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Abstract The paper examines a nonlinear one-degree-of-
freedom model of the cutting process. The classical regener-
ative mechanism of chatter is enriched by an additional fric-
tion phenomenon which generates frictional chatter. Addi-
tionally, the nonlinear cubic stiffness of the tool is taken into
account. The aim of the paper is to investigate interactions
between regeneration and the frictional effect. The proposed
model is solved by the multi-time scale method. The cut-
ting process stability (trivial solution) is determined in order
to produce stability lobe diagrams and determine the influ-
ence of friction on the process. Finally, the maps of chatter
amplitudes are presented and new frictional stability lobe
diagrams are proposed to analyse the influence of friction.

Keywords Frictional chatter · Regenerative chatter ·
Cutting process

1 Introduction

Nowadays the cutting process is still one of the most popular
manufacturing methods. Given increased industrial compe-
tition, the manufacturers must reduce costs and improve
dimensional accuracy. The efficiency of a machining oper-
ation is determined by the metal removal rates, cycle time,
machine down time and tool wear. The primary factor
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that limits machining process efficiency is a phenomenon
called chatter. Chatter is a dynamic instability that can limit
material removal rates, cause poor surface finish and even
damage the tool or the workpiece. From a historical point
of view, the knowledge of machine tool chatter goes back to
almost 100 years ago when Taylor first described this phe-
nomenon [1]. Next, Tlusty et al. [2], Tobias [3] and Kudinov
[4, 5] gave background of the so-called regenerative chatter.
This effect has become the most commonly accepted expla-
nation for machine tool chatter. Later, however, another
chatter mechanism produced by friction was developed by
Grabec [6]. This mechanism, called frictional chatter, can
cause interesting phenomena such as deterministic chaos
[6–11]. While the frictional mechanism is based on fric-
tion between the tool and the workpiece, the regenerative
effect is related to the wavy workpiece surface generated
by the previous cutting tooth pass. Wiercigroch et al. define
four chatter mechanisms [12, 13]. Besides regenerative and
frictional chatter, they also report mode coupling and termo-
mechanical mechanisms. Although trace regeneration and
friction are very important practical operations, there are
few papers which consider regenerative and frictional mech-
anisms together, for example [14]. Since friction always
exists in a real cutting process, excluding this phenomenon
would be a too big simplification.

In the literature, the most often discussed operations
are orthogonal cutting operations, e.g. turning and milling.
As for turning, the governing equation is relatively sim-
ple because the tool has one cutting tooth which still is in
contact with the workpiece, so the depth of cut is positive
[12, 13, 15, 16]. In the case of milling, the direction and
value of the cutting force change due to rotation of the multi-
blade tool, and the cutting is interrupted as each tooth enters
and leaves the workpiece. Consequently, the resulting equa-
tion of motion is non-smooth [17, 18]. This causes problems
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during numerical and analytical calculations. An analytical
solution of nonlinear problems is not exact but approximate
and difficult to obtain. Nonetheless, it is frequently used due
to its universality [19]. Sometimes, the impact of ploughing
mechanism on chatter stability is presented as well [20].

Recently, scientists pay attention on dynamics of cutting
process where multifunctional tools [21] and tools for spe-
cial operations e.g. thread milling [22] are used. Moreover,
the problem of stability lobes in milling process with multi-
ple modes is analysed [23]. In this paper, the useful method
of the lowest envelop stability lobes is developed.

In order to get knowledge about the influence of fric-
tional chatter on regenerative chatter and complete field of
mathematical approach, the method of time multi-scales is
applied here. An explanation of interactions between the
frictional and regenerative mechanisms is the main aim
of the paper. Therefore, the dynamics of a one-degree-of-
freedom model of the cutting process is examined. Special
attention is devoted to the stability problem of trivial and
non-trivial solutions and their dependence on system param-
eters. Finally, some practical conclusions regarding the
cutting process are drawn from the results.

2 Mathematical model

For the purpose of analysing the regenerative and frictional
mechanisms of chatter, a one-degree-of-freedom model of
orthogonal cutting is presented in Fig. 1. In order to explain
interactions between the regenerative and frictional mecha-
nisms, only the feed direction (x) is considered here. From
our point of view, the feed direction is more important, par-
ticularly because the regenerative mechanism depends on
tool position in the x (feed) direction and friction between
the tool and the chip. The tool is modelled as a lumped mass
which is suspended with a nonlinear spring and a linear (vis-
cous) damper. The nonlinear spring is sometimes used in
the literature (e.g. [19, 24]) to model the nonlinear prop-
erties of the tool and tool holder, although a linear spring

Fig. 1 Model of orthogonal cutting

is more popular. The differential equation of tool motion is
presented as

mẍ1(t) + cẋ1(t) + k1x1
3(t) + kx1(t) = Krw ·

(ho−x1(t)+x1(t−τ))+Kt(sgn(vr)−arvr +brv
3
r ) (1)

where, m is the tool mass, c is damping, k and k1 are the
linear and nonlinear stiffness coefficients, w is the width of
cut, and ho is the initial depth of cut. Kr is the regenera-
tive component of the specific cutting force which is related
to material shearing (regenerative effect), while Kt is the
frictional component of the specific cutting force. Dividing
Eq. 1 by m and introducing the non-dimensional coordinate
(x) and time, after some calculations the non-dimensional
spring and damping forces (Fs and Fd ) are expressed as

Fs = γ x3(t) + ω2
0x(t))

Fd = δẋ(t) (2)

The delay differential equation of motion can be presented
in a non-dimensional form as

ẍ(t) + δẋ(t) + γ x3(t) + ω2
0x(t)

= α(ho−x(t)+x(t−τ))+β(sgn(vr)−arvr +brv
3
r ) (3)

Despite the fact that the regenerative effect is the main cause
of chatter, one cannot neglect friction phenomena between
the tool and the workpiece as well as between the chip and
the tool. Therefore, the present model of the cutting force
has two components. A regenerative force, which occurs
when the favourable phase develops between the inner and
outer modulations, and a friction force between the tool and
the workpiece. Then, α denotes the cutting resistance of the
regenerative force (regenerative force factor) while β is the
cutting resistance of the friction force component (friction
force factor). In other words, α and β tell us how strong the
regenerative and the friction components are. The regenera-
tive force depends on the depth of cut (ho), the present tool
position x(t) and the previous position x(t − τ). In turn, the
time delay x(τ) is connected with the spindle speed Ω by
the equation

Ω = 2π

τ
(4)

The friction force depends on the relative velocity (vr )
between the tool and the workpiece (chip) which is
expressed as

vr = vc − ẋ(t), vc = d/τ (5)

where vc means the cutting speed which also depends on
the time delay τ and a workpiece or a tool diameter d. The
coefficients ar and br are responsible for the friction force
characteristic presented in Fig. 2. The shape of this charac-
teristic is consistent with the experimental results reported
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Fig. 2 Friction force characteristic

in [25–29]. The relative velocity vr can be positive and neg-
ative. Therefore, the friction force characteristic has two
branches.

3 Analytical solution of chatter vibrations

The non-dimensional equation of motion of the cutting tool
(3) is solved analytically by the multiple scale method [30].
At the beginning, it is assumed that the relative velocity (vr )
is still positive and equals 1. Next, two scales—the fast To

and the slow T1 are introduced and defined as follows:

T0 = t, T1 = εt (6)

Then, a solution in the first-order approximation has the
form:

x(t) = x0(T0, T1) + εx1(T0, T1)

x(t − τ) = xτ = x0τ (T0, T1) + εx1τ (T0, T1) (7)

It is assumed that:

ω2
0 = ω2 + εσ, δ = εδ̂, γ = εγ̂ , α = εα̂, β = εβ̂ (8)

where ε is a formal small parameter. Next, in order to facil-
itate notation, the tilde is omitted. Using the chain rule, the
time derivative is transformed according to the expressions:

d

dt
= ∂

∂T0
+ ε

∂

∂T1

d2

dt2
= ∂2

∂T 2
0

+ ε
∂2

∂T0∂T1
+ ε

∂2

∂T1∂T0
+ ...

= ∂2

∂T 2
0

+ 2ε
∂2

∂T0∂T1
+ ... (9)

Substituting Eqs. 6–9 into Eq. 3 we get:

∂2x(t)

∂T 2
0

+ 2ε
∂2x(t)

∂T0∂T1
+ εβbr

(
∂x(t)

∂T0
+ ε

∂x(t)

∂T1

)3

− 3εβbrvc

(
∂x(t)

∂T0
+ ε

∂x(t)

∂T1

)2

+ ε
(

3βbrv
2
c − βar + δ

) (
∂x(t)

∂T0
+ ε

∂x(t)

∂T1

)

+ εα (μx(t) − xτ (t) − h0) + εγ x(t)3

+ εσx(t) + ω2x(t) + εβ
(
arvc − brv

3
c − th − c

)
= 0

(10)

For clarity, some part of the mathematical derivations is put
in the appendix. Finally, we obtain the modulation equations
in the form

f1 = a′(T1) = −1

2
δa(T1) − 1

2
αa(T1) sin τ

+1

2
βara(T1) − 3

8
βbra(T1)

3 − 3

2
βbrv

2
c a(T1)

f2 = β ′(T1) = 1

2
μα + 1

2
σ + 3

8
γ a(T1)

2 − 1

2
α cos τ (11)

Then, for the steady-state solution, Eq. 11 take the form:

− 1

2
δa − 1

2
αa sin τ + 1

2
βara − 3

8
βbra

3 − 3

2
βbrv

2
c a = 0

1

2
μα + 1

2
(ω2

o − ω2) + 3

8
γ a2 − 1

2
α cos τ = 0

(12)

Solving Eq. 12 ,one trivial (a1) and two non-trivial (peri-
odic) solutions (a2) are found.

a1 = 0

a2,3 = 2

√
ar − δ

β

3br

∓ α sin(τ )

3βbr

− d2

τ 2
(13)

The trivial solution (a1) is important from a practical point
of view because here the cutting process is stable with-
out chatter vibrations. When the trivial solution is unstable,
chatter appears. Therefore, the problem of solution stability
is of great importance.

To analyse the stability of steady-state solutions, Eq. 11
are linearised with respect to a(T1) and β(T1). Next, the
Jacobian matrix is defined as

J =
(

df1
da

df1
dβ(T1)

df2
da

df2
dβ(T1)

)
(14)

The eigenvalue of the Jacobian (Eq. 14) should have a neg-
ative real part in order to produce a stable solution. The
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eigenvalue, which defines stability of trivial and non-trivial
solution is expressed as

1

8
(4arβ − 9a2brβ − 12brβ(d/τ)2 − 4δ − 4α sin τ) (15)

Trivial solution stability For the trivial solution (a1 = 0),
the eigenvalue (Eq. 15) takes the form

β(ar − 3br(d/τ)2) − δ − α sin τ < 0 (16)

The stability borders of the trivial solution determine the
so-called stability lobe diagram (SLD) which is shown
graphically in Fig. 3 assuming the following parameters:
δ = 0.1, β = 0.8, ar = 0.5, br = 0.1 and d = 1. The
SLD shows the plane of the parameters Ω −α where cutting
process is stable (the trivial solution is stable). This area is
white in the SLD while the colour lobes point to the chatter
vibration amplitude.

Inside the lobes, the non-trivial (periodic) solution exists.
Its amplitude and the lobe width depend on the friction force
factor (β). At β = 0.01, the chatter region is smaller, but
the amplitude is higher approaching even to 30 (Fig. 3a).
At stronger friction (β = 0.1 and especially β = 0.8), the
chatter region is wider and the amplitudes of chatter are sig-
nificantly smaller. Thus, friction broadens the chatter region
but limits the vibration amplitude.

Stability of non-trivial solutions The non-trivial (peri-
odic) solutions (a2,3) are stable when the following equation
is satisfied

β(ar − 3br(d/τ)2) − δ + α(
1

2
∓ 3

2
) sin τ > 0 (17)

The first periodic solution a2 is stable exactly when the
trivial solutions is unstable, but the second non-trivial solu-
tion a3 is stable in the regions where the trivial solutions
is stable. Thus, two solutions: trivial a1 and periodic a3,
can exist in the same region of the SLD depending on
the initial conditions. The same behaviour observed for
the nonlinear regenerative model is reported in [31]. Both
periodic solutions (a2 and a3) are presented in Fig. 4.
Interestingly, that in the first-order approximation chatter
vibrations do not depend on cubic nonlinearity determined
by the γ coefficient. Probably the solution of the second
order approximation reveals the influence of γ on the sys-
tem’s dynamics. Similar diagrams with unstable lobes are
obtained on the plane Ω −β (Fig. 5). In this case, three vari-
ants of the coefficient of regenerative effect (α) are analysed
α = 0.01, α = 0.1 and α = 0.4. For α = 0.01 (Fig. 5a)
there is a critical value of β = 0.2. This critical β means
that, below this value, the cutting process is free of chatter
regardless of ω. Unstable lobes are hardly visible because
the whole region β > 0.2 is unstable. In other words, the
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Fig. 3 Stability lobe diagrams. Influence of regeneration mechanism
(β) on stability of trivial solution for β = 0.01 (a), β = 0.1 (b) and
β = 0.8 (c)
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Fig. 4 Stability lobe diagrams. Influence of regeneration mechanism
(β) on stability of non-trivial solution for β = 0.01 (a), β = 0.1 (b)
and β = 0.8 (c)

Fig. 5 Influence of friction (β) on stability of non-trivial solution for
α = 0.01 (a), α = 0.1 (b) and α = 0.4 (c)
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periodic solutions are stable. Unstable lobes are more visi-
ble when α = 0.1 (Fig. 5b). In the analysed system, the most
interesting behaviour can be observed for α = 0.4 (Fig. 5c).
The highest amplitudes occur for the small β and unstable
lobes seem to be inverted. Here, the regenerative mechanism
dominates over the frictional one.

4 Discussion and conclusions

Chatter vibrations as a result of classical regenerative
and extra frictional mechanisms are investigated here with
respect to interactions between them. The analytical method
of multiple time scales is used successfully to solve the
nonlinear problem of the cutting process. Although the non-
linear properties of the tool stiffness are assumed, their
influence on cutting dynamics is not allowed for in the first-
order approximation. Probably, the second order approxi-
mation would be better to this aim; however, the influence
of the frictional mechanism on regenerative chatter is visi-
ble. Classical unstable lobes generated by the regenerative
effect are modified by the action of friction. The friction
phenomenon widens unstable cutting regions, but on the
other hand, it reduces the chatter vibration amplitude. The
regenerative model of cutting with friction has trivial and
two periodic (non-trivial) solutions. The periodic and triv-
ial solutions can exists simultaneously at specific cutting
speeds because both solutions can be stable. From prac-
tical point of view it means that any disturbance causing
a change of initial conditions can lead to chatter even in
the region where the classical regenerative cutting process
should be stable, this is, for a small α. Such a change of ini-
tial conditions can be caused for example by chip break. The
interesting phenomenon of reverse unstable lobes is shown
on the plane of rotational speed-friction force coefficient
(Ω −β). We can observed an untypical behaviour where the
small β generates a higher vibration amplitude than large
one. The stability diagram on the plane of rotational speed
(ω)-friction force component (β) is an equivalent of the
classical stability lobe diagram (SLD) and can be called a
frictional stability lobe diagram—FSLD.

Investigation of friction and regenerative chatter will be
continued using the numerical method in order to find ape-
riodic and irregular vibrations in the nonlinear model of the
cutting process. Moreover, experimental tests are planned to
be performed in order to verify the theoretical results, and
most of all, to obtain the real coefficient of frictional and
regenerative force components.
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Appendix

Expanding derivatives of the Eq. 10, we obtain:

∂x(t)

∂T0
= ∂x0

∂T0
+ ε

∂x1

∂T0

∂2x(t)

∂T 2
0

= ∂2x0

∂T 2
0

+ ε
∂2x1

∂T 2
0

∂2x(t)

∂T0∂T1

= ∂2x0

∂T0∂T1
+ ε

∂2x1

∂T0∂T1
(18)

ε
∂2x1

∂T 2
0

+ ∂2x0

∂T 2
0

+ 2ε
∂2x0

∂T0∂T1
+ εβbr

(
∂x0

∂T0

)3

−3εβbrvc

(
∂x0

∂T0

)2

+ε
(

3βbrv
2
c −βar +δ

) (
∂x0

∂T0

)

+εα (μx0 − x0τ − h0) + εγ x3
0

+εσx0+ω2x0+εω2x1

+εβ
(
arvc − brv

3
c − th − c

)
= 0 (19)

Equating coefficients of powers of ε0 and ε1, we obtain:

ε0 ⇒ ∂2x0

∂T 2
0

+ ω2x0 = 0

ε1 ⇒ ∂2x1

∂T 2
0

+ 2
∂2x0

∂T0∂T1
+ βbr

(
∂x0

∂T0

)3

−3βbrvc

(
∂x0

∂T0

)2

+
(

3βbrv
2
c −βar +δ

) (
∂x0

∂T0

)

+α (μx0 − x0τ − h0) + γ x3
0 + ω2x1

+σx0 + β
(
arvc − brv

3
c − th − c

)
= 0 (20)

It is convenient to express the solution of first Eq. 20 in the
complex form:

x0(T0, T1) = A(T1)e
iT0 + Ā(T1)e

−iT0

x0τ (T0, T1) = A(T1)e
i(T0−τ) + Ā(T1)e

−i(T0−τ) (21)

where Ā is the complex conjugate of A, which is an arbitrary
complex function of T1. Substituting Eq. 21 into second
Eq. 20 and expanding the derivatives, we get:

∂x0

∂T0
= A(T1)ie

iT0 − Ā(T1)ie
−iT0

∂2x0

∂T0∂T1
= A′(T1)ie

iT0 − Ā′(T1)ie
−iT0 (22)

http://creativecommons.org/licenses/by/4.0/
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and then the following equation is obtained:

∂2x1

∂T 2
0

+ω2x1+2
(
A′(T1)ie

iT0 −Ā′(T1)ie
−iT0

)

+βbr

(
A(T1)ie

iT0 − Ā(T1)ie
−iT0

)3

−3βbrvc

(
A(T1)ie

iT0 − Ā(T1)ie
−iT0

)2

+
(

3βbrv
2
c −βar +δ

) (
A(T1)ie

iT0 −Ā(T1)ie
−iT0

)

+αμ
[
A(T1)e

iT0 + Ā(T1)e
−iT0

]

−α
[
A(T1)e

i(T0−τ) + Ā(T1)e
−i(T0−τ)

]
− αh0

+γ
(
A(T1)e

iT0 + Ā(T1)e
−iT0

)3

+σ
(
A(T1)e

iT0 + Ā(T1)e
−iT0

)

+β
(
arvc − brv

3
c − th − c

)
= 0 (23)

Ordering Eq. 23, we get its final form

∂2x1

∂T 2
0

+ ω2x1 + (iδA(T1) + αμA(T1)

+σA(T1) − iβarA(T1) + 3iβbrv
2
cA(T1)

+3γA(T1)
2Ā(T1)

+3iβbrA(T1)
2Ā(T1) + 2iA′(T1) − αA(T1)e

−iτ )eiT0

+(−iδĀ(T1) + αμĀ(T1)

+σĀ(T1) + iβarĀ(T1) − 3iβbrv
2
c Ā(T1)

+3γ Ā(T1)
2A(T1) − 3iβbrĀ(T1)

2A(T1)

−2iĀ′(T1) − αĀ(T1)e
−iτ )e−iT0

+3βbrvcA(T1)
2e2iT0 + 3βbrvcĀ(T1)

2e−2iT0

+ (γ −iβbr) A(T1)
3e3iT0 +(γ +iβbr) Ā(T1)

3e−3iT0

−6βbrvcA(T1)Ā(T1)

+β
(
arvc−brv

3
c −th−c

)
−αh0 =0 (24)

The secular term of Eq. 24 vanishes if and only if:

ST1e
iT0 = 0, ST2e

−iT0 = 0 (25)

where ST1 and ST2 are the secular generating terms. This
leads to the equations:

iδA(T1) + αμA(T1) + σA(T1) − iβarA(T1)

+3iβbrv
2
cA(T1) + 3γA(T1)

2Ā(T1)

+3iβbrA(T1)
2Ā(T1) + 2iA′(T1) − αA(T1)e

−iτ = 0

−iδĀ(T1) + αμĀ(T1) + σĀ(T1) + iβarĀ(T1)

−3iβbrv
2
c Ā(T1) + 3γ Ā(T1)

2A(T1)

−3iβbrĀ(T1)
2A(T1) − 2iĀ′(T1) − αĀ(T1)e

−iτ = 0 (26)

Substituting into Eq. 26, the polar form of the complex
amplitude:

A(T1) = 1

2
a(T1)e

iβ(T1)

A′(T1) = 1

2
a′(T1)e

iβ(T1) + 1

2
ia(T1)β

′(T1)e
iβ(T1)

Ā(T1) = 1

2
a(T1)e

−iβ(T1)

Ā′(T1) = 1

2
a′(T1)e

−iβ(T1)− 1

2
ia(T1)β

′(T1)e
−iβ(T1) (27)

results in:

− 1

2
αa(T1)e

−iτ+iβ(T1) + 1

2
iδa(T1)e

iβ(T1)

+1

2
μαa(T1)e

iβ(T1) + 1

2
σa(T1)e

iβ(T1)

+3

8
γ a(T1)

3eiβ(T1) − 1

2
iβara(T1)e

iβ(T1)

+3

8
iβbra(T1)

3eiβ(T1) + 3

2
iβbrv

2
c a(T1)e

iβ(T1)

+2i

[
1

2
a′(T1)e

iβ(T1) + 1

2
ia(T1)β

′(T1)e
iβ(T1)

]
= 0

−1

2
αa(T1)e

iτ−iβ(T1) − 1

2
iδa(T1)e

−iβ(T1)

+1

2
μαa(T1)e

−iβ(T1) + 1

2
σa(T1)e

−iβ(T1)

+3

8
γ a(T1)

3e−iβ(T1)

+1

2
iβara(T1)e

−iβ(T1)

−3

8
iβbra(T1)

3e−iβ(T1)

−3

2
iβbrv

2
c a(T1)e

−iβ(T1)

−2i

[
1

2
a′(T1)e

−iβ(T1) − 1

2
ia(T1)β

′(T1)e
−iβ(T1)

]
= 0 (28)

After the transformations of the first Eq. 28, we obtain:

− 1

2
αa(T1)e

−iτ + 1

2
iδa(T1) + 1

2
μαa(T1)

+1

2
σa(T1) + 3

8
γ a(T1)

3 − 1

2
iβara(T1)

+3

8
iβbra(T1)

3 + 3

2
iβbrv

2
c a(T1) + ia′(T1)

−a(T1)β
′(T1) = 0 (29)

Then recalling

e−iτ = cos τ − i sin τ (30)
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The normal form is obtained:

1

2
iδa(T1) + 1

2
μαa(T1) + 1

2
σa(T1) + 3

8
γ a(T1)

3

−1

2
αa(T1) cos τ + 1

2
iαa(T1) sin τ

−1

2
iβara(T1) + 3

8
iβbra(T1)

3 + 3

2
iβbrv

2
c a(T1)

+ia′(T1) − a(T1)β
′(T1) = 0 (31)

Separating the real and imaginary parts, the two, so-called,
modulation equations are found:

1

2
δa(T1) + 1

2
αa(T1) sin τ − 1

2
βara(T1)

+3

8
βbra(T1)

3 + 3

2
βbrv

2
c a(T1) + a′(T1) = 0

1

2
μαa(T1) + 1

2
σa(T1) + 3

8
γ a(T1)

3

−1

2
αa(T1) cos τ − a(T1)β

′(T1) = 0 (32)
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