed rate and cutting speed, while a
tool with lowest possible cutting edge radius, a moderate
rake angle, and low clearance angle is required. These
parameters result in high Tint, ω, and MRR values. The
parallel coordinate plot can assist a decision maker to limit
the values of any parameter or combination of parameters
to investigate the possible trade-off solutions within that
range. Figure 10 shows the feasible trade-off solutions
which deliver a tool-chip interface temperature of less than
600 ◦C. Shown in Fig. 10, 8 out of the total 40 trade-off
solutions satisfy the limit on the interface temperature.
Moderate clearance angle and relatively low rake angle,
cutting edge radius, and cutting speed with a wide range of
feed correspond to this setting.

Say that in a specific case, the available tools for tooling
engineers are limited to a rake angle within [5◦, 7◦] and
cutting edge radius of [0.02, 0.04]. Figure 11 illustrates
the feasible trade-off solutions for the tool limitation
case, where only four trade-off solutions are feasible. The
solutions yield to a relatively high MRR, moderate ω, and
high Tint. Similarly, several other configuration of variables,
objectives or combination of these two can be extracted by
means of parallel coordinate plots.

4.1 Knowledge discovery

A cursory look at the matrix of scatter plots in Fig. 12 shows
us that there is a lot more to be learned from the trade-off
solution set as a whole. There are some visually apparent
correlations between the objectives and the variables that
show up in these plots. A data mining approach like FPM
is capable of extracting rules with respect to the variables
(i.e., decision space) that can then be mapped to the
objective space. When extracted rules show up as well-
defined clusters in the objective space, it indicates that these
rules are specific to certain regions of the objective space
and hence define its overall structure.

Table 7 shows all rules that can be found using FPM in a
significant part (minSig = 60% in this case) of the trade-off
solutions obtained above. The fourth column shows the
percentage of other feasible solutions that also contain the
corresponding rule. Rules are ordered such that the topmost
rule best distinguishes the trade-off set from rest of the
solutions. This distinguishing ability of the rules reduces as
we move down the table. Rules with high significance in the
trade-off set and low significance in the dominated solutions
are characteristic features of the trade-off set and thus
qualify to be knowledge that may be of interest to the user.
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Fig. 9 Parallel coordinate plot, showing selected trade-off solutions

Fig. 10 Parallel coordinate plot, showing feasible trade-off solutions with a limit on interface temperature
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Fig. 11 Parallel coordinate plot, showing feasible trade-off solutions with limitations on geometry of the tool

Rule 1 indicates that most trade-off solutions have f >

0.37894. This can also be seen in the plots in the last
column of Fig. 12. Since the bounds for the feed variable
are [0.05, 0.4], the rule represents a very narrow range of
feed values close to its upper bound. This knowledge can
be used as a thumb rule, for example, in future process
optimizations. The second and the third rules indicate that a

high proportion of trade-off solutions have γ < 8.2892 and
α < 8.0606. Such rules are not directly apparent from the
first two columns of Fig. 12, but are important for refining
the search space if more trade-off solutions are desired.
Rule 4 can also be used as a thumb rule because it suggests
a narrow range of values for the cutting edge radius, i.e.,
r < 0.024177 where the proportion of trade-off solutions is

Table 7 Rules with significance ≥ 60%

Rule No. Rules (ordered by distinguishing ability) Significance

Trade-off set Elsewhere

1 Feed, f > 0.37894 61.76 23.03

2 Clearance angle, γ < 8.2892 60.16 40.13

3 Rake angle, α < 8.0606 75.67 51.32

4 Cutting edge radius, r < 0.024177 66.84 50.33

5 Speed, v > 2448.948 69.52 58.22

6 Speed v < 4284.1997 89.04 82.89

7 Rake angle, α > 0.86467 91.71 96.38

8 Cutting edge radius, r > 0.018404 62.03 66.78

9 Clearance angle, γ > 2.0477 88.77 97.37

10 Feed, f < 0.39993 77.54 94.74
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Fig. 12 Matrix plot of solutions in all 17 generations between variables and objectives

Fig. 13 Visualization of the rule f > 0.37894 in the objective space
Fig. 14 Visualization of the compound rule f > 0.37894 ∧ γ <

8.2892 ∧ r < 0.024177 in the objective space
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higher than that of dominated solutions. The third column
of plots in Fig. 12 reveals that most trade-off solutions take
r values close to its lower bound. Like the first, this rule can
also be used as a thumb rule. Rules 5 and 6 together define a
narrower range of values for the speed v than in the original
problem, thus reducing the search space.

Note that as we go down the table of rules, the proportion
of dominated solutions that follow the rule increases. From
rule 7 onwards, this proportion is greater than that for trade-
off solutions. Therefore, these rules should not be used
for restricting the search space. However, they may still
constitute as knowledge.

Each rule can be visualized in the objective space to
reveal hidden structure. For example, Fig. 13 shows clusters
of solutions for the most distinguishing rule, f > 0.37894.
These are (i) cluster of trade-off solutions that contain this
rule (blue, 61.76%), (ii) cluster of trade-off solutions that
do not contain this rule (red, 38.24%), and (iii) cluster of
other feasible solutions that also contain this rule (yellow,
23.03%).

It is interesting to see that this rule applies to solutions
with high MRR and interface temperature.

FPM also allows us to combine different rules to form
compound rules. In this case, the significance values have to
be recalculated. For example, the first three rules in Table 7
can be combined to form f > 0.37894 ∧ γ < 8.2892 ∧
r < 0.024177. The rule is very specific and therefore,
we expect it to be applicable to fewer solutions. Figure 14
reveals the clusters that this rule generates. Note that there
is a clear transition in the objective space (from blue to
red), where this compound rules ceases to apply. Knowledge
like this can support the decision maker to understand how
changes in the optimization problem formulation can affect
Pareto-optimality of the solutions.

5 Concluding remarks

A framework for MOO of machining processes and knowl-
edge discovery by utilizing FE simulations was devel-
oped. The framework was presented and applied to turn-
ing of AISI-1045 with an uncoated K10 WC tool. Two
objectives, tool-chip interface temperature and tool wear
depth, were extracted from FE simulations and one objec-
tive, material removal rate, was computed from a math-
ematical equation. Tool geometry parameters and turning
process parameters were optimized. The trade-off solu-
tions were presented by employing different graphical
tools. Knowledge in the form of rules was extracted by
means of flexible pattern mining. The results of MOO
correspond with the available findings in literature. How-
ever, it is worth noting that most of the available litera-
ture does not treat the turning problem as multi-objective

in the same way as described in this paper. Specifi-
cally, this paper obtains the parameters that optimize three
objectives simultaneously and reveals the hidden struc-
ture between the objective space and the decision space.
Overall, the framework proved to be effective in achiev-
ing the MOO of machining processes based on actual
FE simulations. The framework can be employed in opti-
mizing other machining processes as well as expanding
the simulations to industrial 3D applications in future
work.
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Appendix: Implementation of the framework
and description of the appended files

The text-based modules of DEFORM which can be used
to set up and run simulations in automatic mode without
going through the graphic user interface (GUI) is used. The
text-based pre-processor DEF PRE.EXE is employed to
generate the database files.

The jobs (database files or FE simulation files) are
submitted by calling the simulation control script

DEF ARM CT L.COM .
There are two different types of keywords that can

be read by the pre-processor: input keywords and action
keywords. Input keywords contain data that is directly
used as data for a simulation. This can be a geometry
definition, convection coefficient values, or other such data.
Action keywords perform certain operations when the pre-
processor is reading the data.

The pre-processor can be controlled by redirecting a text
input control file (.inp). The .inp file contains the user inputs
if the text-based system were run in interactive mode. The
.key files contains a series of Action Keywordswhich trigger
the pre-processor to perform a series of options.

First, the turning problem is modeled in GUI of
DEFORM software with required material properties,

http://creativecommons.org/licenses/by/4.0/
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thermal and friction properties, boundary conditions, FE
controls, and geometries. Then, a template KEY file is
exported with all the properties (def.KEY). The nodes of
the workpiece, which the speed should be imposed on, are
also extracted as a separate key file (defSpeed.Key). The
procedure and description of different files used to generate
the FE file, a file that is ready to be run by DEFORM, is
shown in Table 8.

In a setting file (setting.ini), all the initial settings of the
automation system including the number of jobs in each
generation of optimization, available work stations and their
names, number of cores, and clock speed are set.

In the cloud project folder, two folders are created:
CurrentRun and NextRun. Each set of variables (from
the DoE) generated by optimization algorithm is saved in
NextRun folder as a text file named by gene. The number of
gene files is equal to the number of DoE in each generation
of the optimization study.

The automation system, denoted by UAS2 (Ultimate
Automation System 2), is a cloud-based Windows script
that controls and distributes the modules to computational
devices. The overall algorithm of the USA2 is as follows:

MainPC:

1. Wait while stop.txt exists
2. Clear all files and folders in \CurrentRun\PCname\

(for all PCnames)
3. Assign jobs to PC folders
4. Create go file, to signal the other PCs to run
5. Clear all Temp folders on local PC
6. RunWait AutoRun.exe on local PC
7. Run W4ALJ.exe (Wait for all local jobs) on local PC
8. Check if all PCs have started correctly
9. RunWait WaitForAllPCs.exe (Wait for all PCs)
10. Copy results to result folders
11. Delete genes in NextRun
12. Start MATLAB script
13. Wait for new genes in NextRun
14. Send Email about generation completion
15. Delete genes in CurrentRun
16. Copy genes from NextRun to CurrentRun
17. Delete genes in NextRun
18. Increment generation and goto 1

Other PCs:

1. Clear all Temp folders.
2. Wait for stop.txt
3. Wait for go.txt in CurrentRun\PCname
4. Delete go.txt
5. RunWait AutoRun
6. Run W4ALJ (Wait for all local jobs)
7. Go to 1

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.
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