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Abstract The article presents the results of basic research
focused on the decohesion phenomenon characteristics of se-
lected abrasive grains using acoustic emission signal patterns.
On the basis of the recorded signals, their detailed analysis in
the time-frequency domain and their characteristic harmonic
components were selected. The method developed for esti-
mating the similarity of the harmonic sequences will be further
used in a comparative analysis with the degree of similarity of
acoustic emission signal patterns to determine the type of
grain in the decohesion process inducted by an external force
or stress field. The proposed technique of grain recognition
can be used in grinding wheel wear diagnostic systems, espe-
cially in cases where it is significant for supervision or inspec-
tion of cracking and chipping abrasive grain vertices.

Keywords Abrasive grains . Brittle fracture . Acoustic
emission . Identification . Signal analysis

Nomenclature
AE Acoustic emission
CZT The chirp ℤ transform
DTFT Discrete Time Fourier Transform
FFT Fast Fourier transform
GCD The greatest common divisor

PSD The power spectrum density
A Starting point for the logarithmic spiral
AEraw Filtered raw acoustic emission signal, V
c Length of crack, mm
dy Size of the deformation zone (aka: process-zone),

mm
E Young’s modulus, Pa
f Frequency, Hz
f0 Fundamental frequency of signal, Hz
fnorm Normalized frequency, π·radian/sample
fm Frequency of the mth harmonic component, Hz
fs Sampling frequency of signal, Hz
Gc Material toughness, kJ/m2

i The imaginary unit (for complex number)
j Index number
k Time lag (shifting of the signal), samples
K Overlapping length of segments (in Welch’s meth-

od), samples
K1c Fracture toughness, MPa ·m1/2

l The point number on the logarithmic spiral (in chirp
ℤ-transform)

m Natural number, greater than 1
M Length of window function (in Welch’s method) or

length of the transform, samples
n Signal’s sample number
N Signal’s number of samples
P Power of signal
Rc Compressive strength, Pa
Rm Tensile strength, Pa
Rxx Autocorrelation scalar
Rxy Cross-correlation scalar
S Number of signal’s segments (in Welch’s method)
sc Shape coefficient
t Time, s
T0 Fundamental period of signal, s
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ts Time of signal sampling, s
Ts Sampling interval, second per sample
w Window function (in Welch’s method)
W Index representing the distance between the loga-

rithmic spiral contour points
x The x signal, V
X Fourier’s transform of signal x
y The y signal, V
Y Fourier’s transform of signal y
y* Composite conjugation of the y signal sample, V
ŷ Segments of signal multiplied by the window func-

tion (in Welch’s method)
Ŷ Fourier’s transform of signal’s segments ŷ (in

Welch’s method)
zl The l point from a section of the logarithmic spiral

(in chirp ℤ-transform)
Θ The shift determining the bottom frequency in anal-

ysis (angle in chirp ℤ-transform)
ν Poisson’s ratio
σc Brittle material cracking stress value, Pa
σf Strength, resistance to compression/stretching, or the

yield point, Pa
φ Phase angle, radians
ϕ The inverse of the magnification ratio (angle in chirp

ℤ-transform)
ω0 Fundamental pulsatance (angular frequency) of sig-

nal, radians per second

1 Introduction

Expanding our knowledge concerning basic phenomena in
grinding processes occur mainly through research and analy-
ses of the process of microcutting with a single microblade in
the so-called scratch test. The elementary phenomena that
accompany the materials microcutting process influence the
course of this process , i t s energy-consumpt ion,
microgeometry, and condition of the workpiece surface layer,
as well as the wear of the cutting blade (abrasive grain) [1, 2].
What is, however, registered when using the latest solutions in
the field of monitoring and diagnosing such processes (includ-
ing analysis of the acoustic emission signal), are signals from
the tool, the workpiece, and the work station devices [3]. In
order to separate the signals that come only from the abrasive
grains, an attempt at analyzing the phenomenon of decohesion
of grains in the single-axis compression method was made in
the research work undertaken. On the one hand, the applied
method of grain static loading only partially corresponds to
the real conditions of the grain cracking processes in the dy-
namic process of contact of the active cutting apexes with the
workpiece surface. However, on the other hand, it makes it
possible to analyze the signals that come from only one source
(the cracking abrasive grains), having eliminated many

additional signals, allowing for precise identification of the
elementary phenomena of the examined process.

2 Brittle cracking of abrasive grains

Abrasive grains that have been the subject of research are
ceramic materials which are part of the non-metal engineering
materials characterized in numerous works on materials sci-
ence [4–6]. According to these works, alumina oxides have
considerable hardness and resultant high wear resistance, but
limited strength, while silicon carbide is characterized by
high-temperature strength and wear resistance. Hardness, on
the other hand, is the feature that may be referred to the mea-
sure of resistance to brittle cracking.

Ceramic materials’ fragility results mainly from the nature
of bonds and their microstructural construction [5]. Resistance
to cracking may be interpreted as the material’s tolerance to
microstructure discontinuities or the presence of defects in the
form of already existing microcracks. Fragility, as a physical
feature that characterizes a given material, may be interpreted
as the relation of resistance to stretching Rm and the resistance
to compression Rc, with which the crushing occurs. In the case
of ceramic materials, of which the examined abrasive grains
are a part, this relation is 1:15 [7].

Brittle cracking is connected with so-called material
toughness (Gc). This determines the material’s resistance
to cracking that corresponds to the energy consumed when
the crack that destroys the material occurs. Resistance to
brittle cracking is determined with the value of the fracture
toughness (KIc) [7]:

Gc ¼ K2
Ic

E 1þ νð Þ ; kJ=m
2; ð1Þ

KIc ¼ Yσc
ffiffiffiffiffi
πc

p
;MN=m1=2 ¼ MPa �m1=2

� �
; ð2Þ

where: Y—shape coefficient (close to a unit, dependent on the
geometric shape), E—Young’s module, ν—Poisson’s number,
σc—stress at which the brittle material cracking begins, with
a crack of 2× c length.

Both groups of analyzed materials (aluminum oxides and
silicon carbides) have a similar material resistance to cracking:
Gc=0.05 kJ/m2, KIc=2–5 MPa ·m1/2 [7].

The chart illustrating the fracture toughness as compared
against the specific strength of various groups of materials
(Fig. 1), points to the tendency of an increase in resistance to
brittle cracking and the material strength.

In the grinding process, microcutting occurs through the
contact of the abrasive grain active apex with the machined
material. The concentration of stress around the active apex
causes the creation of a zone (a zone of micro-cracking in
ceramics) in which friction forces and resistance occur, and
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as a result, microcracks. The amount of scattered energy de-
pends on the size of the deformation zone (aka: the process-
zone) dy [7]:

dy ¼ K2
Ic

πσ2
f
;mm; ð3Þ

where: σf—resistance to compression/stretching or the yield
point (MPa).

The size of the deformation zone (dashed lines on the chart,
Fig. 1) ranges widely from 0.0001 mm (for very brittle mate-
rials) to 100 mm (for plastic metals). The analysis of Fig. 1
clearly shows that the examined abrasive grains are materials
resistant to compression but also very brittle.

Similar properties of abrasive materials, especially the rel-
atively small differences in values of the characteristic param-
eters such as the stress intensity coefficient and resistance to
compression, make differentiating the grains using analysis of
the brittle cracking process a difficult task.

Registration of the stress waves, generated by the cracks
and microcracks, requires developing a special method, strict-
ly oriented at identifying the phenomena characteristic of
a given abrasive grain type.

3 Abrasive grains identification methodology

The experimental plan included four different types of abrasive
grains. Out of the large number of abrasive grains on the market,

the most popular were selected: White fused alumina (99A),
green silicon carbide (99C), andmicrocrystalline sol-gel sintered
alumina (SG™). Aluminium oxynitride grains (AlON), under
the trade name Abral®, were included into the study as new
generation grains, due to the characteristics of the material.

In previous studies, we presented the view that the presence
of aluminum nitride in AlON grains affects their significantly
higher hardness at high temperatures, in comparison with the
most common grains based on Al2O3 [8, 9]. The content of
aluminum nitride also prevents the surface of these grains
being wetted by molten steel. This results in the possibility
of reducing the phenomenon of the adhesion of the workpiece
to the active abrasive grain vertices and contributes to reduc-
ing the intensity of the clogging formations on the active sur-
face of the grinding wheel [10–15].

All of the abrasive grains tested were made from ceramic
materials and have No. 46, determined by the FEPA standard
(FEPA standard 42–1: 2006) for sizes in the range of
325–400 μm. The values of selected grain parameters used
in experimental studies are presented in Table 1.

Samples of the abrasive grains were tested for resistance to
a slowly increasing load by static axial compression. As
a result of the load of the samples, the tension was increased.
Upon reaching the level destructive compression (Rc), the
resultant catastrophic damage of the grain was observed.

The experimental tests were carried out on a work stand for
resistance tests, equipped with a type W horizontal testing
Tensometer, made by the Monsanto Company (Great
Britain). This device worked together with measurement

Fig. 1 The fracture toughness in
comparison with the strength of
various groups of materials [7]

Int J Adv Manuf Technol (2016) 87:437–450 439



components made by Hottinger Baldwin Messtechnik GmbH
(Germany), which included a two-channel MP85A measure-
ment amplifier, as well as force and track sensors. There were
also parts of the measurement track mounted on the stand for
registering the acoustic emission signal (AE) that came from
the direct proximity of the compression zone.

The most important element of the system for registering the
AE signal was a type 8152B211 piezoelectric sensor, made by
the Kistler Instrument Corporation (Switzerland). This device
worked in conjunction with a type PXIe-1073 system of data
acquisition, made by the National Instruments Corporation
(USA). In order to interpret the obtained measurements correct-
ly, observation of grains before and after the decohesion pro-
cess was carried out using a JSM-5500LV electron scanning
microscope, manufactured by JEOL Ltd. (Japan).

The test conditions for the abrasive grain decohesion pro-
cess are presented in Table 2.

Discerning the type of grain that undergoes catastrophic
destruction is difficult as all of the examined grains belong
to the ceramic materials group whose nature is similar to that
of brittle cracking. The signal analysis methodology required
the application of multistep acoustic emission (AE)
processing.

The developed methodology of acoustic emission analysis
is composed of a few phases. The initial phase of analysis

consisted of preparing the signal for further research. As
a result of data acquisition, band-pass filtering, locating posi-
tion, and extracting signal regions of interest, a record of sig-
nal pulses was obtained reflecting the grain cracking events.
These signals were aligned with other samples using cross-
correlation [20, 21]:

Rxy kð Þ ¼ 1

N

XN−1

n¼0

x nð Þy* n−kð Þ; ð4Þ

where: Rxy—scalar product of two signals in the function of
shifting of one of them, k—shifting of the signal (time lag),
n—signal sample number, x()—value of the x signal, y*()—
composite conjugation of the y signal sample, N—number of
samples.

The basic part of the tests was divided into two stages.
Characteristics in the field of time and frequency were deter-
mined in the first stage. For each sample the amplitude of signal
in time domain was analyzed. In the second step, the amplitude
and phase spectra, spectrogram (signal amplitude spectrum for
each time moment t) and fundamental frequency of signal were
determined. The second part of the analysis was searching
through the whole frequency band in order to determine the
harmonic sequences characteristic of a given abrasive grain
type. The research was completed with the creation of unique
and unambiguous patterns for the identification process.

Due to the form of the recorded AE signals—a pulse with
finite total energy—the most appropriate tool for their analysis
was the use of power spectrum density (PSD), which de-
scribes the frequency distribution of signal energy [22, 23]:

P ¼
XN−1

n¼0

x nð Þj j2 ¼ 1

N

XN−1

k¼0

X kð Þj j2; ð5Þ

where: |X(k)|2 measures the power of the signal at frequency of
fk, X(k) is the Discrete Time Fourier Transform (DTFT) from
x(n) signal; both arrays have a length of N.

Table 1 The properties of the abrasive grains types analyzed during experiments [16–19]

White fused alumina 99A Microcrystalline sintered corundum Silicon carbide 99C Abral®

Full name Fused alumina Al2O3 Microcrystalline sol-gel sintered
alumina

Silicon carbide green
SiCg

Aluminium oxynitride AlxOyNz

Shape Pointed, sharp Pointed, very sharp Sharp, angular Pointed, very sharp

Specific density 3.96 g/cm3 3.87 g/cm3 3.12–3.21 g/cm3 3.65 g/cm3

Knoop hardness HK 20.3 GPa 21.5 GPa 24–30 GPa 18.0 GPa

Ductility 2.0 MPa ·m1/2 3.7 MPa ·m1/2 2.2–3.3 MPa ·m1/2 1.65 MPa ·m1/2

The critical stress intensity
factor KIc

2.7 MPa ·m1/2 3.5–4.3 MPa ·m1/2 1.9 MPa ·m1/2 –

Coefficient of friction
(hardened steel)

0.34 0.19 – –

Thermal conductivity
coefficient λ

27–35 W/m ·K 27–35 W/m ·K 42.5 W/m ·K –

Table 2 Test conditions for abrasive grain decohesion process

Parameter Condition

Avg. test speed 1.2 mm/min

Load cell range Up to 20 kN

Displacement measuring accuracy 0.001 mm

Force sensor measuring accuracy 0.006 kN

Sampling frequency 2.5 MHz

Digitizing 16 bit

Filter Band-pass: 50–1000 kHz
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The spectral density function was estimated using
Welch’s non-parametric method. This consists of dividing
the signal into overlapping segments, multiplying these
segments by the window function and calculating the fast
Fourier transform (FFT) on the modified data. Finally, the
spectrum module square is averaged and normalized
(Fig. 2) [24, 25].

The fundamental component of the composite sinusoidal
signal is a harmonic wave, usually one of lower frequency in
a harmonic sequence. This frequency is usually marked with
index 0 (f0) [20]. All of the remaining signal components are
the multiple of the fundamental frequency, whereby the fun-
damental component might be defined as the greatest common
divisor (GCD) of the other greater harmonic components of
the signal [26]:

f 0 ¼ 1=T0 ¼ ω0=2π ≡GCD f 1; f 2;…; f nð Þ; ð6Þ

f n ¼ f 0 � n; ð7Þ
where: f0—fundamental frequency, T0—fundamental period,
ω0—fundamental pulsatance (angular frequency), fn—-
frequency of the nth harmonic component, n—natural num-
ber, greater than 1.

Although the harmonic components might have any am-
plitude, this usually decreases as the frequency increases
(Fig. 3) [20].

The number and amplitude of the greater components
have a decisive influence on the timbre of a sound. They
create an individual signal spectrum which makes it

possible to differentiate between various sources, even
with the same sound pitch (fundamental frequency). The
timbre of a given source can be changed depending on
[20, 26, 27]:

– the way the vibrations are triggered (dynamics of trigger-
ing the center’s elastic wave),

– the excitation force,
– the frequency,
– changes in time (sound envelope).

Therefore, it may be assumed that the fundamental fre-
quency and other components of our knowledge of the
acoustic emission signal spectrum, will allow for their un-
ambiguous identification of abrasive grains in their
decohesion process.

The autocorrelation method may be used in order to deter-
mine the fundamental frequency, as it is often used in measur-
ing signal parameters when noise or random interference oc-
curs [28–31]. A correlation between two signals is a measure
of their similarity. The courses of these signals are compared
in the function of time delays while their “identity” is calcu-
lated in each range. What is examined in the case of autocor-
relation function is the correlation between subsequent values
(observations) of the same wave f. Autocorrelation can be
calculated between the 1st and 2nd following observations
(signal sample) and between the 1st and 3rd following obser-
vations or between the 1st and 4th observations and so on. The
number of omissions of subsequent observations is called the
time lag (k).

Fig. 2 A graphic interpretation of
the power spectral density
calculation with the use of
Welch’s method (own work based
on [24, 25])
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The function of the discrete signal autocorrelation is a pe-
riodic function with the same period as the signal and may be
expressed with the following dependence [21, 23]:

Rxx kð Þ ¼
1

N−k

XN−k−1

n¼0

x nþ kð Þx nð Þ k ≥0

Rxx −kð Þ k < 0

8><
>:

: ð8Þ

Graphic representations of signal autocorrelation are pre-
sented using graphs called autocorrelograms (Fig. 4).

By definition, the tone of a sound (corresponding to its
fundamental component) may be determined on the basis of
the location of a maximum autocorrelation function (in other
words: in the time lag/autocorrelation/domain), while the
harmonics-to-noise ratio may be determined on the basis of
the relative volume of its maximum [27].

In order to more accurately perform a spectrum analysis of
recorded signals, the chirp ℤ-transform (CZT) algorithm was
used. This makes it possible to “enlarge” the spectrum in
a narrow frequency band (f1–f2). The chirp ℤ-transform, un-
like the Fourier transform that operates on a unit circumfer-
ence, calculates the spectrum for points from a section of the
logarithmic spiral (Fig. 5a) [20, 35–38]:

zk ¼ AW−k for k ¼ 0;…;M–1; ð9Þ
where: M—the length of the transform, A—starting point
for the curve described on plane ℤ of complex coordinates,

W—the index representing the distance between the spiral
contour points, k—the point number on the logarithmic
spiral.

ParametersA andW influence the transform’s modification.
Parameter W is strictly connected with angle Φ, which
operates like the inverse of the magnification ratio—the small-
er the Φ, the greater the magnification. The second parameter
is connected with additional rotation of the input signal. Angle
Θ is treated as a shift in the frequency determining the bottom
analysis border (f1) [38]:

W ¼ e− j2πϕ=k ;ϕ ≡Δ f ¼ f 2− f 1; ð10Þ
A ¼ e− j2πΘn=k : ð11Þ

Using properties of the exponential functions, the com-
plex variable function is substituted with a simpler form
(Fig. 5b) [38]:

x zkð Þ ¼ Wk2=2
XN−1

n¼0

x nð ÞA−nWn2=zW− k−nð Þ2=2: ð12Þ

In the cases of A= 1, M=N, and W= e(−j2π/N) a direct
connection with the discrete Fourier transform is obtained
[20, 38]:

zk ¼ 1⋅ e− j2π=N
� �−k

¼ e j2πk=N ; ð13Þ

b)a)Fig. 3 An example of a harmonic
in a signal: a a symmetrically
distorted signal, b fundamental
frequency and other harmonics
[20]

b)a)

d)c)

Fig. 4 Sample plots with
autocorrelation function
(autocorrelograms) for:
a sinusoidal signal (free from
noise), b sinusoidal signal of
a random signal, c narrowband
random signal, and d wideband
random signal [32–34]
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X zkð Þ ¼
XN−1

n¼0

x nð Þzk−n: ð14Þ

Because of this, determining the signal spectrum with the
chirp ℤ-transform method is considered to be more effective
than direct application of the Fourier transform [20, 38].

4 Research results and their analysis

The applied piezoelectric acoustic emission sensor is charac-
terized by very high sensitivity to surface (Rayleigh) waves
and longitudinal waves in a wide frequency range from 100 to
900 kHz (producer’s data). The AE impulses were registered
during experimental tests with a sampling frequency of
fs=2.5 MHz. These waves were transformed by the measure-
ment system into electric impulses with a voltage proportional
to the energy source (system exCitation source). A converter,
type 5125B (Kistler, USA) with filters of HPF 50 kHz and
LPF 1000 kHz, was used in the measurement system. Signals
were acquired with a 16 bit converter A/C PXIe-6124
(National Instruments Corp., USA).

4.1 Analyses in the time and frequency domain

Registered signals possess the nature of exponentially damped
impulses (Fig. 6). The source of each impulse is sudden and
releases a large amount of energy that triggers vibrations of the

acoustic wave propagation center. Thus, the bigger the ampli-
tude of these impulses, the greater the energy created during
grain cracking. After the sudden energy release, the stress
waves are damped and scattered in their propagation center.
A detailed analysis of these signals in the time domain is
presented by the authors in the article [9].

The greatest fracture energy (manifested by the highest
amplitude of the AE pulse) was characterized by a grain sam-
ple of SG™ and 99C (Fig. 6c-d). The smallest voltage on the
piezoelectric transducer was produced during the cracking of
grain type 99A (Fig. 6a).

The amplitude and phase frequency spectra of the
acoustic signals of the cracking of grains subjected to static
load show a common similarity (Fig. 7). The amplitude
spectrums are presented in the form of a Fourier transform
(Fig. 7a–d) and periodgrams (Fig. 7e) for which values of
the harmonics on the axis of abscissa of the chart are re-
corded after normalization:

f norm ¼ f Hz2π
Fs

; f Hz ¼
f normFs

2π
: ð15Þ

This results from the application of digital-signal process-
ing (DSP), in which the natural time unit is the sample. The
time continuous variable (t, unit: second) is substituted with
the discrete total variable (n, unit: sample number). Time
change (in seconds) undergoes normalization (division) by
the sampling interval (Ts, unit: second per sample).
Correspondingly, the natural frequency unit in DSP is the
number of cycles/sample, radians/sample, or π · radians/
sample. The frequency expressed in these units is described

a) 

b) 

Fig. 5 An illustration of chirp ℤ-transform: a transform parameters and
b a block diagram of the spectral determining procedure [38]

a) 

d) 

b) 

c) 

Fig. 6 Example impulses of an acoustic emission raw signal (AEraw)
registered during breakage of abrasive grains for: a white fused alumina
grain (99A), b aluminium oxynitride grain (Abral®), c microcrystalline
sintered corundum grain (SG™), and d green silicon carbide grain (99C)
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as normalized. The exemplary commutations of frequency
between the absolute real value, expressed in hertz (fHz), and
the normalized value expressed in π · radians/sample (fnorm)
are presented in Table 3.

The linear AE signal phase spectrum (Fig. 7f) clearly indi-
cates that the individual components of this phase shifts pro-
portional to the frequency. Negative values indicate that each
subsequent sample (in the time domain) is shifted in a positive
direction (to the right), which makes the phase (in the frequen-
cy domain) decreased by π rad for each sample shift.

Regardless of the abrasive grain structure, the share of the
frequency components in registered AE signals is similar.
A clear difference occurs in the absolute value (magnitude)
of intensity of particular harmonic components, dividing the
analyzed grains into two groups: grains cracking with great
energy (microcrystalline sintered corundum, green silicon car-
bide) and grains with an almost five-times lower energy (poly-
crystalline fused aluminum oxide, aluminum nitride-oxide).
This is due to the difference in the hardness of the various
types of abrasive grains (e.g., for microcrystalline sintered

b)a)

d)c)

f)e)

Fig. 7 Comparison of acoustic
emission signals in the frequency
domain for: a white fused
alumina grain (99A), b aluminum
oxynitride grain (Abral®),
c microcrystalline sintered
corundum grain (SG™), d green
silicon carbide grain (99C),
e power spectral density estimated
by Welch’s method (window
length—128, length of
overlapping segments—64), and
f phase spectrum of signals

Table 3 Examples of frequency
conversion between absolute real
and normalized values

Variable Unit Value

fnorm π · radians/sample 0.5 1 1.5 2 2.5 3 3.5

fHz kHz 198.94 397.88 596.83 795.77 994.71 1193.66 1392.6
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corundum grains, this is determined at the level of 24–30 GPa
on the Knoop hardness scale), as well as from differences in
the structural construction of mono-, poly-, and microcrystal-
line grains.

The obtained amplitude spectrum charts are characteris-
tic of bottom-band signals for which the spectral concen-
tration drops to zero as the pulsation increases to infinity.
Therefore, in the averaged analysis, realized for the whole
signal, a clear domination of low frequencies of 50–
500 kHz (0.12-1.25 π · radians/sample) is visible. The
greatest intensity is that of the harmonic components rang-
ing from 100 to 400 kHz (0.25–1.005 π · radians/sample).
In this range the majority of components comprise 120
(0.3 π · radians/sample), 240 (0.6 π · radians/sample), and
350 kHz (0.88 π · radians/sample).

The estimated spectral density function is calculated using
Welch’s non-parametric method, which represents the aver-
aged signal spectrum (from the whole sample) of the acoustic
emission. However spectrograms (Fig. 8) reveal that as time
goes by, grain cracking AE signals are characterized by the
disappearance of subsequent frequencies.

Damping of the medium in which the AE pulse propagates,
results in a decrease in the wave amplitude over time, due to
energy dissipation. The damping center can be classified as
low (where the damping factor is in the range of 0<ζ<1), as
the recorded oscillations are characterized by an exponentially
decreasing amplitude (Fig. 6) and a reduction in the frequency

of vibration of the object concerned (Fig. 8). Spectrograms of
acoustic emissions reveal that, with the passage of time, im-
pulses possess fading high frequencies. Finally, the spectrum
displays only extremely low frequency harmonics, which is
characteristic of damped signals. Components are damped at
different speeds, inversely in proportion to frequency. After 1-
2 μs high frequencies (over 1000 kHz) are damped, this oc-
curs after 2–3 μs with medium frequencies (500–875 kHz).
Low frequencies (do 375 kHz) are characterized by highest
amplitude and occur the longest after the signal. After 2 μs
their energy is damped by −90 dB or less.

Figure 9 represents exemplary results of the examined au-
tocorrelation analysis of acoustic emission signal samples.
The location of the first local autocorrelation function maxi-
mum (for an argument other than zero) estimates the signal
period expressed in samples. In order to determine the value of
the fundamental harmonic component in Hz, a conversionwas
performed by dividing the signal frequency (Fs) by the num-
ber of the indicated sample (time lag, k).

The conducted analyses showed that the examined abrasive
grains are characterized by very close values of the basic fre-
quency of acoustic emission impulses registered in their
cracking process (the values and results of the statistical anal-
ysis are presented in Table 4). The only registered acoustic
emission signals were those with the fundamental component
of 113 kHz (58.3 % of cases), 119 kHz (25 % of cases), or
166 kHz (16.7 % of cases).

a)

c)

b)

d)

Fig. 8 Example spectrograms of analyzed signals (window type—
Hamming, window size—256 samples, overlap of segments—50 %)
for grain cracking of: a white fused alumina grain (99A), b aluminum

oxynitride grain (Abral®), c microcrystalline sintered corundum grain
(SG™), and d green silicon carbide grain (99C)
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For each of the analyzed grains at least one case was reg-
istered in which the fundamental frequency was determined at
a level of 113 kHz. For this reason, it may be concluded that it
is an incident of typical harmonics which describes the abra-
sive grains decohesion phenomenon and also characterizes the
damped elastic wave (center vibrations) transformed by the
converter into the acoustic emission impulse by the measure-
ment system.

The most stable basic frequency value, from among the
analyzed signal samples, was observed for the cracking of
polycrystalline fused aluminum oxide (99A) grains. In this
case, a value of 113 kHz was registered to each repetition
of the experimental tests, which translated into a zero stan-
dard deviation and a lack of value distribution skewness.
The relatively small range of basic frequency values
(6 kHz) and of its standard deviation (3.5 kHz) was noted

for aluminum nitride-oxide grain (Abral®). The modal
value for this grain was 119 kHz. Moreover, a left-sided
value distribution asymmetry (negative skewness) shows
that most results are above average value (117 kHz),
which is very close to the modal value. The enumerated
features may be used as an identifier (discriminant) of
such grains. These features can be used as an identifier
of this grain type.

In the case of SG™ and 99C grains, we dealt with
a relatively large basic frequency range (53 kHz), which
influenced the high value, both the average (of approxi-
mately 130 kHz) and the standard deviation (approximate-
ly 30 kHz). A right-sided distribution asymmetry shows
that most of the obtained results are below the average
value (approximately 130 kHz). With single samples it
would be a very difficult task to discern between both

b)a)

d)c)

Fig. 9 The results of the
fundamental frequency detection
in AE signal with the use of
autocorrelation analysis for:
a white fused alumina grain
(99A), b aluminum oxynitride
grain (Abral®), cmicrocrystalline
sintered corundum grain (SG™),
and d green silicon carbide grain
(99C)

Table 4 Selected statistical
parameters of fundamental
frequency of acoustic emission
impulses generated and recorded
during a grain’s decohesion
process

Grain
type

Mean Standard
deviation

95 % CI of mean Skewness Mode Range (maximum - minimum)

Lower Upper

99A 113 0 113 113 – 113 0

Abral® 117 3.46 108.39 125.6 −1.73 119 6

SG™ 130.67 30.59 54.65 206.68 +1.73 113 53

99C 132.67 29.02 60.56 204.76 +1.64 – 53
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types of grains only on the basis of determination of the
acoustic emission signal’s fundamental frequency.

Although the above-mentioned results point to the possi-
bility of applying analysis of basic frequency for grain identi-
fication, because of the high similarity of material properties
of the described abrasive grains brittle cracking phenomenon,
analysis may be considerably hindered and the results
uncertain.

4.2 Frequency signal patterns

In order to determine patterns of the AE impulses destined for
identifying various types of abrasive grains in their
decohesion process, detailed acoustic emission signal decom-
position in the frequency domain was used.

The methodology of finding specific signal components
included selecting those frequencies for which the magnitude
value was 60% or more of the maximum value. This included
the selection of AE signal harmonic components that were
found in the process of cracking of the given abrasive grain
and whose power was greater than the signal background for
the subsequent ranges of the whole spectrum. An analysis of
this, and the characteristic frequency indications, was per-
formed by dividing the full acoustic emission spectrum
(1–1250 kHz) into narrow bands whose width was 50, 40,
20, or 10 kHz, depending on the concentration of harmonics
that met the amplitude height condition.

Figure 10 presents the magnified amplitude spectrum rang-
ing 250–300 kHz. In this case, in the band 50 kHz wide, the
greatest number of components (around 18 positions) was
singled-out for the 99C grain with far fewer, namely only three,
for the Abral® grain. Single harmonics were indicated in the
case of the remaining analyzed materials—99A and SG™.

Further research results proved that the described method is
not maintained for each analyzed AE signal amplitude spec-
trum band section. The number of the characteristic harmonic
components clearly depends on the analyzed frequency range,
and to a smaller extent, on the abrasive grain type. In the
general view of the full AE signal spectrum (0–1250 kHz),
the greatest number of selected harmonics was observed for
the microcrystalline sintered corundum grains (SG™), and the
lowest for those of polycrystalline fused aluminum oxide
(99A).

Figure 11 presents a sequence of frequencies characteristic
of the cracking process with a division into the examined
abrasive grain types. Against the black background there are
markers corresponding to a specific frequency (with a resolu-
tion of up to 1 kHz). This example concerns a single experi-
mental test attempt. The analysis of the presented standards
points to an uneven (for the given grain) and inconsistent
(various grains) distribution of the selected acoustic emission
harmonic components in the process of the brittle cracking of
abrasive grains.

Despite the clear differences, many of the components of
a given frequency were selected from the signal simultaneous-
ly in the case of tests on two or more kinds of abrasive grains.
In order to avoid inconsistency in the process of identifying
the grain that undergoes decohesion, the standard construction
algorithm separated for further analyses subgroups of the rep-
resentative harmonic components—which occurred only in
cases of a given abrasive grain. The thus-selected AE signal
components differentiate a given grain’s cracking process
against other cases.

In order for the developed acoustic emission impulse pat-
terns to be used in the monitoring process and in abrasive
grain identification, spaces of all the alternative solutions (sub-
sequent signal samples registered in the experimental tests
repetitions) were sought in order to select signal harmonics
appropriate for a given grain type.

A graphic representation of the abrasive grain decohesion
acoustic emission impulse patterns (Fig. 12) indicates only
those frequencies that occur in the signal regardless of the
number of repetitions of the experimental test. Moreover, what
was marked over the sequence of the singled-out frequencies
were unique harmonics (arrows in Fig. 12), which, asmight be
suspected, are likely to characterize the process of cracking of
a given abrasive grain type. Their occurrence in the AE signal
spectrum is closely connected with a given grain type, along
with its structure, mainly a microstructure created as a result of
the technological production process.

Fig. 10 Example harmonics of acoustic emission impulses in a narrow
range of frequencies (250–300 KHz) using the chirp ℤ transform—
selected components exceed a yield of 60 % of the normalized value
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Assuming the acoustic emission signal spectrum creates
a record of unique harmonic sequences, it can be compared
against a previously prepared pattern (pattern sequence). One
of the techniques that makes it possible to find the optimum
global match for two sequences is the Needleman-Wunsch
algorithm [39]. This is often used in bioinformatics as one of
the tools for finding the linearity of nucleotide or amino-acid
sequences [40, 41]. This algorithm, based on dynamic pro-
gramming, can be easily adapted to the application being
discussed.

Global matching, involving the full range of all sequences,
is most useful when the compared sequences are similar and
of approximate size (having a common origin) [39]. This con-
dition will be met if the acoustic emission signal undergoes
acquisition with the same frequency as the pattern sequence.
As a result of the algorithm’s operation, the quality of the
sequence matching may be determined through the identity
coefficient [39]. The high value of this coefficient proves that
the sequence similarity is statistically high (is not incidental),
and the potential mismatches may be interpreted as point
mutations. However, the practical application of the

Needleman-Wunsch algorithm in order to compare acoustic
emission signals requires detailed research and optimization
work.

5 Conclusions

Brittle catastrophic abrasive grain cracking, caused by me-
chanical load, is the source of the stress waves which may
be registered in the form of acoustic emission impulses.
These impulses can be extracted from raw signals and ana-
lyzed by digital signal processing.

The above-presented test results show that determining the
differences between the mechanical properties of ceramic ma-
terials, of which the analyzed abrasive grains are a part, is
possible using static methods and only an acoustic emission
signal. Analysis of the signal harmonic components makes it
possible to determine patterns corresponding to the unique
features of particular abrasive grain types.

The suggested patterns can be used in the systems of mon-
itoring and diagnosing processes for which supervision of

Fig. 11 A graphic representation
of the acoustic emission signal
components having an amplitude
above the maximum value of 0.6,
including unique harmonics
(shown in yellow) in the case of
a single repetition of abrasive
grain-decohesion test

Fig. 12 Graphical representation
of the acoustic emission patterns
with a mark of a very unique
sequence of harmonics in signals
(taking into account all
experimental replicates)
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cracking and chipping of the abrasive grain active vertexes are
considered to be crucial. This task can be carried out after the
development of database templates and an efficient sequence
comparison algorithm.
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