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Abstract Structural surface texturing is believed to be a
promising approach to modify tribological and thermal per-
formances of tooling for sheet-stamping processes. However,
a fundamental study on the surface-texturing design and
resulting material deformation is currently lacking. In this pa-
per, an advanced analytical bucklingmodel specifically for the
utilisation of textured tools at macro-scale, comprising
dislocation-driven material model, isotropic yield criteria, bi-
furcation theory and Donnell-Mushtari-Vlasov (DMV) shell
structure theory, was established. The developed analytical
buckling model was validated by cylindrical deep-drawing
experiments. Further finite element (FE) simulations with
the implementation of material model via user-defined sub-
routine were also used to validate the bucking model for large
surface texture designs. Effects of theoretical assumptions,
such as yield criterion, boundary condition and test-piece ge-
ometry, on the accuracy of model prediction for wrinkling
were investigated. It was found that the von Mises yield cri-
terion and hinged boundary condition exhibited more accurate
predictions. In addition, the DMV shell theorymade this mod-
el most representative for large structural texturing designs.
Furthermore, the implementation of induced shear strain
component has an important effect on precisely predicting
the wrinkling occurrence. The advanced analytical models
developed in this study combine various classical mechanics,
structure stability and material modelling together, which

provides a useful tool for tooling engineers to analyse struc-
tural designs.

Keywords Bucklingmodel .Macro-textured tool .
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1 Introduction

Tooling surface performances, such as triblogical and thermal,
are believed to play an imporant role in controlling material
deformation and post-strengthening for hot-stamping sheet
metals [1]. In recent years, hot stamping of high-strength alu-
minium alloys has become a popular and promising lightweight
strategy for automotive original equipment manufacturers
(OEMs) due to the enviromental and fuel economy concerns
[2, 3]. Considering the highly reactive and formability behav-
iour of high-strength aluminium alloys at elevated tempera-
tures, tooling requirments have become more stringent [4, 5].
Tooling technologies with low interfacial friction coefficient,
good wear resistance and thermal properties are urgently re-
quired. Structual surface texturing has been extensively inves-
tigated and applied in particular engineering areas due to its
abilities of modifying tribological and thermal performances
[6]. Surface texture can be roughly divided into micro- and
macro-scales according to the texture dimension. Micro-scale
surface texture, normally at micrometre or nanometre scale, is
believed to be able to improve tribological properties of tool
surfaces with the combination of lubricants [6]. Costa and
Hutchings [7] investigated micro-scale patterned tool surface
tribological performance using a strip-drawing process; a sig-
nificant reduction of friction coefficient was obtained as these
surface textures were believed to exhibit a reservior function for
lubricant to improve the lubrication effect. In addition, wear
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resistance of tool surfaces can also be increased as test-piece
material debris during interface sliding are stored in the texture
hollows. The great loss of hard particles at the tool/blank inter-
face results in a significant improvement in wear resistance of
tooling. Compared with the extensive research on micro-
texturing of tool surfaces, limited research has been performed
for macro-scale surface texturing. Franzen et al. [8] investigated
the tribological performance of macroscopic textured tool sur-
faces using strip-drawing process. The textured macro-scale
tool surfaces can increase the interficial friction coefficient com-
pared to flat tool surfaces, which might be a potentional ap-
proach to replace conventional draw beads for sheet stamping.

To this extent, most research focused on fundamental
triblogy studies of textured tool surfaces. However, effects
of surface texturing on draw-ability and thermal properties
of hot-stamping aluminium alloys have not been thoroughly
studied. Zheng et al. [9] investigated the hot draw ability of
aluminium alloys with a one-dimensional macro-scale tex-
tured tool surface both experimentally and numerically. A
significant improvement of draw ability was achieved due to
a more uniform temperature field within the blank. The rea-
sons are that the utilisation of tool surface texture can reduce
contact area between blank and tool material significantly.
Moreover, the interfacial heat transfer coefficient at the texture
hollow was also decreased due to the vacant space [10].
However, the texture effect was only examined for blanks
under a one-dimensional stress state. For hot-stamping,
complex-shaped sheet components with a two-dimensional
contrary sign stress state, the compressive stress may cause
material located above the texture hollow to buckle due to the
absence of blankholding force constraint [11], as shown in
Fig. 1 [12]. The modelling of flange-wrinkling phenomena
in deep-drawing processes has been reviewed in detail by
Kadkhodayan et al. [13]. To predict the induced buckling phe-
nomena experienced when using macro-scale textured tools,
Zheng et al. [12] established analytical buckling models based
on Senior’s beam [14] and Yu’s plate structure buckling as-
sumptions [15] for cylindrical deep-drawing tests. However,
the assumption of reduced Young’s modulus which is used to
reflect inelastic buckling is believed to be inaccurate [13]. In
addition, the beam and plate assumptions may not be suitable
for tool texture designs with larger dimensions.

To address the above disadvantages, the work in this paper
aims to establish an advanced bucklingmodel based on classical
elastic-plastic mechanics of solids and further extended to large
surface textured tool designs. The use of constitutive relation-
ship of an elastic-plastic solid can improve the calculation accu-
racy to cover the deformation behaviour at the plastic range. In
this study, a more advanced analytical buckling model specifi-
cally for the metal-forming processes using macro-textured tool
design was developed based on elastic-plastic solid mechanics,
bifurcation theory [16] and Donnell-Mushtari-Vlasov (DMV)
shell structure theory [17]. The accuracy of the developed buck-
ling model was validated by experimentation and finite element
(FE) simulations implemented with a dislocation-driven materi-
almodel. Effects of related analytical assumptions and solutions,
such as yield criteria and boundary condition, are discussed in
detail. In addition, application ranges of the developed buckling
model were also investigated. The model can provide a predic-
tion tool for stamping tool designers. The combination of a
series of classic and robust theories provides a feasible approach
to modelling actual forming processes and can be a foundation
for establishing buckling models of metal-forming processes in
hot forming conditions in the future.

2 Analytical buckling model

2.1 Macro-textured tool design concept and modelling

Forming dies of sheet-stamping processes are normally com-
posed of the punch, die and blankholder. Figure 2a shows the
schematic diagram of a tool set with textured tool surfaces.
According to the contact condition between textured tools and
sheet blank, textures can be divided into a groove (texture hol-
low) and surface (texture top). Correspondingly, the blank ma-
terial in contact with the surface was defined as zone S, whilst
material located on the texture hollow (groove) was defined as
zone G. For sheet drawing processes with a two-dimensional
stress state generated within the flange material, flange material
normally experiences a tensile stress in the material drawn-in
direction and a compressive stress in the circumferential direc-
tion. Hence, zone G material located between grooves of tools

Fig. 1 Flange-wrinkling
phenomenon for a two-
dimensional stress state using a
macro-textured tool design. a
Macro-textured tool design. b
Wrinkled part [12]
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may buckle during draw-in as a result of the absence of
blankholding force constraint, as shown in Fig. 2b.

According to the structure stability theory, buckling can be
avoided when the structure dimension is controlled within a
certain magnitude. Hence, dimensions of texture features need
to be defined. A cylindrical deep-drawing design was used as
the fundamental case study for the establishment of the buck-
ling model. In this study, surface textures were only modelled
on the blankholder, whilst the surfaces of punch and die
remained flat. Figure 3 shows the plane view of a quarter of
the macro-textured blankholder. The narrow sectors indicate
surface and wide sectors indicate groove. Since the length

scale (radial direction) of the groove is parallel to material
flow direction which has no significant effect on flange wrin-
kling, the length-scale effect was ignored in this paper. The
sizes of surface and groove of textures were defined by the
subtended radial angles. Arc angles, θS and θG, of texture
features were used, respectively, as shown in Fig. 3. The sur-
face arc angle θS was fixed at 2.5°. Then, a normalised ratio
reflecting the texture feature variation is defined as in Eq. (1).

α ¼ θS= θS þ θGð Þ ð1Þ

2.2 Constitutive equations of elastic-plastic solids

To model the buckling phenomenon of zone G flange material
which is plastically deformed at room temperature, constitutive
relationships of elastic-plastic solids need to be obtained. The
incremental total strain can be expressed as the sum of elastic
and plastic strain in a tensor expression as in Eq. (2) [18].

dεij ¼ dεeij þ dεPij ð2Þ

where dεij represents the total strain increment and dεeij and dε
P
ij

represent the elastic strain increment and plastic strain incre-
ment, respectively.

The elastic strain increment is given in the generalised
Hooke’s law, described by Eq. (3), written using Einstein’s
index notation. In this equation, E and v are the Young’s mod-
ulus and Poisson’s ratio, respectively. Parameter δij is the
Kronecker delta (δij=1, if i= j or δij=0 if i≠ j).

dεeij ¼ 1þ vð Þdσij−vdσkkδij
� �

=E ð3Þ

The plastic stress increment is given by Hill’s theory [19]
using the plastic potential f(σij). In terms of the plastic loading,
the plastic stress increment is given in Eq. (4).

dεPij ¼ H
∂ f σij

� �
∂σij

df ð4Þ

whereH is a scalar factor associated with deformation history,
material stress state and work hardening given as Eq. (5) [20].

H ¼ 1

ET
−
1

E
ð5Þ

where in this equation, ET is the tangent Young’s modulus.
The magnitude of ET equals to the instantaneous slope of the
effective stress-strain curve given in Eq. (6).

ET ¼ dσe=dεe ð6Þ
where σe is the effective stress and εe is the effective strain.

Substituting Eqs. (3)–(6) into Eq. (2), the constitutive
relationship between the stress and strain increments in

Fig. 3 A plane view drawing of macro-textured blankholder used for
cylindrical deep drawing

Fig. 2 Schematic illustration of macro-scale texture design and
wrinkling concept. a Classification of texture features and sheet blank.
b The mechanism of wrinkling occurrence
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the plastic loading is fully defined and expressed in
Eq. (7).

dεij ¼ 1

E
1þ vð Þdσij−vdσkkδij

� �þ 1

ET
−
1

E

� �
∂ f σij

� �
∂σij

∂ f σklð Þ
∂σkl

dσkl ð7Þ

With regard to sheet-stamping processes, the plane
stress state normally applies σ33 = 0. By applying the
principal stress state, an explicit expression of Eq. (7)
can be obtained for a particular plastic potential f(σij) and is
given in Eq. (8).

dεij ¼
dε11
dε22
dε33

8<
:

9=
; ¼

1

E
þ 1

ET
−
1

E

� �
∂σ f

∂σ11

� �2
" #

dσ11 þ −v
E

þ 1

ET
−
1

E

� �
∂σ f

∂σ11

� �
∂σ f

∂σ22

� �� 	
dσ22

−v
E

þ 1

ET
−
1

E

� �
∂σ f

∂σ11

� �
∂σ f

∂σ22

� �� 	
dσ11 þ 1

E
þ 1

ET
−
1

E

� �
∂σ f

∂σ22

� �2
" #

dσ22

−v
E

dσ11 þ dσ22ð Þ

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;

ð8Þ

In this paper, two classical yield criteria applicable for iso-
tropic materials, the von Mises and Tresca yield criteria, are
considered due to the isotropic nature of the material resulting
from the annealing heat treatment performed for the test-piece
material. In addition, the selection of isotropic yield criteria
can simplify the calculation significantly.

2.2.1 The von Mises yield criterion

The classical von Mises yield criterion yield function is given
in Eq. (9).

J2 ¼ σ2
f =3 ð9Þ

where J2= [(σ11−σ22)2 + (σ22−σ33)2 + (σ11−σ33)2]/6 for the
principal stress states.

For the plane stress state cases, σ33 = 0, Eq. (9) can be
further modified to Eq. (10).

σ2
11−σ11σ22 þ σ2

22−σ
2
f ¼ 0 ð10Þ

Considering the fundamental constitutive equation of an
elastic-plastic solid, Eqs. (11) and (8) can be simplified and
expressed as in Eq. (12).

dεij ¼ Dijkldσkl ð11Þ

dεij ¼
dε11
dε22
dε33

8<
:

9=
; ¼

D1111dσ11 þ D1122dσ22

D2211dσ11 þ D2222dσ22

D3311dσ11 þ D3322dσ22

8<
:

9=
; ð12Þ

where Dijkl is the compliance moduli [20]. Through an
inverse substitution of Eq. (11), the constitutive relation-
ship Eq. (11) is transferred to Eq. (13). Equation (13) can
be further extended to Eq. (14), where Lijkl is the instant
stiffness matrix.

dσij ¼ Lijkldεkl ð13Þ

dσij ¼
dσ11
dσ22

dσ33

8<
:

9=
; ¼

L1111dε11 þ L1122dε22
L2211dε11 þ L2222dε22
L3311dε11 þ L3322dε22

8<
:

9=
; ð14Þ

For simplicity, the stiffness moduli are simplified as fol-
lows: D1111 =D11, D1122 =D2211 =D12 =D21, D2222 =D22,
L1111=L11, L1122 =L2211=L12=L21 and L2222=L22.

Combining Eqs. (9), (10), (12) and (14), the detailed ex-
pressions of Lij can be written as Eq. (15).

Lij ¼
L11
L22
L12

8<
:

9=
;

¼

1=E þ H*S222=σ
2
f

1=E2 þ H* S211 þ S222
� �

= Eσ2
f


 �
−2vH*S11S22= Eσ2

f


 �
1=E þ H*S211=σ

2
f

1=E2 þ H* S211 þ S222
� �

= Eσ2
f


 �
−2vH*S11S22= Eσ2

f


 �
v=E−H*S11S22=σ2f

1=E2 þ H* S211 þ S222
� �

= Eσ2
f


 �
−2vH*S11S22= Eσ2

f


 �

8>>>>>>>>>>><
>>>>>>>>>>>:

9>>>>>>>>>>>=
>>>>>>>>>>>;
ð15Þ

where S11 and S22 are the deviatoric stresses and H∗=9H/4.

2.2.2 The Tresca yield criterion

Another classical isotropic yield criterion, for the plane stress
state σ33 = 0, is that of Tresca yield criterion expressed by
Eq. (16). It should be noted that the subscripts of the
stress terms are arbitrarily defined instead of corresponding
to the principal stress sequence. The sequence of principal
stress is determined according to the specific metal-forming
process.

σ11−σ22 ¼ σ f ð16Þ
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In a similar way, combining Eq. (16) with Eqs. (10), (12)
and (14), the expression of the stiffness moduli using the
Tresca yield criterion can be written as Eq. (17).

Lij ¼
L11
L22
L12

8<
:

9=
; ¼

E2

2E 1−vð Þ−ET 1−v2ð Þ
E2

2E 1−vð Þ−ET 1−v2ð Þ
E2−EET 1−vð Þ

2E 1−vð Þ−ET 1−v2ð Þ

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;

ð17Þ

2.3 Material modelling in cold-forming condition

To obtain instant magnitudes of the above stiffness moduli
and material flow stress at different stages of draw-in, a
material model of a selected material is required. In this
paper, a physical-based, dislocation-driven material model
is applied [21]. The list of equations is given below from
Eqs. (18)–(23).

ε
:P ¼ σ= 1−ωð Þ−R−k

K

� �n1

ð18Þ

R
: ¼ 0:5B�ρ−0:5 �ρ

: ð19Þ

�ρ
: ¼ A 1−�ρð Þ ε:Pj j−C�ρn2 ð20Þ

ω: ¼ η1
ε
:P�� ��η2
1−ωð Þη3 ð21Þ

σ ¼ 1−ωð ÞE ε−εP
� � ð22Þ

Equation (18) is the traditional power law viscoplastic flow
formulation considering damage effect ω on viscoplastic flow.

Parameter ε
:P represents the plastic strain rate, k is the

initial yield stress, R is the hardening stress and ω is the
factor reflecting damage. Equation (19) represents the
evolution of material-hardening R, which is governed by
the evolution of normalised dislocation density �ρ. Parameter �ρ
is equal to (ρ− ρi)/ρm, ρi is the initial material dislocation
density and ρm is the maximum dislocation density.
Equation (21) represents the damage evolution for the
uniaxial formulation, which is a function of plastic strain

rate ε
:P. Equation (22) is the Hooke’s law for a simple

uniaxial state. Details of the illustration of each equation
are given by Lin et al. [22]. The material constants of this
dislocation-driven material model can be determined
using uniaxial tensile experiments of a particular alloy.
Then, such a material model can be used for both devel-
oping the buckling model and numerical simulations via
user-defined subroutine.

2.4 Bifurcation function

To overcome the inaccuracy of reduced modulus used in beam
and plate buckling models, the bifurcation function proposed
by Hutchinson et al. [16] was utilised. In addition, zone G
material can be considered as a quasi-shallow shell, as defined
in DMV shell theory. This shell is thought to be accurate when
the texture hollow, groove, is sufficiently large, whilst the
assumption may not be accurate for small texture designs
which need to be further validated using experiments.
Hence, the accurate application range of the DMV shell theory
assumption needs to be validated experimentally. Before
experiencing deformation, the assumed shell is believed to
remain as a relatively flat geometry, and the displacement
components are varying functions of the coordinates. The bi-
furcation function described in Eq. (23) is utilised here to
evaluate buckling occurrence for the zone G material [16].
In this paper, as the flange material experiences plastic defor-
mation when drawn in, the wrinkling of the zone G material is
assumed to be plastic buckling.

F ¼ ∬
t3

12
Lijklκijκkldsþ∬tLijklεsi jε

s
kldsþ∬tσijw;iw; jds

¼ Fb þ Fm þ Fn ð23Þ

where Lijkl is the incremental stiffness matrix related to stress
increments as mentioned above, κij is the incremental bending
strain, εsij is the incremental stretching strain, σij is the in-plane

principal stresses, wi is the displacement increment of buck-
ling with a direction normal to the shell middle surface and s
denotes the area of the shell middle surface over which wrin-
kles occur. The bifurcation function can be divided into three
terms for simplicity, where Fb represents the bending strain
energy term, Fm represents the membrane stress term and Fn

represents the potential energy of the edge stress. In terms of
this function, when F>0 for all admissible fields, bifurcation
will not occur and buckling cannot happen. Whilst for F=0,
bifurcation becomes possible, indicating experiencing buck-
ling for some non-zero fields [16].

2.4.1 Incremental strain and stress

According to the basic relationships of the DMV shell theory,
incremental bending and stretching strains due to buckling
from the uniform membrane state can be calculated using
Eqs. (24) and (25) [13],

κij ¼ −w;ij ð24Þ
εsij ¼ ui; j þ v j;i

� �
=2 ð25Þ

where w is the mathematical expression of deflection and u,v
represents the in-plane displacement fields.
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Considering the geometry feature of cylindrical cup deep-
drawing process, a cylindrical coordinate system (r θ z) is
established. Then, the displacement fields become functions
of instant radius r and polar angle θ, which are u(r, θ), v(r,θ)
and w(r, θ) for this cylindrical coordinate system. Substituting
the displacement fields into Eqs. (24) and (25), the detailed
expressions of incremental strains are given in Eqs. (26)
and (27).

κij ¼
κrr

κθθ

κrθ

8<
:

9=
; ¼

−
∂2w r; θð Þ

∂r2

−
1

r
∂w r; θð Þ

∂r
−
1

r2
∂2w r; θð Þ

∂θ2

−
1

r
∂2w r; θð Þ
∂r∂θ

þ 1

r2
∂w r; θð Þ

∂θ

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

ð26Þ

εsij ¼
εsrr
εsθθ
εsrs

8<
:

9=
; ¼

∂u r; θð Þ
∂r

u r; θð Þ
r

þ 1

r
∂v r; θð Þ

∂θ
1

2

1

r
∂u r; θð Þ

∂θ
þ ∂v r; θð Þ

∂r
−
v r; θð Þ

r

� 	

8>>>>><
>>>>>:

9>>>>>=
>>>>>;
ð27Þ

The incremental stress resultants Nij and bending mo-
ments Mij at buckling can be calculated using the above
incremental strains. These resultants are given by Eqs. (28)
and (29).

Nij ¼ tLijklεskl ð28Þ
Mij ¼ t3Lijklκkl=12 ð29Þ

In terms of the in-plane stress components, the tensile and
compressive stresses of the flange in cylindrical deep-drawing
process are normally expressed in Eqs. (30) and (31), respec-
tively, when neglecting the friction term due to the non-
blankholding force constraint of zone G [23].

σrr ¼ σ f ln b=rð Þ ð30Þ
σθθ ¼ σ f ln b=rð Þ−1½ � ð31Þ

where σf is the material flow stress, b is the outside flange
radius and r is the instant flange radius for a selected infini-
tesimal small unit.

2.4.2 Boundary conditions

To obtain analytical expressions for the above incremental
strains, mathematical functions using different boundary con-
dition of the displacement fields are required. Selecting a ver-
tical cross-section view of one unit (two surfaces and one
groove) for tool textures, Fig. 4 shows the schematic illustra-
tions of (a) the hinged and (b) the inbuilt boundary conditions
[24]. Each zone G material clamped by tools located above
groove and between two adjacent surfaces can be assumed as
a shell sector with constraints at two ends. Zheng et al. [12]
has established the mathematical expressions of deflections
for zone G material based on the above boundary condi-
tions utilising a geometry assumption of two-dimensional
plate; a detailed discussion and demonstration of the ac-
curacy of the expressions were also described. The inbuilt
boundary condition represents a fully clamped tool con-
straint at an extremely high blankholding force; however,
this kind of blankholding force may increase the radial
stress severely, and the material cannot be drawn in.
Regarding the hinged boundary condition, sheet metal
can be drawn into the die with no displacement in the
vertical direction, w(r, θ)|θ = 0 = 0 and w r; θð Þjθ¼θG ¼ 0,
which means that wrinkling will not occur for zone S
material. The mathematical equations for deflection
curves of hinged and inbuilt boundary condition are given
in Eqs. (32) and (33), respectively. The in-plane displacements
to calculate the stretching strains are given in Eq. (34) [13].
During material draw-in, it is assumed that zone G material
has no flow in the hoop direction, u(r, θ)|θ = 0=0 and
u r; θð Þjθ¼θG ¼ 0, whilst the zone G can be drawn into the
die when the radial displacement is non-zero [13].

w r; θð Þ ¼ δ1 r−að Þsin nπθ=θGð Þ ð32Þ

Fig. 4 Schematic illustrations of
boundary condition. a The
hinged. b The inbuilt [12]
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w r; θð Þ ¼ δln1 r−að Þ cos 2nπθ=θGð Þ−1½ � ð33Þ

u r; θð Þ ¼ δ2rcos nπθ=θGð Þ
v r; θð Þ ¼ δ3rsin nπθ=θGð Þ


ð34Þ

where δ1 and n are the wave amplitude and numbers δ2 and δ3
are the constants. All of these displacement fields are func-
tions of instantaneous radius r and the polar angle θ. The units
of displacement fields are consistent with the radius r in
millimetre.

2.5 Wrinkling determination

2.5.1 The criterion of wrinkling occurrence

The wrinkling occurrence using this bifurcation function is
defined when F=0. Considering the plane stress feature of
sheet metal processes, Eq. (23) is further extended and
expressed in Eq. (35) for a particular zone G material, and
the bifurcation is expressed by three parts, Fb, Fm and Fn, as
given by Eq. (35).

Fb ¼ 1

2
∫θG0 ∫ra

t3

12
L11κrrκrr þ 2L12κrrκθθ þ L22κθθκθθ þ 4L44κrθκrθ½ �

 �
rdrdθ

Fm ¼ 1

2
∫θG0 ∫ra t L11εsrrε

s
rr þ 2L12εsrrε

s
θθ þ L22εsθθε

s
θθ þ 4L44εsrθε

s
rθ

� �� �
rdrdθ

Fn ¼ 1

2
∫θG0 ∫ra t σrr

∂w
∂r

� �2

þ σθθ
1

r
∂w
∂θ

� �2
" #( )

rdrdθ

8>>>>>>><
>>>>>>>:

ð35Þ

As can be seen from the expressions for Fb and Fm, there
exists a component L44, which represents the induced shear
stress component resulting from deformation. In deep-
drawing processes, σrr and σθθ can be regarded as the principal
stresses corresponding to σ11 and σ22 mentioned above. Chu
and Xu [25] has concluded that this shear stress component is
vitally important for predicting wrinkling occurrence. In this
paper, it is assumed that L44=E/[2(1+ v)] to conduct the cal-
culation [13].

By combining the incremental strain expressions (Eqs. (26)
and (27)) with the displacement fields (Eqs. (32)–(34)) and
substituting them into Eq. (35), the bifurcation function can
be rewritten in matrix form shown in Eq. (36). The critical
condition of wrinkling occurrence is F = 0, and hence,
Det|M| must be equal to 0. The magnitude of this determinant
can be calculated as in Eq. (37).

F ¼ δ1 δ2 δ3f g
M 11 0 0
0 M 22 M23

0 M 32 M33

������
������

δ1
δ2
δ3

8<
:

9=
; ð36Þ

Det Mj j ¼ M 11 M 22M 33−M 2
23

� � ð37Þ

It can be calculated that M 22M 33−M 2
23≠0. Hence, the

only solution of this determinant is M11 = 0. As the coeffi-
cient of M11 is δ1, the bifurcation condition has no relation-
ship with the coefficients of δ2 and δ3, which means that
the effect of membrane stress can be neglected, and the
bifurcation function is related only to Fb and Fn. Hence, an
analytical expression ofM11 can be obtained by integration of
Eq. (35).

2.5.2 Calculation procedure

To capture the instant forming stage when flange wrinkling
occurs, a relationship between the actual deep-drawing process
and developed buckling model needs to established. In this
study, a simple method [26] using the relationship between
the hoop strain of flange material (actual forming process)
and the corresponding stiffness matrix (buckling model) was
applied, as shown in Fig. 5a. In this method, the outside edge of
zone G material can be assumed as a uniaxially compressed
slab (σrr =0) according to Eq. (30). Hence, the deformation type
of this slab is assumed to be identical to a uniaxial compression
test. In addition, the arc shape of material is assumed to remain
unchanged during draw-in. When the flange material is drawn
from the initial stage to a certain stage, the instant diameter
reduction, Δi, defined in Eq. (38) corresponds to an effective
strain of uniaxial stress-strain curve, as described in Eq. (39).
Finally, the above relationship can be used to capture the onset
of flange wrinkling during material draw-in.

Δi ¼ b−ri
� �

=b ð38Þ
εi ¼ ln 1þΔi� � ð39Þ

Figure 5b illustrates the flowchart for computer-based de-
termination of the occurrence of wrinkling during the forming
process. This consists of the following steps:

1. Input a radius reduction Δr, calculating corresponding
“effective strain” using Eqs. (38) and (39).

2. Obtain the instant tangent modulus Et using dislocation-
driven material model in Eq. (40), the plane stress state
σrr; σθθð Þ and the corresponding displacement fields.
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3. Obtain the instant stiffness matrix Lijkl and incremental
strains κij and εsij according to step (2) results.

4. Substitute stiffness matrix and incremental strains in the
bifurcation function. If F=0, wrinkling occurs and output
the critical radius value. If F≠0, return to step (2).

Et ¼ σiþ1−σi

εiþ1−εi
ð40Þ

Recalling the stiffness matrix of the von Mises and Tresca
yield criteria, Eqs. (15) and (17), it is impossible to obtain an
analytical solution of the bifurcation function using Eq. (15).
To simplify and enable calculation, due to wrinkles initiating
at the outside flange with a maximum compressive hoop
stress, the stiffness matrix of edge material of zone G can be
used. Then the stress state becomes 0 0 σθθð Þ, and σθθ
equals to the effective stress. Thus, the stiffness moduli Lij
can be simplified to Eq. (41).

Lij ¼
L11
L22
L12

8<
:

9=
; ¼

3EET þ E2

4 1−v2ð ÞET þ E−ETð Þ 5þ 4vð Þ
4E2

4 1−v2ð ÞET þ E−ETð Þ 5þ 4vð Þ
4vEET þ 2 E2−EET

� �
4 1−v2ð ÞET þ E−ETð Þ 5þ 4vð Þ

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;

ð41Þ

In terms of J2 yield criterion, combining the displacement
fields Eqs. (32)–(34) with the incremental strain expressions
Eqs. (26)–(27), the mathematical expressions of incremental
strains can be obtained for a particular coordinate r; θð Þ. By

substituting the incremental strains and stiffness matrix into
the bifurcation function, an analytical expression of bifurca-
tion function using the von Mises yield criterion can be ob-
tained and used to determine the wrinkling occurrence. In a
similar way, the analytical buckling model using Tresca yield
criterion can also be established. Table 1 lists the process
parameters needed for the model calculation.

3 Experimental validations of buckling model

3.1 Quasi-static uniaxial tensile test

Quasi-static uniaxial tensile tests were performed to obtain me-
chanical properties of test-piece material, AA6082. The as-
received material was in T6 condition with a thickness of
1.5 mm, and the chemical composition is given in Table 2
[27]. The uniaxial tensile test specimens were designed accord-
ing to the AMMS standard, and theyweremachined using laser
cutting from raw material AA6082-T6 sheets at the rolling
direction. Then, an annealing treatment, 415 °C for 1 h with
subsequent furnace cooling, was performed on the specimen.
The obtained tensile test results can be used to determine ma-
terial constants of the buckling model in Sect. 2.3.

Fig. 5 Wrinkling determination.
a The relationship between deep
drawing and analytical buckling
model. b The calculation
procedure of flange wrinkling

Table 1 The process parameters for model calculation

Dpunch (mm) v E (MPa) θs (deg) n Δr (mm)

100 0.33 70,000 2.5 1 0.1
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3.2 Deep-drawing test

Cylindrical deep-drawing test results as in the author’s previ-
ous publication [12] were used here to validate the developed
buckling model, as shown in Fig. 6a. Figure 6b shows the
necessary tool dimensions for the calculation of the analytical
buckling model. The test-piece material used throughout the
deep-drawing tests was the same as the uniaxial tensile tests.
Texture features were only machined on the blankholders.
Different texture ratios were used, α=1 , 1/4 and 1/6, for
the deep-drawing tests. The blankholding forces used were 10
and 40 kN, and the forming speed was 75 mm/s. All the tests
were performed in cold-stamping condition with the use of
Omega-35 lubricant.

4 FE simulation analysis

4.1 FE simulation programme

The minimal texture ratio reflecting the largest groove in ex-
perimentations was 1/6, of which FE simulations were per-
formed. Additional simulations were computed for existing
and theoretical texture ratios, α=1 , 1/4 , 1/6 , 1/8 and 1/
10, utilising PAM-STAMP. Figure 7 shows the FE model of
cylindrical deep drawing, as well as the loading and boundary
conditions. The dimensions of tools were consistent with ex-
perimental setups. The mesh of blank is extremely important
for guaranteeing the accuracy of simulation [28]. In this study,
the mesh of test-piece material was selected as shell element,
Belytschko-Tsay, with a fixed size at 4 mm. For different draw

ratios, the number of test-piece elements was 3456, 4012 and
4320, respectively, which were sufficiently large to guarantee
simulation accuracy. The mesh size was fine enough for
utilising subroutine in PAM-STAMP software as numerically
determined. Five integration points at the mid-plane of the
element were used. The tool mesh was default solid elements
and treated as rigid bodies. Table 3 lists the computation con-
ditions for FE simulations. All the simulations were performed
in cold-stamping condition.

4.2 Material modelling

The developed dislocation-driven material model of AA6082
in Sect. 2.3 was validated by the uniaxial tensile test result in
Sect. 3.1. The test-piece material was considered as isotropic
after annealing treatment, and only mechanical data (stress-
strain) in the rolling direction was used. Figure 8a shows the
comparisons between experimental results and material model
predictions. The symbols represent the experimental data of
the uniaxial tensile test, and the solid lines represent the fit-
tings of material model using three different strain rates. As
can be seen in this figure, the level of flow stress can be
regarded to be independent of strain rate, which is consistent
with elastic-plastic mechanism of aluminium alloy in cold-
stamping condition. A good agreement was obtained indicat-
ing that the developed material is capable of reflecting mate-
rial deformation in deep-drawing process. Table 4 lists the
material constants of the dislocation-driven material model.
The material model was implemented into the FE simulations
via user-defined subroutine. Typical computed contours were
shown in Fig. 8b.

Table 2 The main chemical
composition of AA6082 [27] Element Mn Fe Mg Si Cu Zn Ti Cr Al

Percent 0.4–1.0 0.5 0.6–1.2 0.7–1.3 0.1 0.2 0.1 0–0.25 Balance

Fig. 6 Experimental setup
details. aDeep-drawing tool set. b
Tool dimensions (all dimensions
are in millimetre)
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4.3 FE model verification

Figure 9 shows the validation of the FE model using the
comparison of normalised thickness distribution t defined
in Eq. (42) between experimentational results and simula-
tions using a non-textured blankholder, α= 1, for different
test-piece draw ratios. Figure 9a shows a sectioned view
of the formed part through a plane along the rolling direction
through the centre of bottom cup surface. Considering the
symmetric feature of the formed component, experimental
data indicated by solid symbols were measured only on
half of the cup using digital callipers at positions shown
in Fig. 9a. Corresponding predicted values of FE simula-
tions indicated by solid lines were output to compare to
this data, as shown in Fig. 9b. A close agreement was
found between experimentations and simulations. Hence,
it can be concluded that the developed FE model with the
implemenation of material model via user-defined subrou-
tine is capable of investigating the wrinkling phenomenon
and material deformation and validates the established
buckling model further.

t ¼ t=t0 ð42Þ

where t is the measured or predicted thickness at a partic-
ular position and t0 is the initial test-piece thickness.

4.4 Wrinkling occurrence definition

Figure 10 gives the experimental and numerical definitions of
the onset of zone G wrinkling. The onset of wrinkling is de-
fined when the height between the peak and lowest points of
wrinkles reaches 1 mm. However, the occurrence of wrinkling
is difficult to be captured precisely considering the stroke
fluctuations of the hydraulic press ram and uncertainties in
the measurement. However, such a limitation can be over-
come using a numerical approach, as shown in Fig. 10b. In

Fig. 7 The finite element model of cylindrical deep drawing

Table 3 Computation conditions

Computional condition Magnitudes

Blankholding force (kN) 10, 40

Interfacial friction coefficient 0.09

Forming speed (mm/s) 75

Texture ratio 1, 1/4, 1/6, 1/8 and 1/10

Test-piece draw ratio 1.7, 1.8 and 1.9

Fig. 8 Material modelling in FE simulation. a Material model fitting. b
Typical computational results of user-defined subroutine

Table 4 Material constants of AA6082 material model

K (MPa) k (MPa) B (MPa) E (MPa) n2

9 5.1 220 70,000 1.8

A C η1 η2 η3
2.15 0 0.15 20 1
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this figure, ri indicates the instantaneous flange radius when
the test piece experienced flange wrinkling.

5 Results and discussions

5.1 Boundary condition assumption

The mathematical expressions of wrinkles which determine the
incremental strain tensors are different using different boundary
condition assumptions, in Eqs. (32) and (33). Figure 11 shows the
effects of different boundary conditions on the prediction accura-
cy of the established buckling model. The comparison of test-

piece radius reduction when wrinkling occurred between the ex-
perimental and analytical results is shown. For the figure, the
selected texture ratio was α=1/6 at a forming speed of 75 mm/
s. The hollow square symbols represent the blankholding force
10 kN, and the solid square symbols represent the blankholding
force 40 kN. The yield function used was the von Mises for the
analytical buckling models. As can be seen in this figure, with the
utilisation of hinged boundary condition, good agreement can be
found between the buckling model (solid lines) with the experi-
mental results (symbols). Whilst in terms of the inbuilt boundary
condition (dash line), no wrinkling occurrence was detected,
which implies that the initial test piece can be entirely drawn in
analytically. However, wrinkling was easily generated for zone G
at the flangewhen test-piece diameter reductionwas small accord-
ing to the experimental observations. Hence, it can be concluded
that the inbuilt boundary condition over-predicted the resistance
of wrinkling in the flange. The actual surface constraint of zone G
material is closer to the hinged boundary condition. In addition,
Fig. 11 also illustrated the blankholding force effects on the
flange-wrinkling occurrence. From the experimental results, dif-
ferent blankholding force magnitudes, 10 and 40 kN, have very
limited effects on the flange-wrinkling occurrence, although with
increasing blankholding force (BHF), the resistance of wrinkling
is increased and the increased extent is very small and largely
negligible. Theoretically, wrinkling can be avoided using a suffi-
ciently great BHF. The sufficiently great BHF constraint can be
reflected in the boundary condition assumption of inbuilt in the
analytical model, which also predicted the non-wrinkling and
further verified the accuracy of modelling. However, such a great
blankholding force is unrealistic in actual forming processes, as it
might cause fracture due to induced high radial tensile stresses.

5.2 Yield function effect

The stiffness matrix used in the bifurcation function depends
on the chosen yield criterion. Figure 12 shows the

Fig. 9 FE model validation. a
Section view of FE model
validation. b The comparison of
normalised thickness distribution,
where symbols represent the
experimental data and lines
represent the computational data

Fig. 10 Wrinkling occurrence. a Experimental observation. bNumerical
definition
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Fig. 11 Effect of boundary
condition assumption on the
buckling model prediction
accuracy using BHF 10 and
40 kN at a forming speed of
75 mm/s

Fig. 12 Yield function effect on
the flange buckling model. a The
von Mises. b The Tresca for
texture ratios α= 1/6 and α= 1/
8 at a blankholding force 10 kN
and forming speed of 75 mm/s
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comparisons of typical experimental (α=1/6), further numer-
ical (α=1/6 and α=1/8) results and analytical predictions of
flange-wrinkling occurrence for the two yield criteria: (a) the
von Mises and (b) the Tresca, for a 10-kN BHF and a forming
speed of 75 mm/s. The square, circular and triangular symbols
represent the draw ratios of 1.7, 1.8 and 1.9, respectively. The
induced shear strain components are calculated for both yield
criteria. As can be seen in this figure, the analytically predicted
results without shear (dashed lines) are much lower than the
experimental results (hollow symbols) and numerical results
(solid symbols), and large differences can be observed.
However, after the inclusion of induced strain term, the ana-
lytical predicted results with shear (solid lines) have much less
variation with the experimental results and numerical results,
especially for the larger texture ratio case, α=1/8. For the
Tresca yield function in Fig. 12b, there is some difference

between the model calculations and experimentations for a
texture design, α=1/6, whilst closer agreement can be found
in Fig. 12a using the von Mises yield criterion. In general, the
analytical buckling model using Tresca yield criterion has a
higher prediction than using the von Mises yield criterion.
Whilst when the texture ratio becomes greater, both yield
criteria have good capabilities to predict the onset of wrinkling
within reasonable errors.

5.3 Application range of buckling model

As discussed above, the analytical buckling model was
established on the assumption of DMV shell theory of
zone G material, which is believed to be more accurate
for large texture features. The geometry of zone G mate-
rial was determined by texture ratio and test-piece draw

Fig. 13 Application ranges of
buckling models. a Different
texture ratio. b Different draw
ratio
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ratio. Figure 13a shows the wrinkling occurrence of zone
G material for different draw ratios using different tool
texture ratio. The solid lines represent the analytical buck-
ling model predictions for different draw ratios, whilst the
solid symbols represent the numerical results obtained at a
blankholding force of 10 kN and a forming speed of
75 mm/s, where the square, circle and triangle shapes
represent 1.7, 1.8 and 1.9 of used draw ratio, respectively.
The hollow symbols represent the experimental results
using texture ratio 1/4. Good agreements can be observed
between numerical predictions and analytical buckling re-
sults for smaller texture ratios (larger zone G area), α= 1/
6 , 1/8 and 1/10. However, there exists a great difference
between analytical lines and experimental symbols for a
relatively larger texture ratio, α= 1/4, which implies that
wrinkling cannot be predicted using this buckling model
for smaller feature textured surfaces. The reason for this
big difference is due to the DMV shell theory assumption.
If the area of unsupported material (zone G) is small, then
the test-piece thickness is relatively larger and the zone G
is not accurate to be assumed as a shell. In comparison,
the buckling models based on beam and plate assumptions
proposed by Zheng et al. [12] enable the prediction of
such wrinkling phenomena for a small texture design.
Similar results have been found between those models
and the current one for the texture design, α = 1/6.
However, the previous models were believed to be inac-
curate in reflecting the geometry effects of large texture
features. Another important factor affecting wrinkling is
the test-piece draw ratio. Figure 13b shows the wrinkling
occurrence of zone G material using different test-piece
draw ratio. The solid lines represent the results from the
analytical buckling model-predicted results using the
hinged boundary condition and the von Mises yield crite-
rion, whilst the square symbols represent the experimental
results using a tool texture ratio of α=1/6 at a blankholding
force of 10 kN. The forming speed used was 75 mm/s. The
circular symbols represent further validated numerical results
using a series of texture ratios α=1/6 , 1/8 , 1/10 to mini-
mise the experimental tests. With increasing draw ratio, the
critical reduction of test-piece diameter decreases, which
means that at a given texture ratio, the deep-drawing process
with a large draw ratio is easier for wrinkling to occur. The
reason is similar to that of texture ratio effect; that is, the wider
unsupported flange arising with larger diameter blanks is less
resistant to buckling. Most of the numerical results are higher
than analytical results for the three large tool textures. One
possible reason for this may be due to the wrinkling determi-
nation in the simulation. Wrinkling occurrence is defined
when the largest height difference reaches 1 mm. However,

the wrinkling occurrence detected in the analytical buckling
model may be earlier than that defined in the numerical sim-
ulation. Based on above discussions, the application range of
developed buckling model is for smaller texture ratios at least
lower than 1/6 and larger draw ratios.

6 Conclusions

In this paper, an advanced buckling model that can be used to
predict flange-wrinkling behaviour in sheet-stamping processes
with the utilisation of textured tool surfaces was established. A
series of classicmechanic theories, such as bifurcation andDMV
theories, are integrated in this buckling model with advanced
dislocation-driven based material model. Experimental and nu-
merical approaches were used to validate the accuracy of the
proposed buckling model by evaluating the wrinkling occur-
rence using a cylindrical deep-drawing tests utilising textured
tool surfaces on the blankholders. For the buckling model accu-
racy, the effects of different boundary condition assumption due
to the tool surface constraint and yield function selection on the
wrinkling occurrence were investigated. It can be concluded that
the hinged boundary condition reflects the actual tool surface
constraint more accurately. Moreover, using the von Mises yield
criterion in the analytical buckling model exhibits better agree-
ment with experimental results than using the Tresca yield crite-
rion. It is also possible that the developed buckling model can be
improved by introducing anisotropy yield criteria in the future.

Corresponding experiments were performed using differ-
ent tool designs. The buckling model based on DMV shell
theory can accurately predict the smaller texture ratio designs
as well as greater draw ratios. Whilst the DMV shell theory
was not suitable when the tool texture ratio was increased to a
lager magnitude.

A finite element model with the implementation of
dislocation-driven material model of aluminium alloy via
user-defined subroutine was used to further validate the devel-
oped analytical buckling model. The onset of flange wrinkling
can be computed using this FE model, and the computational
results further validated the analytical bucklingmodel for larg-
er texture ratio cases. Differences between the analytical mod-
el predictions and FE results of the wrinkling occurrence are
believed to be caused by the wrinkling onset definition in the
finite element model.

Acknowledgements The research in this paper was funded by the
European Union’s Horizon 2020 research and innovation programme
under Grant Agreement No. 723517 as part of the project “Low Cost
Materials Processing Technologies for Mass Production of Lightweight
Vehicles (LoCoMaTech)”.

494 Int J Adv Manuf Technol (2017) 92:481–495



Open Access This article is distributed under the terms of the Creative
Commons At t r ibut ion 4 .0 In te rna t ional License (h t tp : / /
creativecommons.org/licenses/by/4.0/), which permits unrestricted use,
distribution, and reproduction in any medium, provided you give appro-
priate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.

References

1. Karbasian H, Tekkaya AE (2010) A review on hot stamping. J
Mater Process Technol 210(15):2103–2118. doi:10.1016/j.
jmatprotec.2010.07.019

2. WangA, ZhongK, El Fakir O, Liu J, Sun C,Wang L-L, Lin J, Dean
TA (2016) Springback analysis of AA5754 after hot stamping:
experiments and FE modelling. Int J Adv Manuf Technol:1–14.
doi:10.1007/s00170-016-9166-3

3. Mohamed MS, Foster AD, Lin J, Balint DS, Dean TA (2012)
Investigation of deformation and failure features in hot stamping
of AA6082: experimentation and modelling. Int J Mach Tools
Manuf 53(1):27–38. doi:10.1016/j.ijmachtools.2011.07.005

4. Dong Y, Zheng K, Fernandez J, Li X, Dong H, Lin J (2017)
Experimental investigations on hot forming of AA6082 using ad-
vanced plasma nitrocarburised and CAPVD WC: C coated tools. J
Mater Process Technol 240:190–199. doi:10.1016/j.jmatprotec.
2016.09.023

5. Wang M, Zhang C, Xiao H, Li B (2016) Inverse evaluation of
equivalent contact heat transfer coefficient in hot stamping of boron
steel. Int J Adv Manuf Technol 87(9):2925–2932. doi:10.1007/
s00170-016-8678-1

6. Bruzzone AAG, Costa HL, Lonardo PM, Lucca DA (2008)
Advances in engineered surfaces for functional performance.
CIRP Ann Manuf Technol 57(2):750–769. doi:10.1016/j.cirp.
2008.09.003

7. Costa HL, Hutchings IM (2009) Effects of die surface patterning on
lubrication in strip drawing. J Mater Process Technol 209(3):1175–
1180. doi:10.1016/j.jmatprotec.2008.03.026

8. Franzen V, Witulski J, Brosius A, Trompeter M, Tekkaya AE
(2010) Textured surfaces for deep drawing tools by rolling. Int J
Mach Tools Manuf 50(11):969–976. doi:10.1016/j.ijmachtools.
2010.08.001

9. Zheng K, Politis D, Lin J, Dean T (2015) An experimental and
numerical investigation of the effect of macro-textured tool surfaces
in hot stamping. Int J Mater Form:1–14. doi:10.1007/s12289-015-
1273-4

10. Martins J, Neto D, Alves J, Oliveira M, Menezes L (2016)
Numerical modeling of the thermal contact in metal forming pro-
cesses. The International Journal of Advanced Manufacturing
Technology:1–15

11. Kowsarinia E, Alizadeh Y, Pour HSS (2013) Theoretical and ex-
perimental study on the effects of explosive forming parameters on
plastic wrinkling of annular plates. Int J Adv Manuf Technol 67(1):
877–885. doi:10.1007/s00170-012-4532-2

12. ZhengK, Politis DJ, Lin J, Dean TA (2016)A study on the buckling
behaviour of aluminium alloy sheet in deep drawing with macro-
textured blankholder. Int J Mech Sci 110:138–150. doi:10.1016/j.
ijmecsci.2016.03.011

13. Kadkhodayan M, Moayyedian F (2011) Analytical elastic–plastic
study on flange wrinkling in deep drawing process. Scientia Iranica
18(2):250–260. doi:10.1016/j.scient.2011.03.020

14. Senior BW (1956) Flange wrinkling in deep-drawing operations.
Journal of the Mechanics and Physics of Solids 4(4):235–246. doi:
10.1016/0022-5096(56)90032-1

15. Yu TX, Johnson W (1982) The buckling of annular plates in rela-
tion to the deep-drawing process. Int J Mech Sci 24(3):175–188.
doi:10.1016/0020-7403(82)90036-4

16. Hutchinson J, Neale K (1985)Wrinkling of curved thin sheet metal.
Plastic Instability:71–78

17. Niordson FI (2012) Shell theory. Elsevier Science
18. Rønning L, Hopperstad OS, Larsen PK (2010) Numerical study of

the effects of constitutive models on plastic buckling of plate ele-
ments. European Journal of Mechanics - A/Solids 29(4):508–522.
doi:10.1016/j.euromechsol.2010.02.001

19. Hill R (1967) The mathematical theory of plasticity. Clarendon
Press

20. Wang C-T, Kinzel G, Altan T (1994) Wrinkling criterion for an
anisotropic shell with compound curvatures in sheet forming.
Int J Mech Sci 36(10):945–960. doi:10.1016/0020-7403(94)
90056-6

21. Lin J, Mohamed M, Balint D, Dean T (2014) The development of
continuum damage mechanics-based theories for predicting
forming limit diagrams for hot stamping applications.
International Journal of Damage Mechanics 23(5):684–701

22. Lin J, Liu Y (2003) A set of unified constitutive equations for
modelling microstructure evolution in hot deformation. J Mater
Process Technol 143–144:281–285. doi:10.1016/S0924-0136(03)
00472-2

23. Altan T, Tekkaya AE (2012) Sheet metal forming: fundamentals.
Asm International

24. Timoshenko S, Goodier JN (1951) Theory of elasticity, by S.
Timoshenko and J. N. Goodier,... 2nd Edition. McGraw-Hill book
Company

25. Chu E, XuY (2001) An elastoplastic analysis of flangewrinkling in
deep drawing process. Int J Mech Sci 43(6):1421–1440. doi:10.
1016/S0020-7403(00)00091-6

26. Baldwin W, Howald T (1947) Folding in the cupping operation.
ASM TRANS Q 38:757–788

27. Moreira PMGP, Santos T, Tavares SMO, Richter-Trummer V,
Vilaça P, de Castro PMST (2009) Mechanical and metallurgical
characterization of friction stir welding joints of AA6061-T6 with
AA6082-T6. Mater Des 30(1):180–187. doi:10.1016/j.matdes.
2008.04.042

28. Neto D, Oliveira M, Dick R, Barros P, Alves J, Menezes L (2015)
Numerical and experimental analysis of wrinkling during the cup
drawing of an AA5042 aluminium alloy. International Journal of
Material Forming:1–14

Int J Adv Manuf Technol (2017) 92:481–495 495

http://dx.doi.org/10.1016/j.jmatprotec.2010.07.019
http://dx.doi.org/10.1016/j.jmatprotec.2010.07.019
http://dx.doi.org/10.1007/s00170-016-9166-3
http://dx.doi.org/10.1016/j.ijmachtools.2011.07.005
http://dx.doi.org/10.1016/j.jmatprotec.2016.09.023
http://dx.doi.org/10.1016/j.jmatprotec.2016.09.023
http://dx.doi.org/10.1007/s00170-016-8678-1
http://dx.doi.org/10.1007/s00170-016-8678-1
http://dx.doi.org/10.1016/j.cirp.2008.09.003
http://dx.doi.org/10.1016/j.cirp.2008.09.003
http://dx.doi.org/10.1016/j.jmatprotec.2008.03.026
http://dx.doi.org/10.1016/j.ijmachtools.2010.08.001
http://dx.doi.org/10.1016/j.ijmachtools.2010.08.001
http://dx.doi.org/10.1007/s12289-015-1273-4
http://dx.doi.org/10.1007/s12289-015-1273-4
http://dx.doi.org/10.1007/s00170-012-4532-2
http://dx.doi.org/10.1016/j.ijmecsci.2016.03.011
http://dx.doi.org/10.1016/j.ijmecsci.2016.03.011
http://dx.doi.org/10.1016/j.scient.2011.03.020
http://dx.doi.org/10.1016/0022-5096(56)90032-1
http://dx.doi.org/10.1016/0020-7403(82)90036-4
http://dx.doi.org/10.1016/j.euromechsol.2010.02.001
http://dx.doi.org/10.1016/0020-7403(94)90056-6
http://dx.doi.org/10.1016/0020-7403(94)90056-6
http://dx.doi.org/10.1016/S0924-0136(03)00472-2
http://dx.doi.org/10.1016/S0924-0136(03)00472-2
http://dx.doi.org/10.1016/S0020-7403(00)00091-6
http://dx.doi.org/10.1016/S0020-7403(00)00091-6
http://dx.doi.org/10.1016/j.matdes.2008.04.042
http://dx.doi.org/10.1016/j.matdes.2008.04.042

	An analytical investigation on the wrinkling of aluminium alloys �during stamping using macro-scale structural tooling surfaces
	Abstract
	Introduction
	Analytical buckling model
	Macro-textured tool design concept and modelling
	Constitutive equations of elastic-plastic solids
	The von Mises yield criterion
	The Tresca yield criterion

	Material modelling in cold-forming condition
	Bifurcation function
	Incremental strain and stress
	Boundary conditions

	Wrinkling determination
	The criterion of wrinkling occurrence
	Calculation procedure


	Experimental validations of buckling model
	Quasi-static uniaxial tensile test
	Deep-drawing test

	FE simulation analysis
	FE simulation programme
	Material modelling
	FE model verification
	Wrinkling occurrence definition

	Results and discussions
	Boundary condition assumption
	Yield function effect
	Application range of buckling model

	Conclusions
	References


