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Abstract
Permutation flowshop scheduling problem (PFSP) has attracted lots of attention from both academia and industry as it finds many
applications especially for today’s mass customization. The PFSP is proved NP-hard, and the dynamic uncertainties such as
stochastic new order arrivals significantly increase the problem complexity and difficulty. Many enterprises often struggle to
make decisions on accepting new orders and setting due dates for them due to lack of effective scheduling methods. To fill in the
knowledge gap, this paper is to propose a new meta-heuristic algorithm which is based on a new enhanced destruction and
construction method and a novel repair method while adopting the architecture of the iterated greedy algorithm. Statistical tests
were conducted and results show that the new algorithm outperforms existing ones.
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Notations
JO Job set of the old order
JN Job set of the new order
dO Due date of the old order
JT Tardy job set
JE Early job set
m Number of machines
nO Number of jobs belonging to the old order
nN Number of jobs belonging to the new order
n Number of jobs from both orders, n=nO + nN
i Machine index, i∈[1,m]
j Job index for the old order, j∈[1,nO]
k Job index for the new order, k∈[1,nN]
tj, i Processing time of job j on machine i
s Job sequence
T JO
max The maximum tardiness of the old order

CJN
max The maximum completion time of the new order

1 Introduction

Customers nowadays demand more and more customized
products at no extra cost comparing to that mass produced
by dedicated production lines. Mass customization requires
flow line production systems which can respond to the chang-
ing demand quickly and efficiently. A flow line, also known as
a flowshop, refers to a production system in which machines
are allocated on a line where one or more products are
manufactured in a specified order, starting from the first to
the last. Flow lines can be found in auto manufacturing [1],
integrated circuit (IC) fabrication [2], photographic film pro-
duction [3], and pharmaceutical and agro-food industries [4].

Flowshop scheduling is a challenging problem [5–9]. The
flowshop scheduling problem has been proven to be non-
deterministic polynomial-time hard (NP-hard) when the num-
ber of machines is larger than 2 [10]. Many studies [5, 11]
focus on the static environment which simplifies the problem
constraint. However, more attention should be paid to dynam-
ic aspects that frequently occurred in reality such as new order
arrival [12, 13], machine breakdown [14], and rush order [15].
It is typical in today’s mass customization that new orders
frequently arrive into factories. The randomness of new orders
often leads to sheer complexity in scheduling due to the dy-
namic changes given various constraints of resources. The
uncertainties in terms of job types, job numbers, arrival times,
due dates, etc. have created significant challenges [12, 16],
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which increases the complexity of the scheduling problem sig-
nificantly. This happens in warehouses as well, and the problem
is defined online order batching problems [17–20], in which
new orders arrive frequently and stochastically, and scheduling
or rescheduling should respond immediately upon their arrival.
Three key questions should be considered concerning new or-
ders: (1) if the new order can be accepted or not, given the due
date constraint of the old order; (2) how to complete the new
order as soon as possible; and (3) how to maximize the number
of accepted orders in order to maximize revenue.

The problem is a constraint optimization problem. It is NP-
hard in the strong sense especially when the due date of the old
order is loose as it can be reduced to the PFSP by including all
jobs from new orders [13]. In this paper, a new meta-heuristic
is derived from the framework of the iterated greedy (IG)
algorithm [21] under which a new enhanced destruction and
construction method and a novel repair method are proposed.
The paper is organized as follows. Literature review is pre-
sented in section 2, followed by the problem statement in
section 3. Section 4 presents the new meta-heuristic algorithm
named eIG_Rep. Section 5 introduces the experimental vali-
dation of the new algorithm. Section 6 concludes this paper.

2 Related work

The approaches to handling uncertainties can be classified into
three categories [22, 23]: (1) reactive approach; (2) proactive
approach; and (3) predictive-reactive approach. The reactive
methods such as the shortest processing time (SPT) rule, the
first come first serve (FCFS) rule, and the longest processing
time (LPT) rule can be easily used to schedule jobs in real
time. Right shifting (RS) strategy and real-time (RT) strategy
are also reactive methods for coping with newly arrived orders
[12]. RS and RT are two strategies which attach new orders to
the end of the existing schedule. It has been confirmed that
rescheduling the remaining jobs of the old order can provide a
higher quality schedule [13, 16, 24]. However, no reactive
methods can provide high-quality solutions with order
mixing, therefore missing the opportunity of optimized sched-
ule [25]. Proactive scheduling techniques are developed based
on anticipated disturbances [26, 27]. It is widely used to deal
with uncertainties that are easy to predict and simulate. By
assuming probabilistic processing times, an improved genetic
algorithm is developed in order to maximize the probability of
completing orders before expected due dates [28]. A two-
phase simulation-based algorithm is developed for flowshop
scheduling with stochastic processing times [29]. Though the
proactive approaches are robust to uncertainties, it cannot be
applied to the problem studied in this paper, because new
order arrivals are difficult to be predicted and simulated pre-
cisely due to many uncertain parameters in terms of job types,
number of jobs, arrival times, and due dates.

The predictive-reactive approaches are commonly used
scheduling methods under uncertainties [30, 31]. Two main
steps are included: (1) a predictive schedule is generated over
the time horizon and (2) the resulted schedule is then modified
to respond to uncertainties. To handle newly arrived orders, a
genetic algorithm with the non-reshuffle and reshuffle strate-
gies is proposed for job scheduling, and a match-up strategy is
applied to determine the time window for rescheduling of
flexible manufacturing systems [32]. A hybrid algorithm by
integrating genetic algorithm and tabu search algorithm is de-
veloped as a rescheduling technique to cope with new orders
andmachine breakdowns simultaneously in jobshops [33]. An
assignment model is built for generating the baseline schedule
and an improved genetic algorithm is developed for
rescheduling of new orders in single-machine layout [34]. A
refreshing variable neighborhood search (RVNS) approach is
presented for job rescheduling to set common due dates for
newly arrived orders in permutation flowshops [13]. In sum-
mary, the predictive-reactive method is the most popular one
and it can provide high-quality schedules as order mixing can
be achieved in job rescheduling. However, existing work fo-
cuses on jobshop or flexible manufacturing system [33, 34].
The PFSP coping with new orders of multiple jobs has not
been well addressed.

Iterated greedy (IG) algorithm is a predicative-reactive ap-
proach. In the IG algorithm framework, a greedy construction
heuristic including destruction and construction phases is iter-
ated until the stopping criterion is satisfied, and a local search
can be applied to further improve the performance. Depending
on the solution feasibility, a repair method could also be used
in order to enhance the algorithm’s effectiveness. IG has been
employed to solve many scheduling problems [35–39], in-
cluding the static permutation flowshop scheduling problems
(PFSP) [40]. However, it tends to be trapped to local optimum.
Manymodifications have been developed for the IG algorithm
[39–41]. For the destruction and construction phases, the ma-
jority of studies focus on the job insertion method. To avoid
repeated job removing, tabu-based destruction methods are
developed [39, 42]. Different heuristics or strategies are pre-
sented for choosing suitable jobs [43]. In [35], the prior and
posterior jobs of the inserting job are reinserted in all possible
positions in the construction phase. Some speed-up methods
are presented for improving job insertion efficiency [38, 40].
Moreover, many studies concentrate on escaping from a local
optimum with the destruction and construction phases [44,
45]. An insertion perturbation is designed to provide a differ-
ent solution from the previous local optimum [44]. Some stud-
ies alter the number of perturbed jobs to change the strength of
perturbation [36, 38]. Normally, it is a fixed and small value
[45]. However, it has been confirmed that no single fixed
value could ensure high-quality solutions [36]. It is difficult
to escape from a local optimum if a small number of perturbed
jobs is defined [35, 44, 46]. In [36], the number of perturbed
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jobs is randomly selected within a defined range. In [38], a
differential evolution algorithm is modified and used to opti-
mize the number of perturbed jobs within IG algorithm for no-
idle permutation flowshop scheduling problems. However,
extra computation time is needed for the optimization process.

Many variants or modifications [41, 43] have been devel-
oped by modifying the local search method for improving IG
algorithm performance. A descent local search is added to the
IG algorithm for complex flowshop problems with sequence-
dependent setup times [41]. Three local search methods are
revised based on jump moves, swap moves, and variable
neighborhood descent approach for a scheduling problem
with unrelated parallel machines [43]. For no-wait flowshop
scheduling problems, a neighborhood search method based on
insert, swap, and double-insert moves is developed [39]. A
variant of the non-exhaustive descent algorithm is developed
by swapping any two positions in the sequence and the influ-
ence of ties is also investigated during the local search [37]. It
can be concluded that different problems need different local
search methods. In this paper, a dedicated local search mech-
anism is proposed for skipping infeasible solutions which vi-
olate the due date constraints of old orders, in order to save
computation time.

For highly constrained optimization problems, e.g., new
order scheduling problem with due date constraints of old
orders, solution feasibility may not be guaranteed during
searching process, especially when using meta-heuristics
[47]. It is important to determine whether the infeasible solu-
tions are discarded or searched for finding feasible solutions.
A repair algorithm is developed in GA algorithms for solving
numerical optimization problems with nonlinear constraints
where two separate populations are kept, one for marking
“search points” which are to be repaired and evaluated, and
the other for keeping “reference points” which are used for
evaluation directly [47]. A repair algorithm for robot path
planning problems is presented through designed genetic op-
erators based on prior knowledge [48]. A genetic repair oper-
ator is designed in parallel GA algorithms for the traveling
salesman problem and the graph partitioning problem by con-
structing a new feasible chromosome after identifying all gene
loci and alleles [49]. There are two techniques to deal with the
fixed infeasible solutions after repairing: returning it to popu-
lations or not. Some studies [50, 51] have taken the “never
replacing” approach, i.e., the repaired is never returned to the
population, while others [13] have taken the “always replac-
ing” approach. Orvosh and Davis [52] evaluate the perfor-
mance of both techniques in GA algorithms in terms of
returning the repaired or the original chromosome to popula-
tions. In summary, there are no standard heuristics for design-
ing a repair algorithm [53], and a repair method is usually
problem-dependent [54].

Various acceptance criteria are used for different problems.
A criterion “replace if better” (RB) is adopted for dynamic

parallel machine problems [55]. In solving blocking jobshop
problems, two acceptance criteria are developed, i.e., random
walk (RW) and simulated annealing-like (SA) [56]. When
using RW, each feasible solution is accepted after the con-
struction phase. While using SA, only the feasible solution
with a better performance is accepted, or the candidate solu-
tion is accepted with a probability. In [43], RB and RW criteria
are used for unrelated parallel machine problems. In [36], a
simulated annealing-like acceptance is applied with a sinking
temperature value in order to diversify the searching area for
distributed permutation flowshops. In IG algorithms, a simu-
lated annealing-like acceptance criterion is widely adopted
[35, 41]. However, for the constrained optimization problem
studied in this paper, e.g., new order scheduling problem with
due date constraint of old orders, solution feasibility may not
be guaranteed during searching process, especially in meta-
heuristics [47]. It is important to determine whether the infea-
sible solutions are discarded or searched for finding feasible
solutions. Three strategies are generally used to handle infea-
sible solutions: reject, penalize, and repair [57]. Reject strate-
gy is a simple approach where only feasible solutions are kept.
It is reasonable to use this strategy when computation time is
to be saved. Penalizing strategy focuses on designing an ap-
propriate penalty function for the infeasible ones. It is difficult
to find a good compromise between the objective value and
the penalty. Repair method is a constraints handling strategy.
In many cases, the feasible region of the search space is very
small, and feasible solutions may be surrounded by the infea-
sible ones. So it is necessary to guide the search towards
feasible regions based on the infeasible solution information.
In this paper, the acceptance criteria take infeasible solutions
into consideration.

3 Problem statement

As shown in Fig. 1, the problem studied in this paper is a
constraint optimization problem in which nO jobs of the old
order JO have been scheduled but not fully completed yet
when nN jobs of the new order JN come into the production
system [16, 25]. All jobs of the old order have a common due
date dO which cannot be violated. Mathematically, it can be
expressed as T JO

max ¼ 0. It is assumed that new orders will
arrive continuously and randomly but only one at a time. So
it is a dynamic problem but order selection is not considered in
this paper. In order to set a tight due date for JN and accept the
maximum number of orders, the objective is defined as min-

imizing the maximum completion time of the new order CJN
max

given the constraint of machine availability, ak, following the

convention of [24]. The problem can be denoted as Fm

prmu; dO; ak C JN
max

���� =T JO
max ¼ 0 according to [58] where Fm

represents a flowshop with m machines, prmu stands for
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permutation, dO indicates that all jobs of the old order have a
common due date, ak represents the availability on machine k
and CJN

max=T
JO
max ¼ 0 is a constrained objective. Therefore, the

objective function and due date constraint can be expressed as

Min : F sð Þ ¼ C JN
max; ð1Þ

T JO
max ¼ 0: ð2Þ

where s represents a job sequence. The assumptions are de-
fined as follows.

(1) All jobs should start as soon as possible;
(2) Processing times are known and deterministic;
(3) Setup time is included in the processing time for each

operation;
(4) Machines are continuously available but cannot process

two or more jobs simultaneously;
(5) Job pre-emption is not permitted;
(6) Buffers’ capacity between machines is infinite;
(7) Only permutation schedules are allowed;
(8) Each order arrives randomly;
(9) Only one order arrives at a time;
(10) Each order may contain one or multiple jobs;
(11) Job information is known when the order arrives;
(12) All jobs in an order should be finished before its due date;
(13) Once a new order arrives, rescheduling is activated;
(14) If all existing jobs are finished and no new jobs arrive,

all machines stay idle and available;
(15) No more than two orders can be mixed together, i.e.,

only the last old order can be rescheduled with the new-
ly arrived order.

Note that when the new order arrives, the existing uncom-
pleted jobs from the old order will be rescheduled with the
new order. Old order jobs and partial jobs from the new order
have to be scheduled before the due date. Therefore, the slack
between the due date and its completion time of the old order
has a direct impact on the resulted schedule. A relaxed due
date of the old order can absorb more jobs from the new order
and have a better chance to obtain a high-quality schedule. So,
a reasonable and relaxed due date for the old order is assumed.

To solve the above problem, a new meta-heuristic is pro-
posed based on the IG algorithm. Three types of problems
including due date setting, order acceptance, and maximizing
the number of accepted orders are studied.

4 New meta-heuristic: a modified iterated
greedy algorithm (eIG_Rep)

In this section, a new meta-heuristic algorithm named the
enhanced iterated greedy algorithm with repair method
(eIG_Rep) is proposed. It is derived from the IG algorithm
which is a single-point meta-heuristic that only one popu-
lation is saved and searched in each iteration. It is fast but
easy to be trapped in a local optimum even if an acceptance
criterion is used. Therefore, an effective escape mechanism
from a local optimum should be designed. Besides, the
studied problem in this paper has a strong due date con-
straint that jobs from the old order should be completed by
their due date. The best feasible solution may be
surrounded by and evolved from infeasible solutions. So,
an effective repair method is required to convert infeasible
solutions into feasible ones.

During the searching process, the following two challeng-
ing issues should be solved: (1) how to escape from a local
optimum and (2) how to repair infeasible solutions effectively.
To address these issues, a new destruction and construction
method and a new repair approach are proposed in this paper.

Figure 2 shows the flow chart of the new eIG_Rep algo-
rithm. First, during initialization, the initial solution is gener-
ated, and the local search is applied to the initial solution. The
initial parameters are given including δ, z, δ′, and Ti. In the
main body of the algorithm, destruction and construction, lo-
cal search, repair method, and acceptance criterion are run in
an iterated manner until the stopping criterion is satisfied.
Note that in the new enhanced destruction and construction
method, the number of perturbed jobs, δ, should be first de-
cided before destruction and construction phases. The local
search is then applied to the incumbent. If the solution resulted
from the local search is infeasible, repair it. Otherwise, accep-
tance criterion is conducted directly. The details of the new
algorithm are described below.

Old order due 

date 

Old order JO New order JN

dO

New order arrives

Old order 

completion time (slack)

Fig. 1 Problem description
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4.1 Initialization

An initial population is required for the eIG_Rep algorithm
at the beginning. For this need, three initial solutions are
generated: one is obtained by the NEH heuristic [59] that
jobs from both the old and the new orders are mixed and
scheduled without accounting for the due date constraint;
the other two are generated by RS and RT strategies [12]
respectively implemented with the NEH heuristic. Among
these three solutions, the feasible one with the best objec-
tive value is chosen as the initial best solution Sbest. So, a
feasible solution is guaranteed in the initialization phase as
a relaxed due date is assumed and determined by RT strat-
egy implemented with the NEH heuristic. The local search
method is then applied to Sbest. If a solution S obtained
through the local search is feasible and better than Sbest,
then Sbest will be updated by S. Note that S is defined as the
incumbent solution in each iteration. The local search
method will be detailed in section 4.3.

Four key parameters δ, z, δ′, and Ti are set during initiali-
zation. δ represents the number of perturbed jobs, δ′ is the
enlarged number of perturbed jobs in the destruction and con-
struction method, z indicates the number of iterations allowing
the performance of the incumbent to remain steady while not
enlarging perturbation, and Ti represents a control parameter
for the acceptance criterion.

4.2 New destruction and construction method

In the herein paper, a new destruction and construction meth-
od with a steered variation approach for δ is designed in order
to escape efficiently from a local optimum while maximizing
the computational efficiency. The new method is presented as
follows.

In the destruction phase, δ jobs are randomly select-
ed, half from the old order and half from the new order.
So δ is defined as an even number. When the incum-
bent is trapped in a local optimum or its objective value
stays unchanged for z iterations, the perturbation will be
intensified by replacing δ with a larger value δ′ (δ′ > δ).
The number of removed and reinserted jobs increases to
δ′, so as to diversify the population and escape from the
local optimum. Once the objective value of the incum-
bent is improved, δ is changed back to a smaller value
in order to save computation time.

For example, 4 (δ = 4) jobs are evenly selected from both
the old and new orders in destruction phase. If the objective
value does not improve after 2 (z = 2) iterations, 6 jobs (δ’ = 6)
are then selected to enlarge the perturbation. If the objective
value is improved, δ is changed back to maintain algorithm
efficiency.

In the construction phase, for our problem, many in-
feasible solutions will be generated if all positions are

Start

Initialization:

1) Define parameters:δ, z, δ’, Ti
2) Generate the initial solution

3) Apply local search

If stopping criterion
is satisfied?

Destruction & Construction:

δ (or δ’) jobs are removed and

reinserted back

Change δ or not?

Local search

Repair?

Apply the new repair method

No

End

Yes

No

Acceptance criterion

Yes

Yes

No

New enhanced

destruction &

construction method

Fig. 2 Flow chart of the eIG_Rep
algorithm (δ, the number of
perturbed jobs; z, the number of
iterations with δ unchanged; δ′,
the enlarged number of perturbed
jobs; Ti, a parameter to adjust the
temperature in acceptance
criterion)
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investigated when inserting jobs of the old order. The
due date constraint will be violated if the jobs of the
old order are reinserted after the due date. To avoid
infeasible solutions, the idea of general local search
[13] is used. If the job belongs to the new order, it is
reinserted into each possible position. For the job from
the old order, it is reinserted into each possible and
feasible position given the due date constraint. That is,
if the maximum completion time of the reinserted job
exceeds the due date, the subsequent positions are then
neglected. After construction, if a better and feasible
solution is generated, then Sbest is updated.

4.3 Local search

In the IG algorithm, a local search can be applied after the
construction phase to improve its performance [21]. In this
paper, the general local search method [13] is modified to
avoid infeasible solutions and save computational time.

Flow chart of the local search is shown in Fig. 3. For a
given solution, choose one job and insert it into each possible
and feasible position sequentially. When inserting jobs by
using Taillard improvement [60], jobs from the old order are
inserted given the due date constraint. That is, when the max-
imum completion time of the inserted job exceeds the due

Start

Select the earliest job of the

given solution sequence

All positions are

examined?

Insert it back into a possible

position and calculate the

objective value of the resulted

sequence

Is the job belonging to
the old order?

Is the due date constraint
violated?

No

End

Yes

No

Skip the subsequent positions

Yes

Yes

No

Yes

No

All jobs are reinserted?

Fig. 3 Flow chart of the local
search
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Start

End

Yes

Yes

No

Identify all tardy jobs and

early jobs in the infeasible

solution

Calculate the Euclidean

distances between the tardy

job and early jobs, and choose

the pair with the least

Euclidean distance

No early jobs?

All tardy jobs

reinserted?

Swap the positions of the

paired jobs

Insert the tardy job before

the last job of the old

order randomly

No

Fig. 4 Flow chart of new repair
method
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Fig. 5 ARPD values of different parameter combinations on small instances of VRF benchmark
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Table 1 ARPD values of each
algorithm on Taillard benchmark Problem RS_NEH RT_NEH MR_WWD RS_IG RT_IG RVNS eIG_Rep

20 × 5 19.95 10.35 6.51 17.86 9.36 3.21 2.30

20 × 10 19.36 11.14 9.46 19.99 8.73 3.03 1.35

20 × 20 18.09 10.86 3.73 17.27 8.32 1.18 0.11

50 × 5 11.83 5.28 2.78 10.78 4.36 1.28 0.45

50 × 10 22.90 11.09 8.24 18.83 7.07 5.66 2.52

50 × 20 23.00 12.10 9.19 19.84 8.56 6.89 3.29

100 × 5 10.45 3.77 1.71 8.26 2.92 1.08 0.28

100 × 10 15.30 7.25 4.61 12.66 5.36 3.90 1.58

100 × 20 20.16 10.98 8.01 17.17 7.35 7.23 4.04

200 × 10 12.43 4.11 3.05 10.80 3.04 2.55 1.16

200 × 20 18.24 8.94 7.03 16.31 6.95 7.01 4.74

500 × 20 12.83 4.94 4.60 11.66 4.30 4.00 3.37

AVG 17.05 8.40 5.74 15.12 6.36 3.92 2.10

Table 2 ARPD values of each algorithm on VRF benchmark

Problems RS_NEH RT_NEH MR_WWD RS_IG RT_IG RVNS eIG_Rep

S L S L S L S L S L S L S L S L

10 × 5 100 × 20 14.25 20.82 8.09 10.75 2.06 5.63 12.84 16.98 7.38 6.95 0.00 4.75 0.00 2.93

10 × 10 100 × 40 10.93 18.07 5.54 9.97 1.63 5.48 10.31 15.83 4.44 6.22 − 0.27 4.68 − 0.27 3.00

10 × 15 100 × 60 12.94 17.00 7.43 9.52 1.53 4.76 12.25 13.90 6.69 6.13 0.00 4.39 0.00 2.55

10 × 20 200 × 20 13.44 17.29 6.71 8.37 1.99 4.17 12.65 15.04 5.89 6.08 0.00 3.47 0.00 2.76

20 × 5 200 × 40 18.43 17.61 7.65 9.40 1.53 4.74 15.48 15.10 5.56 6.80 0.37 4.21 0.03 3.24

20 × 10 200 × 60 22.85 16.05 12.95 8.74 4.82 4.40 20.71 13.75 10.38 6.23 1.54 4.17 0.16 3.27

20 × 15 300 × 20 19.32 14.52 11.26 6.79 4.29 3.03 18.44 13.51 8.29 5.53 1.27 2.55 0.13 2.14

20 × 20 300 × 40 18.16 16.20 10.49 8.07 4.12 4.02 16.24 14.39 7.86 6.73 1.35 3.69 0.11 3.25

30 × 5 300 × 60 14.82 15.30 5.16 8.01 1.64 3.98 9.69 13.62 3.04 6.47 0.54 3.72 0.11 3.16

30 × 10 400 × 20 22.82 13.34 12.33 5.77 5.26 2.48 19.77 12.12 8.50 4.63 2.62 2.16 1.09 1.84

30 × 15 400 × 40 25.97 14.76 14.67 7.20 5.73 3.54 23.33 13.41 10.19 6.12 2.98 3.36 1.07 3.09

30 × 20 400 × 60 19.73 14.51 11.67 7.12 5.41 3.62 17.74 13.13 7.13 6.16 3.00 3.38 0.91 2.98

40 × 5 500 × 20 13.49 12.34 5.42 4.86 1.20 2.05 10.63 11.15 3.54 4.20 0.20 1.92 0.13 1.77

40 × 10 500 × 40 22.31 13.93 12.41 6.66 4.97 3.09 18.51 12.94 7.24 5.82 2.87 3.00 1.21 2.70

40 × 15 500 × 60 22.64 14.03 12.13 6.88 6.08 3.28 17.98 13.01 7.77 6.15 3.65 3.04 1.51 2.71

40 × 20 600 × 20 21.88 10.97 13.13 4.27 5.16 1.72 18.14 10.18 8.19 3.61 3.78 1.29 1.73 1.16

50 × 5 600 × 40 12.14 13.51 4.38 6.05 1.05 3.07 11.10 12.31 3.12 5.53 0.22 2.97 0.04 2.77

50 × 10 600 × 60 20.09 12.99 10.40 6.43 4.45 2.88 16.20 12.12 6.59 5.88 2.60 2.79 1.02 2.61

50 × 15 700 × 20 22.77 10.39 12.52 4.09 6.38 1.38 18.68 9.80 7.82 3.65 4.83 1.23 2.17 1.05

50 × 20 700 × 40 21.56 12.81 11.97 5.96 5.91 2.71 18.66 12.08 7.27 5.39 4.37 2.64 2.23 2.44

60 × 5 700 × 60 12.35 12.78 3.59 6.19 1.51 2.71 9.78 12.06 2.63 5.61 0.12 2.54 0.03 2.41

60 × 10 800 × 20 18.74 9.49 10.25 3.79 3.81 1.29 16.54 8.89 6.78 3.33 2.82 1.08 1.18 0.95

60 × 15 800 × 40 22.73 11.93 12.12 5.32 5.97 2.60 18.04 11.30 7.49 4.89 4.39 2.31 2.15 2.15

60 × 20 800 × 60 20.52 12.13 12.06 5.76 6.44 2.71 18.33 11.62 8.02 5.34 4.82 2.62 2.64 2.41

AVG(S) AVG(L) 18.54 14.28 9.76 6.92 3.87 3.31 15.92 12.84 6.74 5.56 2.00 3.00 0.81 2.47

AVG 16.41 8.34 3.59 14.38 6.15 2.50 1.64

The italic number is the best ARPD value for each problem
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date, the subsequent positions are not examined. All jobs are
selected and inserted one by one and the best solution is saved.
After local search, if the generated solution is feasible and
better than Sbest, then Sbest is updated. Otherwise, a repair
method is applied.

4.4 New repair method

Although infeasible solutions whose completion times are be-
yond the due date constraint are largely avoided, many infea-
sible solutionswith better objective valueswould be generated
after the local search. Therefore, a repair method is required to
convert these infeasible solutions into feasible ones during the
search. In this paper, a novel repair mechanism is proposed.

Figure 4 shows the flow chart of the new repair method.
The jobs of the old order JTwhich are completed beyond their
due date are selected and defined as tardy jobs. The jobs of the
new order JE which are scheduled before the due date are
deemed as early jobs. In order to fix the infeasible solutions
and keep their excellent performance, the tardy jobs and early

jobs with similar processing times are paired and swapped one
by one until all tardy jobs are scheduled before the due date.
Herein, the least Euclidean distance is introduced as a measure
of similarity of tardy and early jobs, in order to maintain the
overall performance of the schedule after swapping. The
Euclidean distance between two jobs is defined as

Ed ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑m

i¼1 t j;i−tk;i
� �2q

; i∈ 1;m½ �; j∈ 1; nO½ �; k∈ 1; nN½ �: ð3Þ

If the number of tardy jobs JT is larger than that of JE, the
rest jobs in JT after pairing will be randomly inserted before
the last job position of the old order. After repairing, if a
feasible and better solution is found, Sbest is then updated.

4.5 Acceptance criterion

In the IG algorithm, a simulated annealing-like acceptance
criterion is normally used to improve population diversifica-
tion and escape from a local optimum. During searching, the
incumbent does not have to be feasible. If the solution S′
resulted from the local search or the repair method has a better
objective value, it is then used as the new incumbent S. If the
solution S′ is worse than previous incumbent, it can also be
accepted as the new incumbent with a probability of

e− Cmax S
0ð Þ−Cmax Sð Þð Þ =Temp, where Temp ¼ Ti � sumt

n01þn2ð Þ*m*10,
where sumt is the sum of job processing times including the

remaining jobs of the old order and the new order, n
0
1 is the

number of the remaining jobs from the old order, n2 is the
number of jobs from the new order, and Ti is a parameter to
adjust the temperature which needs to be defined in the ini-
tialization. Otherwise, the current incumbent S is retained if
the probability is not satisfied.

4.6 Calibration

In order to fully investigate algorithm potentials, parameter
values should be decided carefully. In this paper, reference al-
gorithms such as RS_NEH [12], RT_NEH [12], MR_WWD
[25], RS_IG, RT_IG, and RVNS [13] are included. As few
studies are involved with this topic, three existing heuristic al-
gorithms, namely RS_NEH, RT_NEH, and MR_WWD are
considered. No parameters need be tuned for them. IG is also
adopted with RS and RT strategies, denoted by RS_IG and
RT_IG for performance comparison. RVNS, as the existing
study on this topic, is taken as the reference in this paper.

The parameters of IG algorithms in RS_IG and RT_IG
algorithms should be carefully selected and kept same. Since
the studied problem in this paper is similar to that of [13], δ = 4
and Ti = 0.4 are selected as they have been confirmed robust in
solving PFSPs and due date setting problems.

eIG_RepRVNSRT_IGRS_IGMR_WWDRT_NEHRS_NEH
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Fig. 6 Means and 95% HSD intervals for RS_NEH, RT_NEH, MR_
WWD, RS_IG, RT_IG, RVNS, and eIG_Rep on Taillard benchmark
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Fig. 7 Means and 95% HSD intervals for RS_NEH, RT_NEH, MR_
WWD, RS_IG, RT_IG, RVNS, and eIG_Rep on VRF benchmark
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RVNS algorithm [13] focuses on setting tight due dates for
new orders by minimizing makespan of the new order. It can
be transformed into solving dynamic PFSPs with new order
arrivals, and it is taken as a reference algorithm. In the RVNS
algorithm, two parameters are required, i.e., kmax and q. kmax is
the maximum number of jobs in shaking method and q is the
percentage of jobs in escape procedure. According to [13],
kmax is set as 40 and q is randomly obtained between 75 and
95% of the number of jobs in either the old or the new order
depending on the feasibility of the solution.

In the new algorithm, eIG_Rep, four parameters including
δ, z, δ′, and Ti need to be defined. The test ranges of each
parameter are described as follows.

δ∈ 2; 4; 6; 8f g;
z∈ 1; 2; 4; 6f g;
δ’∈ 4; 6; 8; 10f g;
Ti∈ 0:2; 0:3; 0:4; 0:5; 0:6f g:

Due to δ′> δ, (4 + 3 + 2 + 1) × 4 × 5 = 200 combinations in
total can be generated for the eIG_Rep algorithm. To choose
the most robust parameters for the eIG_Rep algorithm, all 200
combinations are tested.

Herein, the objective of setting a tight due date for the new
order is taken for algorithm calibration since it can be validated
on a large number of instances. The small instances of VRF
benchmark [61] are used as samples. Each instance is evenly
divided into two sets: the first half including the front part of the
instance is taken as the old order while the second half is

defined as the new order. Herein, the old order due date is set

as a constant, (1 + α)×CJO
max, where α is the relaxation factor

and CJO
max is the maximum completion time of the old order

obtained by the NEH heuristic. α is defined as 0.4. The
computation time limit n × (m/2) × t milliseconds where
t = 60 [21, 62] is defined as the stopping criterion. To avoid
stagnation, all algorithms are run for 10 independent times
and the best solution for each instance is retained. Note that
the stopping criterion is also used in the following sections.
All algorithms are coded in Matlab R2014b and run on a
CPU E5520 computer with 6G memory.

To evaluate each algorithm, the performance measure of
relative percentage deviation (RPD) is employed, and it is
computed as follows:

RPD ¼ CJN
max−UB
UB

� 100%; ð4Þ

where CJN
max is the maximum completion time of the new order

obtained on every instance, UB is the upper bound for each
instance. TheUB values provided by Vallada et al. [61] are used
directly because the problem can be deemed as a static permu-
tation flowshop scheduling problem if the slack between the
completion time and due date of the old order is very loose
and all jobs from the new order can be completed in the slack.

Figure 5 shows the results of each combination of the pa-
rameters on small instances of VRF benchmark. As shown in
Fig. 5, the best three combinations {δ, z, δ′, Ti} associated with

Table 3 Paired samples t test
results on Taillard benchmark Pair Paired differences t p

Mean SEM Lower Upper

RS_NEH – eIG_Rep 14.94651 .45780 14.04001 15.85301 32.648 .000

RT_NEH – eIG_Rep 6.30151 .33727 5.63368 6.96934 18.684 .000

MR_WWD – eIG_Rep 3.64559 .23142 3.18736 4.10382 15.753 .000

RS_IG – eIG_Rep 13.02019 .47275 12.08409 13.95628 27.541 .000

RT_IG – eIG_Rep 4.26178 .30006 3.66764 4.85593 14.203 .000

RVNS – eIG_Rep 1.81990 .11024 1.60160 2.03819 16.508 .000

Table 4 Paired samples t test
results on VRF benchmark Pair Paired differences t p

Mean SEM Lower Upper

RS_NEH – eIG_Rep 14.76971 .23650 14.30500 15.23442 62.451 .000

RT_NEH – eIG_Rep 6.69939 .16645 6.37233 7.02645 40.249 .000

MR_WWD – eIG_Rep 1.94909 .08031 1.79130 2.10689 24.271 .000

RS_IG – eIG_Rep 12.74025 .19755 12.35208 13.12841 64.492 .000

RT_IG – eIG_Rep 4.51068 .11758 4.27964 4.74172 38.362 .000

RVNS – eIG_Rep .86038 .04103 .77976 .94101 20.969 .000
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the lowest average RPD (ARPD) values on every instance are
{2, 1, 6, 0.5}, {4, 2, 6, 0.6}, and {6, 4, 6, 0.6}. To further
check the performance of these parameter combinations, they
are tested on VRF large instances and results show that the
combination {4, 2, 6, 0.6} provides robust solutions on both
small and large instances. So, the parameters of the new algo-
rithm eIG_Rep are set as {4, 2, 6, 0.6}.

5 Experimental validation

To validate the new algorithm, two evaluation schemes are con-
ducted. One is to set the earliest due dates for new orders, and
the second is to maximize the accepted number of orders whose
due dates are given by a case study. The criterion of accepting an
order is based on the due date. If the new order can be completed
by its due date, it is accepted. Otherwise, it is rejected.

Fig. 8 Convergence curve of eIG_Rep on TA052 Taillard instance

Fig. 9 Convergence curve of eIG_Rep on VRF 30_20_2 instance Ta
bl
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5.1 Setting a tight due date

To fully evaluate the effectiveness of the new eIG_Rep algo-
rithm, both Taillard [63] and VRF benchmarks are used, and the
performancemeasure ARPD is adopted. As described in section
4, each instance is evenly divided into two sets representing old

and new orders. The old order due date is set as (1 +α)×CJO
max,

where α set as 0.4. The UB values for Taillard benchmark are
taken from [64]. Each meta-heuristic algorithm is run for ten
times and the best one on each instance is retained.

Table 1 shows the test results of each algorithm on Taillard
benchmark. The new eIG_Rep algorithm has an ARPD value
of 2.10 which is much better than that of all the other refer-
ences including RS_NEH, RT_NEH, MR_WWD, RT_IG,
RS_IG, and RVNS algorithms. It performs best under most
situations. Note that these algorithms, such as MR_WWD,
RVNS, and eIG_Rep, allowing order mixing, show better per-
formance than RS_NEH, RT_NEH, RS_IG, and RT_IG algo-
rithms in which no order mixing is allowed.

Test results on VRF benchmark are shown in Table 2. The
same conclusion can be obtained. The eIG_Rep algorithm
provides the best result in terms of ARPD, followed by
RVNS, MR_WWD, RT_IG, RT_NEH, RS_IG, and
RS_NEH algorithms.

Figures 6 and 7 show the means plots and 95 confidence
intervals of each algorithm on both benchmarks. No overlaps
of ARPD means are observed between eIG_Rep and other
algorithms, demonstrating that eIG_Rep shows significantly
better performance.

In order to check if the differences of these ARPD values are
statistically significant, the paired samples t test is conducted
with a confidence level of 95%. Results are shown in Table 3
and Table 4 for both Taillard and VRF benchmarks. The p
values for the comparison of the new algorithm are 0.000 on
both test beds. Thus, it can be concluded that there are signifi-
cant differences between the performances of the new algorithm
eIG_Rep comparing to these reference algorithms.

Figures 8 and 9 show the convergence curve of the new
algorithm on two instances, TA052 from Taillard and VRF
30_20_2 instance. The algorithm, eIG_Rep, is run for five
times independently on each instance. It can be observed that
the new algorithm generates stable solutions each time. The
solution quality improves after several iterations as the size of
the new destruction and construction method varies, escaping
from a local optimum.

5.2 Case study onmaximizing the number of accepted
orders

To check the capability of each algorithm for the objec-
tive of maximizing the acceptance of new orders, a case
study is conducted. It is assumed that ten orders with

assigned individual due dates arrive continuously and
randomly. Both the arrival times and due dates of each
order are generated randomly. The ten orders are select-
ed from Taillard benchmark [63], i.e., TA011-20
instances.

Table 5 shows the test results of order acceptance.
No more than half of the new orders are completed
by due dates if RS_IG and RT_IG algorithms are used.
RVNS algorithm can accept seven new orders while the
new eIG_Rep algorithm can complete nine new orders
before their due dates. It can be seen that the algorithms
with order mixing show a better chance of obtaining
high-quality schedules against makespan. More orders
can be absorbed and completed by their due dates.
And eIG_Rep is more effective than RS_IG, RT_IG,
and RVNS algorithms for this case.

6 Conclusions

This paper proposes a new algorithm for solving dy-
namic scheduling problems in permutation flowshops
with new order arrivals. A new algorithm, named as
eIG_Rep, is introduced based on a new destruction
and construction method together with a novel effective
repair method. The new destruction and construction
method is developed by changing the strength of pertur-
bation if the population performance remains unchanged
for some iterations, in order to escape from a local
optimum while maintaining high computational efficien-
cy. The new repair method is developed for the first
time by swapping tardy and early jobs. By using the
new repair method, the infeasible solutions are convert-
ed into feasible ones while maintaining their solution
quality as much as possible.

Statistical test results show that the new algorithm
eIG_Rep is effective and outperforms the existing and
reference algorithms including RS_NEH, RT_NEH,
MR_WWD, RS_IG, RT_IG, and RVNS. This new
eIG_Rep algorithm can be well applied to three types
of problems, i.e., due date setting problem, order accep-
tance problem, and maximizing the number of accepted
new orders. For the problem of setting tight due dates
of orders, both the Taillard and VRF test beds are used
for algorithm validation and the effectiveness of the new
algorithm is demonstrated on both benchmarks. For the
problems of order acceptance and revenue maximiza-
tion, ten orders are assumed by assigning random arriv-
al times and due dates when evaluating the new algo-
rithm. Test results show that more orders can be com-
pleted by their due dates than existing algorithms by
using the new algorithm eIG_Rep.
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