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Abstract

Energy-efficient operation of manufacturing systems is critical for industrial enterprises in current environmentally conscious
society. Decreasing the idle time of a machine is one of the main methods to achieve energy-efficient production. From the system
level, when and how long a machine can be turned into standby state with lower energy consumption is still a difficult problem
for unreliable manufacturing systems considering less throughput loss. In this paper, a novel multi-state decision method based
on fuzzy logic is proposed to switch a machine into different sleep states considering real-time work in process inventory of
buffers. Three basic modules and their corresponding fuzzy controllers are presented to construct complex manufacturing
systems with disassembly and assembly workstations. The fuzzy rules for machine state decision are generated based on the
expert/production knowledge. By means of simulation experiments, the effectiveness of the proposed method is illustrated for an

unreliable complex manufacturing system.

Keywords Machine state decision - Fuzzy logic - Energy-efficient production - Unreliable manufacturing system

1 Introduction

Global warming is a big threat to the earth. The 2015 United
Nations Climate Change Conference in Paris has reached an
agreement that countries should make efforts to cut down the
greenhouse gas emissions. According to Bruzzone et al. [1],
about 31% of primary energy consumption and 36% of carbon
dioxide (CO,) emissions are attributed to manufacturing in-
dustry sector. Globally, it is important to control the produc-
tion process both from the aspects of productivity and energy
consumption for a sustainable development [2]. In China, al-
most 50% of the national electric energy is consumed by
manufacturing industry [3]. Chinese government has legislat-
ed to decrease the CO, emissions and encourage green
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manufacturing. More and more Chinese manufacturing enter-
prises pay attention to the energy cost and environmental in-
fluence of their production processes.

In discrete manufacturing industry, many non-bottleneck
machines have a lot of idle time. Reducing idle time is a
good approach to realize energy-efficient production [4].
In an aircraft small-parts supplier, the idle periods
accounted for 16% of the total production time, and about
13% of the total energy consumption could be saved if the
idle machines were switched off [5]. Supposing that the
short periods of all non-productive time were identified be-
forehand, almost 50 to 60% of energy consumption could be
reduced by turning the standby machines into energy-
saving states [6]. In the vision of Industry 4.0, the Internet
of Things (IoT) technologies enable networked manufactur-
ing system to be smarter and more digitalized based on the
real-time monitoring of the production processes [7]. Many
real-time production data, such as machine states, real-time
buffer levels, and energy consumption of equipment, can be
collected from the shop floor. More and more new equip-
ment, such as CNC machines and industrial robots, have
multiple energy-saving modes instead of traditional ON
and OFF modes [8]. The equipment can be switched into
energy-saving mode by turning off some auxiliary compo-
nents such as actuators, hydraulic system, and pneumatic.
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In a general discrete manufacturing system, machines/
workstations and buffers are usually main components. They are
diversely connected to form complex structures, such as serial
lines, parallel lines, and assembly and disassembly lines. Due to
different cycle times and unreliability of machines, the idle periods
of machines in a highly dynamic production system are not easily
determined in advance [6]. The methods are scarce but indispens-
able for deciding when, where, and how long the machines should
execute energy-saving actions in manufacturing systems. In this
study, a novel fuzzy logic-based method was proposed to decide
machine states in a multi-stage complex manufacturing system
with disassembly and assembly workstations. Machines could
be switched into different standby states according to real-time
levels of their adjacent buffers by fuzzy logic reasoning.

The paper is organized as follows. Related works of energy-
efficient manufacturing are reviewed in the ‘“Related works”
section. The “Problem statements and assumptions” section
describes the problem and some assumptions. In the “Multi-
state fuzzy decision of machines for energy saving production”
section, a machine state fuzzy decision method is proposed for
energy-saving operation of unreliable complex manufacturing
systems. In the “Simulation study” section, a manufacturing
system with disassembly and assembly workstations is con-
trolled to illustrate the effectiveness of the method. In the
“Discussions” section, the influence of different thresholds
and decision cycles of the controllers on machine/system per-
formances are discussed. The conclusions and future works are
presented in the “Conclusions” section.

2 Related works

Recently, energy-efficient manufacturing has been a very hot re-
search issue with the increasing environmental consciousness all
over the world [9-12]. Approaches to achieve energy-efficient
manufacturing can be classified as equipment, process, and system
levels. The new advanced machines with less energy consumption
can be applied in the shop floor at the equipment level [13]. For
the same kind of machines, an eco-efficiency process can make
production greener at the process level [14]. At the system level,
many researches focused on energy-aware production scheduling
[15] and various kinds of scheduling optimization algorithms were
reviewed in [16]. The method proposed in this paper is related to
the real-time machine control at the system level based on policies,
rules, models, and algorithms in order to achieve energy-efficient
operation. The related works are reviewed as follows.

2.1 Operation policies for machine state control
at system level

Policies or rules can express the human knowledge of

machine control purpose. In order to shorten the idle time
of machines, many researchers defined policies or rules to
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switch the machine state for energy saving during produc-
tion process. Mouzon et al. [17] described different
switch-off dispatching rules to minimize the total system
energy consumption in a one-buffer and one-machine sys-
tem. Simulation results illustrated that there were 80%
energy saving when a non-bottleneck machine was shut
off during the production process. The key point to apply
these rules was that the inter-arrival time between jobs
should be accurately predicted, which was a very difficult
problem in practical situation because of the randomness
of the manufacturing system.

By extending a M/M/1 model to a serial production line
based on queuing theory, a simple control policy was pro-
posed to reduce energy consumption of idle states [18].
Machines were switched into low power idle modes when
the idle time exceeded the predefined threshold value. In a
pallet-constrained flow shop, the schedule for the loading of
the part set was given. Mashaei and Lennartson [19] proposed
a control policy for switched-off machines to reduce energy
consumption considering design constraints and two idle
modes with deterministic warm-up durations. However, ma-
chine failures were not considered when the control policies
were used in above two studies.

In a single machine system with stochastic inter arrival
times of parts, some control policies, such as N-policy,
Upstream Policy, Downstream Policy, and Upstream &
Downstream Policy, were defined to switch the machine off
when the conditions of the policies were satisfied [20]. The
policies were evaluated based on energy consumption and
optimized with the general arrival distribution of parts. The
authors stated that the parameters of the control policies were
hard to be determined when the method was used for energy-
efficient production [21].

The control policies of machine states in current literatures
for energy-efficient manufacturing were described in quanti-
tative statements. It is obvious that some uncertain and impre-
cise knowledge are hard to be described quantitatively. The
limited quantity of policies cannot cover all complex situa-
tions of manufacturing systems and the application of the
policy method is restricted.

2.2 Analytical method of energy consumption control
at system level

During the production process, it is important to make real-
time decision of machine state for energy-saving control of a
manufacturing system. Chang et al. [22] proposed a concept
of opportunity window, which was the time length of the
machine’s shutdown period without affecting the system
throughput. The opportunity window was predicted based
on an approximate analytical model with real-time control
algorithm considering random downtime events of a serial
automotive manufacturing line.
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For serial manufacturing systems, Sun and Li [23] present-
ed analytical opportunity estimation for energy control con-
sidering buffer utilization and machine stochastic failure.
Their simulation results showed that the simple shutdown pol-
icy was not an optimal one. The optimal power level within
estimated opportunity window should be identified in the fu-
ture. They also developed a Markov decision process model to
describe the evolution process of system states and make en-
ergy control decisions [24]. A near-optimal solution of ma-
chine state evolution was generated by a real-time approxi-
mate algorithm for energy-saving operation.

In Bernoulli serial lines, Jia et al. [25] proposed mathemat-
ical models to calculate the power of transient/steady state, as
well as the system production rate, by switching the machine
on/off. For a serial line with two Bernoulli machines, Su et al.
[26] described an integrated model to evaluate energy con-
sumption and productivity. They carried out analytical inves-
tigation to discover the conditions when energy consumption
could be minimized with and without the workforce con-
straints or machine processing capability.

For a multi-stage serial-parallel manufacturing system, Li
et al. [27] proposed an algorithm to estimate energy-saving
opportunity window to improve system energy efficiency.
An event-based analysis method was used to calculate the
opportunities and a supervisory method was adopted to take
the opportunity windows periodically. Zou et al. [28] devel-
oped a stochastic analytical model to predict the shutdown
time and recovery time of machines based on discrete-time
Markov chain for stochastic parallel production systems. A
profit function was also described to balance energy cost and
potential throughput loss based on real-time production data.
Hibino and Yanaga [29] defined a normal idle state and an
energy-saving idle state for facilities. The idle-time prediction
model, selection algorithm, and transition model of idle state
were implemented in Witness to decide the proper idle state
without affecting the productivity.

Analytical method of energy consumption control at sys-
tem level usually depends on fixed structures of manufactur-
ing systems and specific reliability model of machines. The
analytical models in [22—26] could only be used in serial lines.
The reliability model of machines was limited to Bernoulli
distribution in [25, 26]. For the parallel lines, some corrections
must be made to energy-saving windows in [28] for unreliable
manufacturing systems because of the errors coming from the
aggregation method. The simulation method in [29] was time-
consuming and not suitable for practical application. There is
no literature of energy-efficient operation for assembly and
disassembly manufacturing systems.

2.3 Fuzzy logic control of manufacturing systems

Fuzzy logic control has already played a significant role in
current manufacturing systems and been widely used in

production planning, scheduling, and process control [30,
31], for it can easily integrate human linguistic knowledge into
the control process. Compared with conventional method,
fuzzy logic method applied more expert knowledge and relied
less on mathematical model of a manufacturing system [32].

Based on arithmetic fuzzy interval, Tamani et al. [33] pro-
posed a supervisory mechanism to implement a stable multi-
ple objective real-time scheduling of a production system. By
adjusting processing rates of machines, limited production
capacity was allocated and the specified global performances
were guaranteed within acceptable limits. In single and mul-
tiple parts type production lines with finite buffers and unre-
liable machines, Tsourveloudis et al. [34, 35] developed fuzzy
controllers to adjust the processing rate of machines. Their
controllers kept machine cycle time and work-in-process at
low levels so that work flow was balanced; thus, starvations
or blockages of machines were reduced. Yuniarto and Labib
[36] proposed a fuzzy logic module to optimize the production
rate of an unreliable machine with varying product demands.
Their controller provided a YES/NO decision on production
and then specified the production rate of machines.
Homayouni et al. [37] designed a genetic distributed and su-
pervisory fuzzy controller for a complex multi-part-type pro-
duction system, where two controllers were used to minimize
the production cost and surplus considering backlog costs and
work-in-process level.

By decomposing a serial line into several basic modules
with one-machine and two-buffers, Wang et al. [38] proposed
a fuzzy decision method to decrease the duration of idle states
by switching off/on the machine based on real-time informa-
tion of production lines. The single-machine control and
multiple-machine control simulations showed that the method
decreased the system energy consumption while the through-
put loss was not noticeable. But, only shutdown and normal
idle state of machine were considered in their work, which
was not practical to frequently shutdown machine in consid-
eration of lifetime. The sensitivities of the parameters were
also unknown.

Much progress has been made on energy-efficient opera-
tion of manufacturing systems for serial and parallel lines
[22-28, 38]. The performances of manufacturing system with
assembly and/or disassembly workstations are difficult to be
evaluated and controlled [39], and the energy-saving opera-
tion of this kind of manufacturing system has never been
studied in previous literatures, which is going to be discussed
in this paper. By extending our previous work [38], a fuzzy
decision method for multi-state decision of unreliable ma-
chines was proposed for energy-efficient system operation.
Based on fuzzy reasoning and threshold decision, machines
were switched into lower energy standby state, i.e., light sleep
state or deep sleep state, instead of normal idle state with
higher energy consumption. Our simulation experiments
showed that the proposed method efficiently decreased the
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system energy consumption, although slightly sacrificing the
system throughput. It was proved that the energy consumption
of per product could be reduced effectively.

3 Problem statements and assumptions

It is known that the idle states in the manufacturing system
come from the unbalanced workability and uncertain failures
of machines. The random breakdowns of machines make the
job quantity in buffers change frequently. The buffer level, i.e.,
work in process, is the original source of idle states. The full
level of a buffer makes its upstream machine blocked and an
empty buffer causes the starvation of its downstream machine.
This phenomenon propagates throughout the whole
manufacturing system. Our contribution mainly lies in decid-
ing a suitable machine state based on fuzzy logic with a goal
of reducing the overall system energy consumption and max-
imizing the system throughput.

Complex manufacturing systems with » unreliable ma-
chines and a certain number of limited capacity buffers can
be decomposed into several basic modules. In our previous
research [38], the serial module was discussed. Hereby, the
three basic modules (Fig. 1), i.e., serial module (SM), assem-
bly module (AM), and disassembly module (DM), were de-
scribed uniformly to construct complex production systems
for energy-efficient operation.

Each basic module was made up of one machine and its
upstream and downstream buffers. For different kinds of basic
modules, the quantity of upstream and downstream buffers

—-—-» B, —»@—» By F——-»

(a) Serial module (SM)

———»{B,;

Bi)[ -—

-—-> By,

(b) Assembly module (AM)

B,‘)] ==

———»{B,;

Bi,h -—

(c) Disassembly module (DM)

Fig. 1 Three basic modules for complex manufacturing systems. a Serial
module (SM). b Assembly module (AM). ¢ Disassembly module (DM)
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was varied as shown in Fig. 1. In this study, only two upstream
buffers in AM and two downstream buffers in DM were con-
sidered. The proposed method can be extended to modules
with more buffers. Three basic modules can constitute various
system structures if connected to each other. It should be noted
that the AM and DM module are different from traditional
merging/branching workstations of a parallel line, in which
the number of downstream/upstream buffer is only one.

In our study, the discrete time was used to model the pro-
duction process. For a general manufacturing system composed
by three basic modules, the following assumptions were made.

(1) A machine, M;, i= 1,2, ...,n, had a deterministic known
cycle time. The cycle times were equal or different.

(2) Each machine had two standby states, i.e., light sleep
(LS) state and deep sleep (DS) state. These two standby
states consumed lower energy than the traditional normal
idle (ID) state.

(3) A power-on machine consumed different kinds of ener-
gy, such as electricity, gas, fuel, and compressed air,
while a buffer would not. In each state, a machine con-
sumed deterministic energy which was collected from
the shop floor.

(4) Mean time between failure (MTBF) and mean time to
repair (MTTR) of machines were supposed to follow
probability distribution. Time-dependent failures were
assumed for the machines.

(5) The buffers, B;;, By, B;, B;, had real-time buffer level b (%),
bri(®), bii(®), b;n(t) at the beginning of each discrete time slot.

(6) It was assumed that there was a buffer with unlimited
capacity at the beginning of the system and the first ma-
chine was never starved.

(7) Tt was assumed that there was a buffer with unlimited
capacity buffer at the end of the system and the last
machine was never blocked.

(8) The machine in one disassembly module outputs two
different parts after operation. Each downstream buffer
in a disassembly module got one part respectively.

(9) The machine in one assembly module consumed two parts
for every operation. Each upstream buffer in the assembly
module fed one part to the machine respectively.

4 Multi-state fuzzy decision of machines
for energy-saving production

4.1 The controller of basic modules for energy-saving
operation

For machines with several idle power states, i.e., normal idle,
light sleep, and deep sleep in this paper, the aim of the fuzzy
decision was to switch the machines into suitable states based
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on the real-time data of manufacturing systems. The most
commonly used fuzzy inference method, the Mamdani
scheme [40], was adopted to construct the controller of the
basic modules.

The structure of the proposed fuzzy controller for basic mod-
ules was shown in Fig. 2. Each controller had four components,
i.e., fuzzification, fuzzy inference, defuzzification, and state de-
cision. The f;(z) was a real number after defuzzification. The
output of the controller ¢;(?) was a decision signal sent to machine
M;, which represented the controlled state for the next time slot
after its current state. For each basic module, there were different
input variables as follows.

(1) b;i(1), the real-time level of upstream buffer B;; in three
modules

(2) bii(?), the real-time level of upstream buffer By ; in AM
module

(3) b; 1), the real-time level of downstream buffer B;; in
three modules

(4) b;u(®), the real-time level of downstream buffer B;), in
DM module

(5) si(1), the current up or failure state of machine M;

4.2 Fuzzification of the production and state data

Fuzzy logic is based on the concept of fuzzy sets, whose
elements are not clearly quantified. A fuzzy set contains ele-
ments with partial degrees of membership (usually between 0

and 1). The membership function (MF) is defined to map the
degrees of membership to each element. Fuzzification process
is to classify numerical data of the system into fuzzy sets.

In each basic module, the real-time level of a buffer during
production process, i.e., b; (1), bii(t), b;n(t), and b; (1), was
expressed in linguistic terms with certain MF. In this paper,
the linguistic value of a buffer level was formulated as the fuzzy
set BL = {Empty, Almost Empty, Normal, Almost Full, Full}.
Several types of MFs were usually used in literatures for differ-
ent purpose, e.g., triangular function, trapezoidal function,
Gaussian function, and bell function. The triangle membership
functions (Fig. 3) were adopted in this paper for linguistic
values of buffer levels. The reason is that the buffer level in-
creases or decreases one by one and the overall trend appears to
be an oblique line. The advantage of triangle membership func-
tion is its simplicity and ease of implementation [41].

The machine state s;(2) can be 1 (up) or 0 (failure) and
consequently had the term set MS = {Up, Down}, which indi-
cated power-on or failure (FL) state of machines.

The output value of the fuzzy logic e;(?) took from the fuzzy
set OS= {Deep sleep, Light sleep, Processing}. The output
linguistic value was assigned with a triangle membership
function in this paper (Fig. 4).

4.3 Fuzzy rules and inference for energy-saving
operation of machines

In order to avoid the possible normal idle state with higher
energy consumption, the fuzzy rules were defined in this pa-
per to infer the suitable machine states based on the real-time

Fig. 2 The fuzzy controller of
basic modules
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Fig. 3 Membership functions of a buffer level

level of its upstream and downstream buffers. A fuzzy ruleis a
linguistic statement which presents the relationship between
the input and output of a fuzzy system. The IF-THEN expres-
sion is the simplest and most widely used for its computational
efficiency [40]. The IF-part of a rule is the conditions under
which the rule is applicable and forms the composition of the
inputs. The THEN-part of a rule is the conclusion which
should be drawn under these conditions. The number of rules
depends on the total number of linguistic variables. The fuzzy
rules are defined based on production knowledge of experts
and/or experiments.

In order to avoid normal idle state, the defined fuzzy rules
should switch a machine into deep sleep or light sleep state
based on the real-time buffer level so that the buffers were
neither full nor empty. If a machine is going to be starved or
blocked according to the real-time level of its connected
buffers, the machine will be switched into different sleep
states to avoid normal idle state. If a machine will starve/
block its downstream/upstream machine according to the

Fig. 4 Membership functions of
controlled machine states

1.0

Degree of membership

Deep sleep

real-time level of its connected buffers, the machine will be
waken up to avoid the idleness of other machines. This prac-
tice takes full advantages of the buffer capacity and keeps the
overall throughput within acceptable ranges.

The above knowledge was formulated as fuzzy rules for
each basic module. For the fuzzy controllers of SM, AM, and
DM basic modules, the fuzzy rules of the Mamdani type were
defined respectively:

IF bj",'(l) is BL(g)AND bi,l(t) is BL(g) (1)
AND s;(¢) is MS'®) THEN e;(¢)is OS'€)

IF b;,(1) is BL'®) AND by () is BL® )
AND b; (1) is BL'®) AND s,(¢) is MS'®
THEN e;(¢) is OS'®)

IF b,,(¢) is BL'®) AND b, (t) is BL"® (3)
AND b;,(¢) is BL'®) AND s;(t) is MS'®
THEN ¢;(¢) is OS'®

Some rules with s;(2) = 1 were shown in Table.1. It should
be noted that the fuzzy controllers of the basic modules had a
decision cycle. A machine would be switched into a controlled
state after its current state within a decision cycle. Fuzzy in-
ference process formulates a mapping from a given input to an
output based on fuzzy logic. Mamdani is a direct inference
method which determines the outputs from the rules by min-
max operations directly. As a standard procedure, the fuzzy
reference process can be found in [40] and will not be detailed
here.

4.4 Defuzzification and machine state decision

Defuzzification is the process which generates a real num-
ber value from the inference result. The most frequently

Light sleep Processing

0.0
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Table 1 Some fuzzy rules for
three basic modules Module Inputs Output
bj,i( ?) byi(®) bii®) b ei(t)
SM Empty - Full - Deep sleep
Almost empty - Almost full - Deep sleep
Almost empty - Almost empty - Low sleep
Normal - Almost empty - Working
Almost full - Normal - Working
Full - Almost full - Low sleep
AM Almost empty Normal Almost empty - Low sleep
Almost empty Almost full Almost full - Deep sleep
Normal Almost empty Almost full - Deep sleep
Normal Normal Normal - Working
Normal Almost full Almost full - Low sleep
Almost full Almost empty Almost full - Deep sleep
Almost full Almost full Normal - Working
Full Almost empty Normal - Low sleep
Full Almost full Empty - Working
DM Almost empty - Empty Almost full Deep sleep
Almost empty - Almost empty Normal Low sleep
Normal - Almost empty Normal Working
Normal - Normal Almost full Low sleep
Normal - Almost full Almost full Deep sleep
Almost full - Almost empty Almost empty Working
Almost full - Almost full Normal Low sleep
Full - Normal Full Deep sleep
Full - Almost full Almost empty Low sleep

used defuzzification strategy, the center of gravity method
[40], was adopted. The output of the defuzzification f;(?)
in Fig. 2 is a real number between 0 and 1.

In order to decide the next controlled state of machine
M;, i.e., deep sleep, light sleep, or processing, two real
threshold numbers between 0 and 1, d; and w;, were de-
fined to divide the interval [0,1] into three sub-interval. If
the f; (#) was less than d;, the final decision was to switch
the machine into deep sleep state at the end of its current
state. If the f; (¢) was larger than w;, the final decision was
to switch the machine into processing state at the end of
its current state. Otherwise, the controller switched the
machine into light sleep state at the end of its current
state. The output of the controller was represented as a
signal sent to the machine as follows, where the number
0, 1, and 2 means deep sleep, light sleep, and processing
respectively.

0, if f,(r) < d;
= 1, lf d,-Sf,—(t)Swl-
2, other

ci(t)

5 Simulation study

Simulation is an important tool for energy-efficient
manufacturing research [42, 43]. In this section, a typical com-
plex manufacturing system with assembly and disassembly
workstations was used to validate the proposed method based
on simulation experiments. Fuzzy Logic Toolbox of
MATLAB and SIMULINK were used to build models. All
the scenarios were repeated 20 times for an 8-h shift. The
failure modes of machines were supposed to follow exponen-
tial distribution.

5.1 A manufacturing system

Figure 5 shows a manufacturing system with 8 machines and
8 buffers. Two virtual buffers were added to the beginning and
ending of the system in order to have a uniform expression.
There were 8 basic modules including 6 serial modules, 1
disassembly module, and 1 assembly module. Each module
had a fuzzy controller for machine state decision.
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Fig. 5 A complex manufacturing system with assembly and disassembly stations

The parameters of machines, i.e., cycle time, MTBF,
MTTR, buffer’s capacity, and initial level, were listed in
Tables 2 and 3. It is known that the energy consumed by
normal idle state is usually 15 to 30% lower than that con-
sumed by processing (PR) state [44], and the energy required
in sleep state is somewhat lower than that required in normal
idle state, depending on how many components are turned off
[45]. To guarantee the generality of our study, the assumptions
about the energy consumption based on the processing power
P, of a machine were made as follows:

The normal idle power P;; was 70% of P,,. The deep sleep
power Py, was 30% of P,,. The light sleep power P, was 50%
of P,. When a machine woke up from the sleep state, the
wake-up time was 4 s for light sleep state and 6 s for deep
sleep state. The wake-up power was 110% and 120% of P,
for these two different sleep states respectively.

5.2 Simulation experiments

Three scenarios were simulated and the results were ana-
lyzed. The first scenario (S1) was a baseline production
without any control. One machine was controlled in the
second scenario (S2) and more machines were controlled
in the third scenario (S3).

For S1, the machine throughput (MTP), the time duration
of each machine states was shown in Table 4. It was observed
that about 6.30% downtime (242.08 min) of all machines led
to blockage/starvation in the system, which resulted in over
21.09% idle (blockage/starvation) time (810.02 min) of all
machines during the production process. According to the
blockage and starvation data, M3 and M, were identified as

Table 2 Machine data of the manufacturing system

Machine Ml M2 M3 M4 M5 M6 M7 Mg
Cycle time(min) 1 1 2 2 2 2 1 1
MTBF (min) 100 60 80 115 132 158 108 100
MTTR (min) 8 3 9 13 10 7 6 5

Processing power (kW) 125 10 9 17 16 6 5

the system throughput (STP) bottlenecks based on the
methods in [39].

In S2, the disassembly machine M, or the assembly machine
M, was controlled to validate the effectiveness of the controller
for energy-saving operation. The effects of various threshold
values on system performances were discussed in the next sec-
tion. The thresholds of fuzzy controllers in S2 were w,=0.5,
d>,=0.48 for M, and w,=0.3, d,=0.28 for M;. In S3, all
machines excluding bottlenecks M; and My were controlled
at the same time with the thresholds w; =0.8, w,=0.8, ws=
0.3, ws=0.3, w,=0.2, wg=0.2, and d; of all machines was
0.02 lower than w;. The system performances of the three sce-
narios, measured in energy consumption of system (ECS) and
energy consumption of unit (ECU), were shown in Table 5. The
energy-saving control cycle of the machines was 5 min, which
means the production data was collected and the energy-saving
decision was made every 5 min.

As Table 5 showed, the system throughput remained the
same when only M, was controlled. The simulation results
showed that the control of M, did not affect the working pro-
cess of M3 and My. The normal idle time of controlled M, was
zero and its total sleep time was about 232.20 min. The sys-
tem’s total normal idle time, i.e., the total normal idle time of
other machines, was 633.07 min. Compared with S1, the total
normal idle time of all machines decreased 21.85%. When only
M; was controlled, the system throughput loss was 1.53% of
that in S1 because the control of M; aggravated the starvation of
Mg, whose starving time length increased from 213.07 to
216.82 min. For the energy consumption, the ECS decreased
by 1.3% and 1.4% respectively when only M, or M; was con-
trolled compared with S1. When M5 was controlled, the ECU
was higher because of the system throughput loss.

In S3, six machines (M;, M,, M5, Mg, M5, Mg) were con-
trolled simultaneously. From Table 5, the total normal idle

Table 3 Buffer capacity and initial level

Buffer B2 Bz Bas Bss Bsg Bsy; Bgs Big

Capacity 60 80 85 25 40 35 40 45
Initial level 28 40 50 10 15 12 18 10
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Table 4 Statistical data of

machines and throughputs in S1 Machine  Processing Blockage Starvation Failure Energy consumed =~ MTP (unit)

(min) (min) (min) (min) (kW) (95% CI)

M1 283.50 161.88 0.00 34.62 79.36 283.50+3.96
M2 252.30 204.25 0.00 23.45 32.94 252.30+4.16
M3 434.10 0.00 0.00 45.90 7235 217.05+3.49
M4 436.90 0.00 0.00 43.10 65.54 218.45+4.50
M5 445.40 0.00 4.12 30.48 127.01 222.770+4.34
M6 456.20 0.00 5.62 18.18 122.70 228.10+3.68
M7 234.65 0.00 221.09 24.26 38.94 234.65+4.51
M8 244.85 0.00 213.07 22.09 32.83 244.85+4.24
Total 2787.90 366.13 443.89 242.08 571.68 -

time of all machines notably decreased to 32.54 min, which
reduced 96% of that in S1. The sleep time went up to
911.65 min for all controlled machines, which accounted for
31.65% of the shift time of controlled machines. The system
throughput loss was 2.25%. The ECS of S3 decreased by 8%
and the ECU also went down from 2.33 to 2.20, compared
with S1. Figure 6 shows the MTP loss, energy reduction, and
sleep time of each machine in S3. All controlled machines lost
their throughput and had different durations of sleep time. The
energy consumption of each controlled machine also de-
creased with different degrees. But the working process of
the bottlenecks was not affected.

6 Discussions

It was obvious that the input parameters of fuzzy controllers
affected the system throughput and the energy consumption of
machines. In this section, the influence of different thresholds
and decision cycles of the controllers on machine/system per-
formances were discussed.

6.1 Threshold values of the controllers

The effects of threshold value were tested with the same de-
cision cycle in S2. M, or M5 was solely controlled based on
different thresholds and the decision cycle was constant as
5 min. According to formula (4), the first threshold w; was
used to decide the processing state or sleep state of machine

and the second threshold d; was used to decide the light sleep
or deep sleep state of machine. The larger the threshold value
w; is, the more easily a machine enters the sleep state. The
closer the threshold value d; is to w;, the more easily a machine
enters the deep sleep state. Apparently, the controller always
turns a machine into sleep state if w; = 1. While, it has no effect
on the machine if w; =0. The simulation experiments also
showed the same results with w; =0.9 and w; = 0.1 respec-
tively. The numerical value of d; did not affect the system
throughput because the machine was in sleep state, no
matter whether it is in light or deep sleep state. The nu-
merical value of d; only influenced preference of selecting
light sleep and deep sleep state, thus leading to different
total energy consumption. If d; was close to w;, the deep
sleep state would be more easily decided and more energy
saving would be achieved. According to our experiments,
the machine did not have deep sleep state if d; was 0.1
smaller than w; In order to have more energy saving,
larger d; should be assigned. Therefore, we used d, =
0.48 and d, =0.28 in our simulations, which was 0.02
smaller than w, =0.5 and w, =0.3 respectively in S2.
The system performance, i.e., throughput and energy sav-
ing, was shown in Table 5. There were only 1.53% loss of
throughput and 1.4% reduction of energy consumption
per unit. The assigned threshold value generated better
system performance. However, since the selectable ranges
of threshold values were very large, the optimized values
were not discussed in the paper. Figure 7 shows the sys-
tem and machine performances of different thresholds.

Table 5 Performances

comparison of three scenarios Scenario  Machine Total sleep time Total idle STP (unit) STP ECS/ECU
controlled (min) (95% CI) time (min) (95% CI) loss (%) (kW)
S1 - - 810.02 24485+ 424 - 571.68/2.33
S2 M, 23220+2.84 633.07 24485+ 424 0.00 564.23/2.30
M; 221.20+3.79 596.27 241.10 +3.89 1.53% 563.67/2.34
S3 M;,M,,Ms, 911.65+18.90 32.54 23935+391 225% 525.86/2.20
Me,M7,Mg
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Fig. 6 The performance of all Time (min) MTP loss
machines in S3 300.00 30.00%
2549%
== MTP loss ™= Energy reduction —#— Sleep time
17.40% - 20.00%
250.00 - e
248.15 216.00
23413 197.01- 10.00%
200.00 -
0.00% 0.00% O. 92% 0.77% 1. 8 % 2. 25%
. . ?9—2 o - 0.00%
0, - -U.
150.00 0.00% 0.00% 066A> o
\ / - -10.00%
100.00
E - -20.00%
17:43% 19289 ’
50.00 )
27899 ~26-08% - -30.00%
000 000 7388 8.49
0.00 T T - T - T T T T '40.00%
Mi M2 M3 M4 M5 M6 M7 Energy
reduction

From Fig. 7, larger threshold resulted in longer sleep time
and more throughput loss of machines and system. When only
M, was controlled, the STP loss was zero even with the dif-
ferent threshold values. From the simulation experiments, the
control of M, did not affect the working process of the down-
stream bottlenecks M3, My, and all machines after the bottle-
necks. If M, was controlled, larger threshold value caused
more MTP of M5, and the MTP loss of M-, caused more
starvation time of Mg and the STP decreased slightly.

The above experiments showed that threshold values of
machines should be properly chosen according to the po-
sitions of machines in the system with the aim of not
sacrificing the system throughput while achieving more
energy-saving time. For machines before bottlenecks, it
is apparently that the threshold should be as high as pos-
sible in order to obtain more energy-saving time, as long

Time(min) Energy(kW)
280.00
M2ECU —+ M7ECU 248 | 550
270.00 e = :
233, ___a— 2.30
260.00 A - 230
231 :
250.00 24525
__—" r210
240.00

239.49

230.00 - 190
219.15
220.00 —+—M2ES time
X - 1.70
210.00 21357 —#—M7 ES time
200.00 T T T T 1.50
02 03 04 0.5 0.6 0.7 0.8

(a) Energy related performance

as it does not lead to the starvation of the bottlenecks. For
machines after bottlenecks, the threshold should be lower
in order not to sacrifice the throughput and not to block
the bottlenecks as well.

6.2 Decision cycle time of the controller

An appropriate decision cycle time of a controller should
be decided considering the cycle time of the machines.
The decision cycle time influences the real-time buffer
levels and determines the data collection frequency. A
smaller decision interval means a more frequent data-
collection from the shop floor and imposes more burdens
on system management. A smaller decision interval also
means that the buffer level has slighter change and the
controller output almost remains constant. When a larger

MTP/STP loss (%)
18.00%
16.00% = M2 MTP loss
14.00% B M7 MTP loss
12.00% = M2 STP loss

M7 STP loss

10.00%

02

03 04 05 0.6
(b) Throughput performance

0.7 08

Fig. 7 System and machine performances with different threshold in S2. a Energy-related performance. b Throughput performance
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Table 6 Performance comparison

with different decision cycle in S3 Decision Total ES time STP STP ECS/ECU
cycle (min) (min) (95% CI) (95% CI) loss (%) (kW)
No - 24485 + 4.24 - 571.68/2.33
2 901.94+20.33 241.65 £3.93 1.31% 531.41/2.20
5 911.65+18.90 239.35 £ 3.91 2.25% 525.86/2.20
10 901.17+21.11 23475 £ 4.83 4.12% 523.17/2.23

decision interval is used, the decision of a controller takes The effects of the different decision cycle times in S3
longer time on machines. The full or empty buffer state is ~ were thoroughly studied in simulation experiments with
easier to be formed and the throughput loss will increase.  the same threshold (Table 6).

State
ID ! ; ‘ ‘ :
FL | | | | |
60 120 180 240 300 360 420 480
State (a) No control Time (min)
PR
LS
DS
S I I . -, A D O SR E
60 120 180 240 300 360 420 480
. . Time (min)
(b) Five minutes control cycle
Buffer level
65

V.

55 /\/\/\/\/\M/\/\\/\ M /\/f
45 Y. MWN Ly AR W\“
35 ;

/ —— biy | = by | — byy

25
15
60 120 180 240 300 360 420 480
Time (min)

(c) Real time buffer level before and after M2

Fig. 8 Machine state trajectory of M, and real-time buffer level before/after M,. a No control. b Five minutes control cycle. ¢ Real-time buffer level
before and after M,

@ Springer



1020

Int J Adv Manuf Technol (2019) 102:1009-1021

From Table 6, it was observed that the total energy-saving
time did not have a rising trend with a longer decision cycle.
The system throughput loss was larger when a longer decision
cycle was adopted, which indicated that the controller could
not catch system transient state if the decision cycle was too
long. Then, energy-saving opportunities were missed and
more normal idle time of machines occurred. An acceptable
decision cycle interval can be decided based on the cycle time
of machines and validated by simulation with data collected
from real manufacturing scenarios.

6.3 The trajectory of machine states
during production

To get a clear change process of a machine state, the trajectory
of the machine states and the buffer levels was recorded.
Figure 8 shows a state trajectory of M, and the buffer levels
before/after M, in a random experiment of S2.The warm-up
states after the sleep and failure states were not shown due to
their short durations.

From Fig. 8, there were many frequent state changes be-
tween PR state and ID states because of the blockage of M,
without control. Therefore, many normal idle states with short
time consumed huge amount of energy. When the fuzzy con-
troller took into effect, the machine M, was turned into light
sleep or deep sleep state if there was a tendency of blockage or
starvation. For example, the decision at 155 min made M,
switch into LS state with the buffer level data {b;,=60;
by3=47; by,=57}. Five minutes later, the decision result
was also LS with buffer level data {b;,=60; b,;=48; b,,=
56}. At 165 min, the decision result was DS state for M, with
the buffer level data {b;,=60; b,3=152; b,,=57}. During this
shift, there were 20 times LS decisions and 28 times DS de-
cisions. The total sleep time of M, was 232.20 min as shown
in Table 5 and M, has no normal idle state.

In summary, the proposed fuzzy method has obvious ad-
vantages to achieve energy-efficient operation of complex
manufacturing system with assembly and disassembly work-
stations by applying energy-saving knowledge representation
and reasoning in machine state decision. The new loT-based
manufacturing system control automation can be easily real-
ized based on the knowledge other than complex mathemati-
cal models. Single or multi-machine can be selected flexibly
to achieve energy-efficient production at the system level. The
easy design and realization of the method makes it more prac-
tical for shop floor manufacturing systems control. On the
other hand, the previous researches of energy-saving opera-
tion usually depended on specified failure modes [20, 22-28].
While in our study, the buffer level other than failure mode is
used as the input of the controller and the energy-saving de-
cision would be simplified, which is not restricted to compli-
cate failure modes of machines.

@ Springer

7 Conclusions

For complex manufacturing systems with serial, disassembly,
and assembly workstations, a multi-state fuzzy controller was
proposed in this paper to switch the machines into sleep state
at an appropriate opportunity for energy-saving operation.
Three basic modules were constructed to generate the system
structure. The real-time data of machines and buffers were
collected and used as controller inputs. The components of
the controllers were described in detail to show the decision
process of energy-efficient operation. A large number of sim-
ulation experiments were conducted and the results illustrated
the feasibility and effectiveness of the fuzzy method for
energy-efficient manufacturing. In the current study, the ma-
chines were in distributed control based on local real-time
data. Future study will focus on a supervisory control consid-
ering real-time system throughput. The energy-saving opera-
tion of manufacturing system with re-entrant line will also be
carried out.
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