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Abstract A new modeling method, related to multiple inputs
and multiple outputs (MIMO), simultaneously based on
Gaussian process (GP), is proposed to optimize the combina-
tions of process parameters and improve the quality control
for multi-objective optimization problems in sheet metal
forming. In the MIMO surrogate model, for the use of the
system information in processing and the accuracy of the
model, quantitative and categorical input variables are both
taken into account in GP simultaneously. Firstly, a general
method is proposed for constructing covariance functions for
GP simultaneousMIMO surrogate model based on correlation
matrices. These covariance functions must be able to incor-
porate the valid definitions of both the spatial correlation
based on quantitative input variables and the cross-
correlation based on categorical input variables. Secondly,
the unrestrictive correlation matrices are constructed by the
hypersphere decomposition parameterization, thus directly
solving optimization problems with positive definite con-
straints is needless, and the computational complexity is sim-
plified. Compared with independent modeling method, the
proposed GP simultaneous MIMOmodel has higher accuracy
and needs less number of estimated parameters. Moreover, the

cross-correlation between the outputs (quality indexes) ob-
tained by proposed model provides some reference to further
develop quality intelligent control strategies. Finally, a
drawing-forming process of auto rear axle housing is taken
as an example to validate the proposed method. The results
show that the proposed method can effectively decrease the
crack and wrinkle in sheet metal forming.

Keywords Sheet metal forming .Multi-objective
optimization . Gaussian process . Correlationmatrix .

Hypersphere decomposition

1 Introduction

The drawing forming of large- and medium-sized panels is
always the emphasis and difficulty of the stamping process.
Sheet metal forming is affected by many factors: die structure,
blank shape, material thickness, material properties, filet radi-
us, blank holder force, drawbead layout, lubrication condition,
and so on. Therefore, it is difficult to meet the requirement of
high accuracy through parameters selection by only experi-
ence. For quality monitoring and control, it often needs to
model the product fabrication process. However, sheet metal
forming is a complex process involving the three nonlinear
problems in mechanics [1]. Thus, rigorous derivation of such
mathematically–physically derived models for sheet metal-
forming processes can be a formidable task. The model build-
ing process is very lengthy, tedious, and error prone or can
even be impossible to derive analytically. Recently, consider-
ing the deficiency of the mathematically–physically derived
models and cost reduction in trial and error, many researchers
and engineers devote their attention on finite element ap-
proach [2–4] based on design of experiments (DOEs) [5].

However, a large finite element simulation of sheet metal
forming can take hours or even days to run, together with
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different experiment designs and processing parameters may
have plenty of combinations. It will raise huge computational
cost in simulation and optimization. Although the solution
obtained from DOEs can get a feasible combination of given
process levels. But it is usually a local optimum, not the global
one [6]. Recently, some scholars use surrogate models in
optimization procedure of sheet metal forming to establish a
mathematical or statistical approximation which will replace
the expensive simulation analyses, such as response surface
model [7, 8], artificial neural network [9, 10], and support
vector regression [11]. Surrogate models are widely used to
study complex systems which are time-consuming or expen-
sive to be physically experimented on. Compared with phys-
ical models, high-fidelity surrogate models provide an effi-
cient alternative for design of complex engineering systems
and have much higher flexibility.

Recently, nonparametric models and techniques enjoy a
growing popularity in the field of machine learning. Among
these Bayesian frameworks [12], the Gaussian process (GP)
model has recently received significant attention [13]. Zhou
et al. presented an integrated simulation-based optimization sys-
tem based on GP approach [14, 15]. The architecture of process
optimization based on Gaussian process regression and param-
eter correlation system were put forward in Liao's article [16].

In order to monitor and control multiple quality indexes, it
needs to develop the multiple inputs and multiple outputs
(MIMO) surrogate modeling methods [17, 18]. And recently,
intelligent optimization algorithms [19, 20] for multi-
objective problems [21] have developed rapidly, such as
Cuckoo search algorithm [22], bee colony optimization ap-
proach [23], particle swarm optimization approach [24], dif-
ferential evolution algorithm [25, 26], and so on. However, the
disadvantages of traditional MIMOmodels are mainly includ-
ed in the following two points. Firstly, traditional methods
assume that all the inputs are quantitative, so that the existing
models are designed to deal with only quantitative input
factors (quantitative input variables). In fact, the number of
investigated outputs is given, and each output is categorical by
nature (categorical input variables). This kind of input infor-
mation can determine some important properties of the
models. Because it do not take into account both types of
input variables in modeling, the traditional methods for
MIMO models often fail to take full advantage of the data
abundance. Secondly, those outputs of the MIMO models
often bear similarities with each other. But the traditional
methods ignore possible correlations among the outputs at
the same input values for the quantitative input variables [27].

In this data-rich environment, the surrogate modeling
methods for MIMO models with both quantitative and categor-
ical input variables have drawn increasing attention. But the
research on such simultaneous MIMO surrogate models [28] is
still very limited. Qian et al. proposed a general framework for
building general stochastic processes models with qualitative and

quantitative factors [29]. In material processing, just like sheet
metal forming [30–32], the investigated quality indexes often
have some correlation with each other. So a novel surrogate
modeling method based on GP that can incorporate both quan-
titative input variables and categorical input variables is proposed
in this paper. As a key to the development of the new method is
developing, a valid and physically meaningful covariance func-
tions, which must be able to incorporate both the spatial correla-
tion based on quantitative input variables and the cross-
correlation based on categorical input variables for the GP simul-
taneous MIMO surrogate model. The cross-correlation based on
categorical input variables is in the form of correlation matrices,
so the proposed models are also called GP simultaneous MIMO
surrogate model based on correlation matrices. Correlation ma-
trices can be divided into the unrestrictive and the restrictive [29,
33, 34], common restrictive matrices are isotropic correlation
matrices, multiplicative correlation matrices, group correlation
matrices, ordinal correlation matrices, and so on. It is possible to
significantly simplify the computational complication by taking a
restrictive correlation matrix. But such one usually can be appli-
cable to specific process or system, thus lacking the flexibility of
capturing various types of correlations of the outputs.

In this paper, by using hypersphere decomposition param-
eterization, a novel GP simultaneous MIMO surrogate model-
ing framework based on unrestrictive correlation matrices is
proposed. The hypersphere decomposition parameterization
[35] is used to construct unrestrictive correlation matrices.
This new parameterization essentially turns some optimiza-
tion problems with positive-definite constraints into standard
and easy-to-compute optimization problems with box con-
straints. Such approach inherits the flexibility of the
unrestrictive correlation matrices but replaces the complicated
estimation and optimization procedure used in traditional
approach. The estimation and optimization procedures of
hyperparameters and correlation parameters in the covariance
functions are also developed. Comparing with traditional
MIMO models through numerical examples, a case study of
drawing forming is used to validate the proposed method.
This new surrogate modeling method is simpler, has higher
prediction accuracy, and requires minimal physical knowl-
edge of the underlying system to obtain the correlations be-
tween outputs. Combined with the correlations of each pro-
cess parameter for one certain single objective mentioned in
Xia et al.'s literature about canonical correlation analysis
based on GP [36], more comprehensive strategies are further
developed for multi-objective optimization in sheet metal
forming and quality intelligent control.

The rest of this paper is composed as follows. The follow-
ing sections give a brief mathematical description of GP. GP
simultaneous MIMO surrogate model based on correlation
matrices is proposed. Then, unrestrictive correlation matrices
through hypersphere decomposition parameterization are in-
troduced. The estimation and optimization procedures of
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hyperparameters and correlation parameters in the models are
also developed. Comparisons between the proposed MIMO
models and traditional MIMO models through two numerical
examples are presented in Section 3. The superiorities of the
proposed method in accuracy, correlation capture, and Pareto
fronts obtained from optimization algorithm through different
modeling methods has been demonstrated, respectively. The
effectiveness and feasibility of the proposed method to reduce
the crack and wrinkle of an auto rear axle housing is illustrated
in Section 4 followed by conclusions (Section 5).

2 The GP surrogate model based on unrestrictive
correlation matrices with the hypersphere decomposition
parameterization

2.1 The Gaussian process regression

The theory of GP can be dated back to the classical statistical
method by O'Hagan [37]. However, the application of GP as a
regression (and classification) technique was not common until
the late 1990s, when rapid development of computational power
facilitated an implementation of GP for large datasets. Recently,
successful applications of GP models have been reported in
various fields, including biomass estimation in batch biotech-
nological processes [38], chemical process modeling [39],
modeling of dynamic systems for gas–liquid separator [40],
and mechanical system modeling and optimization [41]. For
the followed theoretical description, in this subsection, a brief
overview of GP regression technique is given, including the
formulation and implementation of the model.

Gaussian process is a flexible, probabilistic, and nonpara-
metric model with uncertainty predictions in probability sta-
tistics. Its usage and modeling properties are reviewed in
Rasmussen's literature [42].

Consider a collection of random variables y = [y1,…, yN]
(N observations) that have a joint multivariate Gaussian dis-
tribution. The data are often noisy as well, from measurement
errors and so on. Thus, each observation y can be viewed as a
function related to an underlying function f (x ) through a
Gaussian noise model:

yi ¼ f xið Þ þ ε xið Þ ð1Þ

where f (xi) is the corresponding random variable of Gaussian
process { f (x )} at xi, xi=[x i

1,…,x i
d]t, ε i is the noise that have

independent identical Gaussian distribution:

ε xið Þ∼ o; ν0ð Þ ð2Þ

In general, it is assumed that the mean of the Gaussian
process { f (x)} is zero. Thus, what relates one observation to
another in such cases is just the covariance function,

Cov ( yp,yq)=k (xp,xq), and the covariance function fully
specify the GP. Note that the covariance function k (,) can be
any function having the property of generating a positive-
definite covariance matrix.

A common choice is the squared exponential covariance
function:

k x p; x q

� � ¼ ν1 exp −
1

2

X
d¼1

D

wd xdp−x
d
p

� �2
" #

þ δpqv0 ð3Þ

where θ =[w1,…,wD,v0,v1]
T are the hyperparameters of the

covariance functions, v0 is the estimated white noise variance,
v1 is the estimate of the vertical scale of variation, D is the
input dimension, and δpq=1, if p =q and δpq=0 otherwise.
For a given case, the parameters are learned through the
training dataset. And then the importance of the relevant input
components can be measured by the w parameters: if wd is
zero or near zero, it means that the inputs in dimension d
contain little information and could possibly be removed.

Consider a set of N-dimensional input vectors X =[x1,x2,
…,xN]

T and a vector of output data y = [y1,y2,…,yN]
T. Based

on the data (X , y ), and given a new input vector X*, we wish
to find the predictive distribution of the corresponding output
y∗. Unlike other models, there is no model parameter deter-
mination within a fixed model structure. In this model, tuning
the parameters of the covariance function is taken as the key. It
can be resolved by maximizing the log-likelihood of the
parameters, which is computationally relatively demanding,
however, the number of parameters to be optimized is small
(D +2; see Eq. 3), which means that the optimization conver-
gence might be faster and that the “curse of dimensionality” is
circumvented or at least decreased.

The described approach can be easily utilized for a regres-
sion calculation. Based on the training set X , among all possi-
ble combinations of these points, we calculate the covariance
function, (3), summarizing the findings in the three matrices:

K ¼
k x1; x1ð Þ k x1; x2ð Þ ⋯ k x1; xNð Þ
k x2; x1ð Þ k x2; x2ð Þ ⋯ k x2; xNð Þ

⋮ ⋮ ⋱ ⋮
k xN ; x1ð Þ k xN ; x2ð Þ ⋯ k xN ; xNð Þ

2
664

3
775 ð4Þ

K* ¼ k x*; x1ð Þ k x*; x2ð Þ ⋯ k x*; xNð Þ½ � K** ¼ k x*; x*ð Þ½ � ð5Þ

where K is a covariance matrix (N ×N), K∗ is the covariances
between the test and the training cases (N ×1), and K∗∗ is the
covariance between the test input and itself. For a new test
input, the predictive distribution of the corresponding output
is y∗ ∣(X , y ), X*, and it is Gaussian, with a mean and a
variance:

μ x∗ð Þ ¼ K∗K
−1y ð6Þ
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σ2 x∗ð Þ ¼ K∗∗−K∗K
−1KT

∗ ð7Þ

The hyperparameters of the covariance function are not
known in advance, and they must be determined by using
the training data. The hyperparameter θ can be estimated by
maximizing the marginal log-likelihood function:

L ¼ logp yjθ;Xð Þ ¼ −
1

2
yTK−1y−

1

2
log Kj j− N

2
log2π ð8Þ

This is a nonlinear optimization problem which can be
solved by using gradient-based methods, e.g., the conjugate
gradient method. These methods require calculating the de-
rivative of log-likelihood with respect to each hyperparameter
θ , which is:

∂L
∂θ

¼ −
1

2
tr K−1∂K

∂θ

� �
þ 1

2
yTK−1∂K

∂θ
K−1y ð9Þ

where ∂C /∂θ can be obtained from the covariance function.
This method also is called maximum a posteriori approach
[30].

2.2 A general method for constructing covariance functions
for GP simultaneous MIMO surrogate model based
on correlation matrices

In many engineering applications, the surrogate models for
multi-objective are often necessary, i.e., MIMO models.
However, the conventional way to build a MIMO model is
to build a surrogate model for each output individually using
methods such as GP. In such way, the MIMO model is
essentially treated as a group of independent single output
models, ignoring the correlations between the outputs in a
MIMOmodel. In fact, the number of objectives is known, and
it should be considered as inputs for modeling as well as
training set (quantitative input variables). This type of input
information ignored in traditional MIMO modeling is called
categorical input variables z in this paper. If no special illus-
tration, categorical input variables z is not ordinal here.

To take into account the distinct natures and roles of
quantitative and categorical input variables in a single GP
MIMO model, a general method for constructing covariance
functions based on GP is proposed in this subsection, which
must be able to incorporate the valid definitions of both the
spatial correlation based on quantitative input variables and
the cross-correlation based on categorical input variables.

Consider an input vector h =(x t, zc)
t, where x t is quantita-

tive input variable, z is categorical input variable, denoted by
c =1,…m , which is the number of outputs, namely objectives.
Similar to (1), the model assumes the following:

y ¼ f hð Þ þ ε hð Þ ð10Þ

the basic hypothesis of this model is consistent with the
standard GP model.

The spatial correlation based on quantitative input variables
has been defined in covariance function (3). Thus, it only needs
to define a valid cross-correlation based on categorical input
variables in the covariance function, then the GP simultaneous
MIMO surrogate model is fully specified. Let εc(x)=ε((x

t,c)t),
for c =1,…,m , and

ε* xð Þ ¼ ε1 xð Þ⋯εm xð Þð Þ ð11Þ

Assuming that ε∗(x)=Aη (x), where A =(a1,…,am)
t is an

m ×m nonsingular matrix with unit row vectors (i.e., ac
t ac=1

for c =1,…m ), and η (x)=(η 1(x),…ηm(x))
t, where η 1(x),

…ηm(x) are independent Gauss processes with the same
variance and covariance function k (xp,xq). Thus, Cov(η (xp),
η (xq))=k (xp,xq)Im, with Im being the m ×m identity matrix.
Then, for the number of outputs is two, i.e., m =2, the covari-
ance function is defined to be

Cov y h1ð Þ; y h2ð Þð Þ ¼ Cov yz1 xp
� �

; yz2 xq
� �� �

¼ Cov atz1η xp
� �

; atz2η xq
� �� �

¼ atz1az2k xp; xq
� �

ð12Þ

Let τ r,s=ar
t as, where r,s =1,…,m . Then, T ={τ r,s}=AA

t

is an m ×m positive definite matrix with unit diagonal ele-
ments (PDUDE), also called correlation matrix. In fact, any
PDUDE can be written as BB t, where B is a nonsingular
matrix with unit row vectors. Thus, for any PDUDE
T ={τ r,s} and any k (xp,xq), all of them have a relevant
valid covariance function

Cov y h1ð Þ; y h2ð Þð Þ ¼ τ z1;z2k xp; xq
� � ð13Þ

For the squared exponential covariance function is chosen,
as following

Cov y h1ð Þ; y h2ð Þð Þ ¼ τ z1;z2 ν1exp −
1

2

X
d¼1

D

wd xdp−x
d
p

� �2
" #

þ δpqv0

( )
ð14Þ

where τ z1;z2 is the cross-correlation between categories z1 and
z2.

Through the described general method for constructing
valid covariance functions, it can be known that the cross-
correlation based on categorical input variables is in the form
of correlation matrix T. The proposed modeling method main-
ly has the following advantages. Firstly, comparing with the
traditional GP MIMO models, this proposed modeling meth-
od is more efficient. Considering a GP MIMOmodel with six
design variables and three outputs, the traditional way has to
build three GP models for each output individually, which
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involves 24 (3×(D +2)) parameters to optimization. In con-
trast, the proposed modeling method only needs to build one

MIMO model, which involve only 11 Dþ 2ð Þ þ m m−1ð Þ�2� �
parameters (where D is the number of quantitative input
variables and m is the number of categorical input variables).
Secondly, due to the valid definitions of both types of input
variables in the covariance function, the GP simultaneous
MIMO model can be fully specified. The purpose of taking
full advantage of the data abundance is achieved, thus im-
proving the accuracy. Thirdly, from the optimized correlation
matrix T, the correlations between outputs also can be
obtained.

2.3 Unrestrictive correlation matrices by using hypersphere
decomposition parameterization

For (14) to be a valid covariance function, the matrix T must
be a valid matrix (i.e., PDUDE) which is positive definite.
Standard methods used in GP models for maximizing a like-
lihood function involving positive definite matrix constraints.
These constraints then convert to a series of nonlinear inequal-
ities involving the elements of the matrix. Then, an optimiza-
tion problem is solved with the resulting nonlinear inequalities
as the constraints and the elements of the matrix as the
optimization variables. This “element-oriented” approach in-
volves many complicated nonlinear inequalities and a huge
number of optimization variables even when the dimension of
the matrix is not very large, making it computationally com-
plex or even infeasible.

Considering the limitation of restrictive correlation matri-
ces, and in order to address the positive definite constraints on
matrices, the unrestrictive correlation matrix is constructed by
hypersphere decomposition parameterization in this subsec-
tion. This approach inherits the flexibility of the unrestrictive
correlation matrix but replaces the complicated computation

of optimization problem with a clever parameterization. It
means that the approach essentially turns some optimization
problems with positive definite constraints into standard and
easy-to-compute optimization problems with box constraints.
The hypersphere decomposition parameterization provides a
simple yet flexible way to construct a PDUDE matrix. It
consists of two steps.

In step 1, a Cholesky-type decomposition is applied to T
given by

T ¼ LLt ð15Þ

where L ={l r,s} is a lower triangular matrix with strictly
positive diagonal entries.

In step 2, each row vector (l r,1,…,l r,r) in L is modeled as
the coordinate of a surface point on an r dimensional unit
hypersphere described as follows. For r =1, let l1,1=1 and for
r =2,…,m , use the following spherical coordinate system

lr;1 ¼ cos ϕr;1

� �
;

lr;s ¼ sin ϕr;1

� �
⋯sin ϕr;s−1

� �
cos ϕr;s

� �
; s ¼ 2;…; r−1;

lr;r ¼ sin ϕr;1

� �
⋯sin ϕr;r−2

� �
sin ϕr;r−1

� �
;

8<
:

ð16Þ

where ϕ r,s∈(0,π ), all ϕ r,s are denoted by Φ . Because each
ϕ r,s is restricted to take values in (0,π ), the diagonal entry l r,r
in L is strictly positive, thus guaranteeing that T is a positive

definite matrix. In addition, τ r;r ¼ ∑
s¼1

r

l2r;s r ¼ 1;…;mð Þ by

(16), implying that T must have unit diagonal elements. Thus,
the matrix T under this parameterization is always a PDUDE.

For illustration, consider the case with three outputs m =3.
In step 1, a 3×3 correlation matrix is decomposed as

In step 2, (l21,l22) are transformed into a 2D spherical
coordinate system as

l21 ¼ cos ϕ21ð Þ
l22 ¼ sin ϕ21ð Þ

	
ð18Þ

and (l31,l32,l33) are transformed into a 3D spherical coordinate
system as

l31 ¼ cos ϕ31ð Þ
l32 ¼ sin ϕ31ð Þcos ϕ32ð Þ
l33 ¼ sin ϕ31ð Þcos ϕ32ð Þ;

8<
: ð19Þ

where ϕ r,s can be calculated based on the following relations:

τ12 ¼ cos ϕ21ð Þ
τ13 ¼ cos ϕ31ð Þ
τ23 ¼ cos ϕ21ð Þcos ϕ31ð Þ þ sin ϕ21ð Þsin ϕ31ð Þcos ϕ32ð Þ:

8<
: ð20Þ
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In (18), (l21,l22) are the coordinates of a point on the half
unit circle given by l21

2 +l22
2 =1 and l22>0; (l31,l32,l33) are the

coordinates of a surface point on the unit hemisphere given by
l31
2 +l32

2 +l33
2 =1 and l33>0 in (19), as shown in Fig. 1.

According to the description above, the unrestrictive cor-
relation matrix using hypersphere decomposition parameteri-
zation has several advantages. Firstly, comparing with the
general method for constructing unrestrictive correlation ma-
trix, it turns the complicated PDUDE constraint on T into
simple box constraints ϕ r,s∈(0,π ). Secondly, because ϕ r,s

take values in (0,π ), the elements in T can be either positive
or negative, thus possible to capture various correlations
across different outputs. Thirdly, any PDUDE matrix and Φ
has a one-to-one correspondence, i.e., a PDUDE matrix with
any arbitrary structure can be parameterized using a set of Φ
values and any given Φ always gives a PDUDE matrix. It
means that Φ only need to be optimized in box constraints
(0,π ), thus obtaining the optimized T.

2.4 The parameters optimization for GP simultaneous MIMO
model

The parameters estimation and optimization of the proposed
method are presented in this subsection. Similar to the stan-
dard GP model, the elements in T, i.e., the correlations be-
tween different outputs are not known in advance (besides
autocorrelation coefficients as the diagonal elements are all 1).
Thus, it needs to give an initial value for T, consider a model
with three outputs.

T0 ¼
1 0:01 0:01

0:01 1 0:01
0:01 0:01 1

2
4

3
5 ð21Þ

Setting like this means that, at the beginning of the fitting, the
correlations between different outputs are very small. And then

the values (correlations) of the elements in T are adjusted ac-
cording to the training set in the coming optimization. All of the
explanation for the parameters optimization is in this assumption.

The maximum likelihood method is used for the parame-
ters estimation and optimization. The covariance matrix of the
proposed method is denoted by Km, which depends on the
hyperparameters Θ and T, where T has a one-to-one corre-
spondence with a set of Φ through the hypersphere decompo-
sition parameterization. Thus, the parameters in the model to
be optimized are Θ and Φ .

Note that h =(xt,zc)
t is a cross-array of X and zc through

DOEs, like Latin hypercube, where X is a N ×D design
matrix for the training set, and zc is an m ×1 design matrix
for the categorical input variables. Consequently, h consists of
all level combinations between those in X and zc. Hence, h
has n =Nm rows (runs). This cross-array structure [43] can
significantly simplify the computations of the parameters
optimization in Km : the Km can be expressed as the
Kronecker product Km=T⊗K of the correlation matrix T
and the covariance matrix K defined in (4). By the properties
of Kronecker product [44], considering m =3 and N =6, it can
be given by

Km ¼
τ11K τ12K τ13K
τ12K τ22K τ23K
τ13K τ23K τ33K

2
4

3
5 ð22Þ

it means that the Km transformed into an Nm ×Nm block
matrix. And then a series of transformation is carried out,

K−1
m ¼ T−1⊗K−1 ð23Þ

EK−1
m ¼ E T−1⊗K−1� � ¼ E⊗1ð Þ T−1⊗K−1� � ¼ EK−1� �

⊗T−1

ð24Þ

Fig. 1 a Point (l21,l22) on the
half unit circle. b Point
(l31,l32,l33) on the unit
hemisphere. This artwork is a
manual drawing and captured by
AutoCAD. It is proposed to
interpret the theory of the
hypersphere decomposition
parameterization
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tr EK−1
m

� � ¼ tr ET−1⊗K−1� � ¼ tr EK−1� �
tr T−1� � ð25Þ

From (25), the correlation matrix T and the covariance
matrix K are mutually independent. In addition, the T has a
one-to-one correspondence with a set of Φ through the
hypersphere decomposition parameterization, thus similar to
(8), then

∂L
∂Θ

¼ −
1

2
tr K−1

m

∂Km

∂Θ

� �
þ 1

2
yTK−1

m

∂Km

∂Θ
K−1

m y ð26Þ

∂L
∂Φ

¼ −
1

2
tr K−1

m

∂Km

∂Φ

� �
þ 1

2
yTK−1

m

∂Km

∂Φ
K−1

m y ð27Þ

Consequently, the optimizations of Θ and Φ in the pro-
posed model can be done separately according to (26) and
(27).

3 Numerical examples

In this section, two numerical examples are provided to dem-
onstrate the effectiveness and feasibility of the proposed
modeling method. For comparison purposes, we consider
the following two modeling methods.

(a) The individual Gaussian process method is denoted by
IG. This method is to build a surrogate model for each
output separately using the standard Gaussian process
model.

(b) The simultaneous Gaussian process method is denoted
by SG. This method is to build a GP simultaneous
MIMO surrogate model using the proposed method de-
scribed above.

3.1 A numerical example with both positive and negative
cross-correlations

This example considers one quantitative input variable x , taking
values on x ∈[0,1] and one categorical input variable z with
three levels. The response is taken from the following functions:

y ¼
sin 6:8πx=2ð Þ; if z ¼ 1
−sin 7πx=2ð Þ; if z ¼ 2
sin 7:2πx=2ð Þ; if z ¼ 3:

8<
: ð28Þ

For each level of z , the training set are obtained by using a
Latin hypercube design of ten runs for x ∈[0,1], and the testing
data are then taken at 20 equally spaced points of
0; 1

�
19
; 2
�
19
;…; 1 . Figure 2 compares the three fitted curves

of the functions. Intuitively, these curves are all similar to

another. The second equation is negatively correlated with
another two, while the first equation is positively correlated
with the third one.

The root mean squared errors (RMSEs) of the testing data
are calculated for the two models to assess prediction accuracy.
This procedure of data generation, model fitting, and prediction
accuracy assessment is repeated 100 times. And then each
RMSE of the IG and SG methods, respectively, is plotted as
box plots. Figure 3 compares the RMSEs of the two methods.

The mean values of the 100 RMSEs for the IG and SG
methods are 0.0419 and 0.0214, respectively, indicating that
the SGmethod achieves the better prediction performance and
that the model has much higher accuracy.

In addition, average estimates of the cross-correlations
parameters τ12,τ13,τ23 are (−0.94,0.85,and−0.93). The cor-
relation matrix is

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-1.5

-1

-0.5

0

0.5

1

1.5

sin(6.8*pi/2*X)

-sin(7*pi/2*X2)
sin(7.2*pi/2*X3)

Fig. 2 Three fitted curves of the function values. This artwork is gener-
ated by MATLAB figure generator. It is proposed to illustrate three fitted
curves of the first numerical example
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Fig. 3 Box plots of the RMSEs of the two methods. This artwork is
generated by MATLAB figure generator. It tries to illustrate the RMSEs
of different modeling methods
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T3 ¼
1 −0:94 0:85

−0:94 1 −0:93
0:85 −0:93 1

2
4

3
5 ð29Þ

It is clear that the SG method correctly captures both the
positive and negative cross-correlations.

This numerical example demonstrates that, comparing with
IG method, the SG method has much higher prediction accu-
racy. Moreover, the SG method takes full advantage of the
data abundance, furthermore capturing correctly both the pos-
itive and negative cross-correlations.

3.2 A numerical example with a multi-objective problem

Due to the proposed modeling method that will be applied to
the multi-objective problems in engineering, one more numer-
ical example is required to demonstrate the superiority of the
method in multi-objective problems. The multi-objective
problem in this numerical example is described as following:

f 1 ¼ x1
f 2 ¼ g x1; x2ð Þh x1; x2ð Þ
g x1; x2ð Þ ¼ 11þ x22 −10 cos 2πx2ð Þ
h x1; x2ð Þ ¼ 1−

ffiffiffiffiffiffiffiffiffiffi
f 1=g

p
; f 1 < g

0; else

	
x∈ 0; 1ð Þð Þ

ð30Þ

When the multi-objective problem is solved by using the
NSGA II, the new generated populations are substituted into
the analytic formulas described above for the corresponding
calculations (called the analytic formula-substitution method
in this example), thus the Pareto fronts are obtained.

However, many multi-objective problems in engineering
cannot be derived by the analytic formula, for example sheet
metal drawing forming. Consequently, the qualities of the
Pareto fronts obtained by IG method are compared with those
of Pareto fronts obtained by SG method, which is different
from the way of verifying the performance of optimization
algorithms. The specific work is as followed: the training set
are obtained by using a Latin hypercube design of 20 runs for
x ∈[0,1], surrogate models are built for the analytic formulas
f1 and g (x1,x2) in the multi-objective problem by using the IG
and SG methods, respectively.

The purpose of this way is that, while the optimization
algorithm is solving the multi-objective problem, the corre-
sponding calculations is to use the surrogate model predictive
values for the new generated populations other than being
based on the analytic formula-substitution method. It means
that, for the same optimization algorithm, the qualities of the
obtained Pareto fronts depend on the prediction accuracy of
surrogate models.

In this example, the NSGA II is used for all cases. And the
population size is 50, the crossover ratio is 0.8, the mutation

ratio is 0.3, and the number of iterations is 200. The experi-
mental results are shown in Fig. 4; a, b, and c is the Pareto
front for using the analytic formula-substitution method, the
Pareto front for using the IG method, and the Pareto front for
using the SG method, respectively.

For the reliable optimization algorithm, the Pareto front for
using the analytic formula-substitution method can be
regarded as the standard front. From Fig. 4, the Pareto front
for using the IG method has a very big deviation on the
boundary and uneven solutions. In contrast, the Pareto front
for using the SG method is quite precise near the boundary.
Although the distribution of the solutions near the boundary is
not as good as Fig. 4a, the front coincides overall better with
Fig. 4a than the Pareto front for using the IG method, and its
distribution of the solutions is more uniform, too.

According to these two numerical examples, it can be
demonstrated that the proposed modeling method has much
higher prediction accuracy, and takes full advantage of the
data abundance, thus achieving the better performance for
solving multi-objective problems.

4 Applications of the GP surrogate model used in sheet
metal forming

4.1 The optimization problem

Taking an auto rear axle housing as an example, its material is
08F, and the material properties are given in Table 1. The size
of the part is 200 mm in diameter, 63 mm in height, and
2.5 mm in thickness. It is a typical sheet metal-forming part,
shown in Fig. 5. Crack and wrinkle are two main defects
illustrated in Fig. 6. For assembly, crack is not allowed to
exist in the shell structure. For welding fabrication, wrinkle is
not also allowed to exist in the flange. However, many factors
may cause severe crack and wrinkle. So, it is not easy to find
good solutions to reduce both crack and wrinkle furthest by
try-and-error method. In a workshop, for a given determined
die structure and material, crack and wrinkle defects have
emerged, when a 500-T hydraulic press is used. So it is given
priority to reduce the crack and wrinkle by adjusting the
process parameters.

4.2 Definitions of objective functions

In this subsection, the quantization objective functions of
crack and wrinkle are defined according to forming limit
diagram (FLD) as shown in Fig. 7. For the finite element
analysis of sheet metal drawing forming, a curve is usually
defined as the safety forming limit curve ϕ (ε2):

ϕ ε2ð Þ ¼ φ ε2ð Þ−Δε ð31Þ

1340 Int J Adv Manuf Technol (2014) 72:1333–1346



where Δε is the crack safety margin, it is usually 10 % of the
FLD0. If an element in the forming area is below the curve
ϕ(ε2), no matter how much the distance between this element
and the curve ϕ(ε2) is, the forming for this element is safe, thus
having no possibility of crack. While an element is above the
forming limit curve (FLC) φ(ε2), it will crack, and the further
distance between this element and the FLC φ(ε2), the more
severe the crack is. When an element is between the ϕ(ε2) and
the φ(ε2), the element has risk of crack. In order to quantify the
contribution degrees of crack for elements on the different
zones on FLD and the distances from the safety forming limit
curve, the objective function of crack is defined as

DC ¼
X
i¼1

n
εi1−ϕ εi2

� �� �2
; εi1 > ϕ εi2

� �
0 ; εi1 < ϕ εi2

� �
(

ð32Þ

where i is the number of the grid elements on sheet metal.
Similar to the definition of the objective function of crack,

firstly, the wrinkle limit curve is defined as

η ε2ð Þ ¼ − tan 45� þ θð Þε2 ð33Þ

where θ is the wrinkle safety margin; it is 15 % in this
application. If an element is below the curve η (ε 2), this
element has the contribution degree of wrinkle, otherwise
has none. So the objective function of wrinkle is defined as

DW ¼
X
i¼1

n
η εi2
� �

−εi1
� �2

; εi1 < η εi2
� �

0 ; εi1 > η εi2
� �

(
ð34Þ

where i is the number of the grid elements on sheet metal.
The curve φ (ε2) and w (ε2) can be obtained according to

Keeler's empirical formula [45].

Table 1 Material properties of 08F

Material parameters Values

Poisson's ratio (ν) 0.27

Young's modulus (GPa) 207

Hardening strength coefficient (K) 525.4

Hardening exponent (n) 0.28

Anisotropy coefficient (r0) 2.15

Anisotropy coefficient (r45) 2.29

Anisotropy coefficient (r90) 2.92
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(a) The Pareto front using the
analytic formula-substitution method

(b) The Pareto front using the IG method
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(c) The Pareto front using the SG method

Fig. 4 The Pareto fronts for
different cases. a The Pareto front
using the analytic formula-
substitution method. b The Pareto
front using the IG method. c The
Pareto front using the SGmethod.
These artworks are generated by
MATLAB figure generator. It
tries to illustrate the Pareto fronts
for different modeling methods
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4.3 The design variables, constraint conditions,
and determination of optimization problem

For this case, the blank holder force (BHF) is an important
design parameter. For a given determined hydraulic press, it is
easy to adjust BHF. Lower BHF cannot control effectively
material flow, thus causing wrinkle. While higher BHF may
avoid wrinkle, but the trend of crack is increasing
significantly.

The blank size is another important design parameter.
Smaller diameter of the blank sheet metal cannot supply
material for forming area, while bigger diameter may cause
crack.

Because sheet metal has relative motion with the die and
blank holder, different lubrication conditions have significant
influence for the stress–strain distribution in forming, thus
affecting the forming process.

Here, four design parameters are taken into account. They
are BHF, diameter of the blank sheet metal D , static friction
coefficient between sheet metal and die μ1, and static friction
coefficient between sheet metal and blank holder μ2. Most of
the engineers consider these process parameters to optimize
the crack and wrinkle in the adjustment stage. In fact, filet
radius of female die also has significant influence. Because the
female die filet is involved in the forming process, the filet
radius is fixed to 5 mm. Therefore, the optimization problem
can be written as

find X ¼ BHF;D;μ1;μ2½ �
Min f Xð Þ ¼ f 1 xð Þ ¼ DC

f 2 xð Þ ¼ DW

� �

subject to

80≤BHF≤500 kN
275 ≤D ≤ 325 mm
0:10 ≤ μ1≤ 0:15
0:10 ≤ μ2≤ 0:15

4.4 Solving the optimization problem with the GP
simultaneous model GGA-h method

For this optimization problem with four design parameters, 30
initial process parameter combinations are selected by the
enhanced translation propagation Latin hypercube design
[46]. By using sheet forming computer-aided engineering
analysis, the objective function values of these combinations
can be obtained.

The proposed GP simultaneous model is adopted to ap-
proximate the relationship between process parameters and
objective function values with these 30 initial samples as the
training set. The squared exponential covariance function and
correlation matrix T are proposed to construct the valid co-
variance function. By giving a initial value for the T, the
surrogate model is fitted. Consequently, the RESM of the
DC and DW is 0.104 and 0.635, respectively.

(a) Sample workpiece (b) 3D model of the part

Fig. 5 A rear axle housing; a
Sample workpiece, b 3D model
of the part. These artworks are an
entity and a 3Dmodel of rear axle
housing. It tries to illustrate the
shape of the rear axle housing

(a) Crack (b) Wrinkle

Fig. 6 Two main defects; a crack
and b wrinkle. These artworks are
two defectives of rear axle
housing. It tries to illustrate the
main defects of this part
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There are many intelligent optimization algorithms that can
solve multi-objective problems like hybrid particle swarm
optimization approach [47] and hybrid immune algorithm
[48]. In this paper, to solve this multi-objective optimization,
the Gaussian mutation hybrid genetic algorithm (GGA-h) [49,
50] is used, while the population size is 50, the crossover ratio
is 0.9, the mutation ratio is 0.1, and the number of iterations is
300. Figure 8 shows the obtained Pareto front after 300
iterations. And for this case, the cross-correlation parameter
τDC ;DW between DC and DW is −0.4393. It means that they
are negatively correlated but not perfectly negatively
correlated.

4.5 Discussion and verification

Figure 8 shows that the distribution of the solutions is really
well, which the solutions near the boundary are quite close to
extreme values, resulting in good scalability. And the crack
and wrinkle have nonlinear relationship with each other in this
case. According to the cross-correlation τDC ;DW , they are
negatively correlated but not perfectly negatively correlated.
Namely, as the more DC decreases, the more DW increases.
When the compression reaches a certain level, the sheet metal
loses stability, and the in-plane strain transforms into the
bending deformation. Consequently, the material flow is
blocked, resulting in crack.

To verify the obtained solutions by the GP simultaneous
model GGA-h method, the model algorithm prediction values
and the corresponding CAE verification values of three opti-
mization parameter combinations selected from the Pareto
front are enumerated in Table 2. These data shows that the
model algorithm prediction values are very close to the cor-
responding CAE verification values. Although all the values
have the similar deviations, the variation trends of two results
are accordant. So the optimization solutions can be
consultable for the auto rear axle housing.

Table 3 shows three set of data as comparisons selected
from the Pareto front and initial samples, respectively, which
their DC values are almost equal. Comparing with their DW

values, corresponding values of the Pareto front have varying
degrees of decreases. If the data, whose DC values are almost
equal, are selected, the result is the same. It demonstrates that
the GP simultaneous model-GGA-h method can optimize
both quality indexes of crack and wrinkle at the same time.

The above conclusions indicate that the proposedmodeling
method can meet the requirement of accuracy in sheet metal
forming, combining with the multi-objective optimization
algorithm GGA-h, the satisfactory Pareto front also can be
obtained. Then, one optimization process parameter combina-
tion can be selected according to specific requirements of the
product to balance two objectives.

Point P in Fig. 8 is selected as the satisfactory solution, its
DC and DW value is 0.01307 and 4.518, respectively. The
corresponding values of BHF, D , μ1, and μ2 is 241.7, 286,
0.117, and 0.119, respectively. Simulating with this

Fig. 7 FLD and the curves. This artwork is a manual drawing and
captured by screen-capture software. It is proposed to interpret the defi-
nitions of objective functions
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Fig. 8 The Pareto front with the GP simultaneous model GGA-h meth-
od. This artwork is generated by MATLAB figure generator. Then, the
point P is labeled to the corresponding point by MS WORD. It tries to
illustrate the satisfactory solution

Table 2 Comparison data of result verification

BHF (kN) D (mm) μ1 μ2 Optimization
values

CAE
values

DC DW DC DW

225.3 312 0.115 0.129 0.0433 4.0919 0.0497 4.4714

372.2 319 0.103 0.104 0.2419 3.7051 0.2701 3.7483

461.4 314 0.127 0.135 1.2004 2.8271 1.5432 2.9639
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optimization combination, the FLD is shown in Fig. 9 and the
trends of crack and wrinkle are all very small. The minimum
thickness is 1.81 mm and the maximum thinning rate is
27.6 %, thus meeting the product quality requirements.

The process parameters of the hydraulic press under con-
sideration are set according to this optimization combination,
but the values are only modified slightly according to real
setting accuracy. The produced part is shown in Fig. 10; the
forming quality is quite well and consistent with result of the
simulation. It demonstrates that the proposed method in this
paper can achieve good performance for solving multi-
objective problems in sheet metal forming.

5 Conclusions

In this study, the GP simultaneous model GGA-h method is
introduced to minimize the crack and wrinkle of sheet metal-
forming parts simultaneously, and has achieved stage result in
modeling innovation and engineering application.

1. The spatial correlation based on quantitative input vari-
ables is defined with distance-based functions, while the

cross-correlation based on categorical input variables is
defined by correlation matrices. Then, a general method
for constructing covariance functions based on correlation
matrices is proposed and a novel surrogate modeling meth-
od is also developed, which can take into account both
types of input variables. Furthermore, the hypersphere
decomposition parameterization is used to construct
unrestrictive correlation matrices. This approach maintains
the flexibility of unrestrictive correlation matrices, which
can turn some optimization problems with complex
positive-definite constraints into standard and easy-to-
compute optimization problems with box constraints. The
numerical examples demonstrate that the GP simultaneous
model has much higher prediction accuracy than standard
GP models. Therefore, the GP simultaneous model is used
to approximately construct the relationship between quality
indexes and process parameters, which can replace the
expensive computation in optimization. The optimization
algorithm GGA-h is used to solve this multi-objective
optimization problem, thus obtaining the Pareto optimal
set. Then, an optimization process parameter combination
is selected according to specific requirements of the prod-
uct to balance two objectives.

2. As an application, an auto rear axle housing is investigat-
ed. For the Pareto optimal set, when one objective value
and the corresponding value in the samples are almost
equal, the other objective value always has varying de-
grees of improvement. Hence, the GP simultaneous mod-
el GGA-h method can be considered to minimize the
crack and wrinkle of sheet metal-forming parts simulta-
neously, thus reducing defects as possible and obtaining
products with good formability. Meanwhile, the cross-
correlations between quality indexes provides some
consultable reference to further develop quality intelligent
control strategies, which can be obtained from the outputs
of GP simultaneous model. Finally, according to verifica-
tions, optimization process parameters are consultable in
real production.

Table 3 While DC values are almost equal, comparison data between
optimization solutions and initial samples

Optimization values Initial sample values

DC DW DC DW

0.0571 3.9757 0.0568 6.2013

0.1295 3.8887 0.1258 5.1912

2.6992 1.7566 2.7094 2.4166

Fig. 9 FLD of the auto rear axle housing after optimization. This artwork
is generated by Dynaform. It is the FLD result with the optimal param-
eters for rear axle housing after simulation

Fig. 10 The product based on optimization design. An entity is produced
with the parameters optimized. As is shown, the forming quality is very
well
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3. The proposed method can be expanded to any other
material processing, such as injection molding and alumi-
num extrusion, which the investigated quality indexes
often have some correlation with each other. Due to the
flexibility of unrestrictive correlation matrices by using
the hypersphere decomposition parameterization, the
computational complexity does not increase significantly
with the increasing number of investigated quality index-
es. Therefore, this method can be easily expanded to three
and even more objectives problems. And further studies
will be performed in these fields.
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