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Abstract Laser drilling is a thermal process with relatively
low energy efficiency since the material removal mecha-
nism is mostly based either on melting or on vaporization.
Aiming at the investigation of the laser drilling efficiency, a
theoretical both analytical and numerical study of evapora-
tion pulsed laser drilling is presented. The analysis is based
on a linear approximation of the temperature profile and
separates the process into three phases, those of the heating,
the melting and the vaporization. Based on these models,
the energy efficiency and its dependence on the process
parameters have been investigated and selection of rele-
vant process variable guidelines, towards improving energy
efficiency, are given. Moreover, the physical mechanisms
responsible for most of the energy losses are analysed and
classified according to their importance.

Keywords Laser beam machining · Drilling · Process
modelling · Energy efficiency · Sustainable manufacturing

1 Introduction

Industry is increasingly concerned about energy consump-
tion due to the environmental burden and the increasing
cost. The International Energy Agency statistics [1] con-
firm that industry accounts for a very significant percentage
of energy consumption (28 % in EU-27) and thus, it is
responsible for the relevant emission of greenhouse gases.
However, as it is indicated [2], a 20–40 % of the energy
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consumed in the industry is wasted. An action plan for the
reduction of energy consumption [3] requires the study of
manufacturing processes’ energy efficiency, especially for
high-energy-consuming processes. Under this prism, manu-
facturing processes have to be assessed/optimized in terms
of their energy efficiency [4, 5].

Laser drilling [6, 7] is a rather accurate, non-conventional
process with a variety of applications. The major advantage
of laser drilling, in comparison with the conventional meth-
ods, is the small size and aspect ratio (up to 1:20) of the
hole that can be created. Either continuous or pulsed laser
sources can be used in such applications. The pulsed laser
sources present some advantages, such as less plasma gen-
eration [7]. The major physical phenomenon resulting in the
creation of the hole is the conversion of light power into
heat. The current study focuses on the case of high intensity
values, resulting in the evaporation of bulk material during
percussion drilling, also referred to as pulsed laser drilling
[6].

Percussion drilling delivers successive laser pulses to the
same spot. A major drawback of percussion drilling is the
formation of a recast layer. Additional energy is being used
in order to evaporate the re-solidified material contributing
to the low energy efficiency of the process.

Several models of the laser drilling process have been
reported in the literature. In order to capture the physi-
cal phenomena, it is required that the temperature field [8]
induced inside the workpiece by the laser source be mod-
elled. Several attempts are reported in the literature, either
analytical [9–11] or numerical methods [8–16], with the rel-
evant advantages and disadvantages. A three-dimensional
analytical model for laser grooving is presented in [17],
while a one-dimensional analytical model for drilling is pre-
sented in [18–20]. In [18], the authors focus on the shape
formation of the hole, while in [19], it is assumed that
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drilling occurs due to material evaporation neglecting the
intermediate liquid state. In [20], they assume that the hole
is formed from the ejection of melted material utilizing an
assisting gas jet.

In order for the energy efficiency of a manufacturing
process to be increased, a definition of the term “energy effi-
ciency” is required [21, 22]. The majority of the energy effi-
ciency studies focus on factory level [23–29]. Most of these
studies make general assumptions of each machines average
energy consumption. The energy consumption of processes
is rarely known due to the insufficient existing infrastructure
and the missing measuring devices [30]. Thus, the outcome
of these models is very difficult to be transformed into a
strategy towards increasing energy efficiency. At process
level, few studies exist for conventional manufacturing pro-
cesses, such as an empirical approach for grinding process
in [31] or the energy efficiency investigation of turning in
[32].

The laser processes are generally characterized by energy
efficiency lower than that of conventional processes; how-
ever, as indicated in [33, 34], they pose a different ecological
advantage due to the limited use of consumables. Other
studies [35, 36] conclude that the energy efficiency of
such processes can be significantly improved as a result of
their extremely short pulse duration; the heat diffusion is
confined, and the heat-affected zone (HAZ) is rather lim-
ited. This localized heating, in each laser pulse, results in
more precise machining results compared with the ones
obtained from longer laser pulses. Furthermore, different
studies investigate the dependence of energy efficiency on
the laser beams geometrical characteristics, such as the spot
geometry [37].

The current study presents an analytical and numerical
approach of evaporation laser drilling, towards the theo-
retical specification of the process parameters that maxi-
mize energy efficiency. The phenomenon is described as a
function of the processing time. The analytical approach,
based on some simplifying approximations, provides sim-
ple expressions that describe the process and its energy
efficiency. The numerical approach is mainly used for jus-
tifying that the approximations introduced in the analytical
model do not have a significant effect on the accuracy of the
results.

The analysis of the process is separated in three phases,
those of the heating, the melting and the vaporization. Dur-
ing the heating phase, a laser pulse hits the surface of the
workpiece, thus increasing the surface temperature until it
reaches the melting temperature. The melting phase begins
as soon as the melting temperature has been reached. Dur-
ing the melting phase, more and more material is melted,
until the surface temperature has reached the evaporation
point. Finally, during the vaporization phase some material
is evaporated and thus, removed from the workpiece.

2 The laser power density

2.1 Time profile of the laser beam intensity

It is assumed that the laser turns on instantly at the beginning
of every pulse and turns off instantly at the end of every
pulse as expressed in Eq. (2.1).

I (t) = I0

∞∑

n=0

�
(
(t − nτ)

(
nτ + tp − t

))
, (2.1)

where �(t) is Heavisides step function, tp is the pulse dura-
tion and τ is the pulsing period. I0 is the laser beam intensity
when the laser is on, or

I0 = P

πr0
2

τ

tp
, (2.2)

where P is the mean laser beam power and r0 is the beam
radius at the surface, where laser intensity is considered.
The time profile of the laser beam intensity is shown in
Fig. 1.

A useful definition is also the absorbed power density,
which equals

Ia = (1 − R) I0 = (1 − R)
P

πr0
2

τ

tp
, (2.3)

where R is the workpiece material reflectivity at the laser
wavelength.

2.2 Laser defocusing

When drilling starts, the surface that the laser beam hits
is moving with time. Thus, defocusing of the laser beam
becomes an issue. The radius of the laser beam obeys a
hyperboloid hourglass distribution [7] given by

rb (z) = r0

√

1 +
(
M2 λ(z− δf )

πr0
2

)2

, (2.4)

where r0 is the beam radius at the focal plane, M is the
beam quality parameter, λ is the laser wavelength and δf is

Fig. 1 The time profile of the laser beam intensity
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the z coordinate of the focal plane. Thus, the absorbed laser
intensity when the erosion front is at depth z is given by

I0a(z) = (1 − R)
P

πr0
2

τ

tp

1

1 +
(
M2 λ(z−δf )

πr0
2

)2
. (2.5)

To sum up, the absorbed power density as a function of
time and depth is given by

Ia (z, t) = I0a (z)

∞∑

n=0

�
(
(t − nτ)

(
nτ + tp − t

))
, (2.6)

where I0a (z) is given by (2.5).

3 A model for pulsed laser drilling

3.1 The problem

During the laser drilling process, the depth of the region
of the workpiece that has been affected by the heat flow,
at any given time, is very small. The reason is the laser
beams high intensity that causes the rapid evaporation of
the greatest part of this region. Thus, the diffusion of heat
in directions perpendicular to the laser beam axis is limited
and can be neglected. This assumption allows the process to
be considered taking place in one dimension.

3.1.1 Heating phase

The one-dimensional heating equation is

∂2T (z, t)

∂z2
= 1

a

∂T (z, t)

∂t
, (3.1)

where a is the thermal diffusivity of the material. Thermal
diffusivity is a function of temperature; however, in this
modelling approach, it will be considered being constant,
for the simplicity of the model.

At the beginning of every pulse, there is a short phase
when the surface temperature has not reached the melting
point, meaning that no phase transition is taking place. For
the study of this phase, the appropriate initial condition for
Eq. (3.1) is

T (z, 0) = T0 (z) , (3.2)

where T0 (z) is the temperature field after the cooling period
following the previous pulse. Typical values of process
parameters used for laser drilling allow for a large cooling
time comparable with the pulse duration. This means that
the profile of the temperature after a cooling period will be
flat in comparison with the temperature profile during the
time period the pulse is on. Thus, it can be considered that
the temperature field T0 (z) is constant. This approximation

has to be neglected in case that the pulse duration is a con-
siderable percentage of the pulsing period or if continuous
laser drilling is considered.

There are two basic mechanisms of heat transfer inwards
and outwards the workpiece, conduction and convection.
As this study focuses on the processing of metals, convec-
tion is a negligible factor. However, if laser treatment of
other materials is considered, convection should probably
be taken into account. Thus, the boundary conditions for the
heat equation are purely defined by the heat flux of the laser
pulses

∂T (z, t)

∂z

∣∣∣∣
z=z0

= −1

k
Ia (z0, t) , (3.3)

where k is the thermal conductivity of the material and z0

is the depth of the workpiece surface when the considered
pulse begins, which may be different from zero if it is not
the first pulse. Thermal conductivity may vary with tem-
perature; however, since the acquired solution should be as
simple as possible, it will be considered being constant.

3.1.2 Melting phase

When the surface temperature reaches the melting tem-
perature, the two phases of the material, solid and liquid
coexist and interchange heat. Then, in both regions, the heat
equation is satisfied

∂2Tl(z, t)

∂z2
= 1

al

∂Tl(z, t)

∂t
, (3.4)

∂2Ts(z, t)

∂z2 = 1

as

∂Ts(z, t)

∂t
, (3.5)

where the index l stands for liquid and the index s stands
for solid. The two regions are separated by a planar surface
at z = Zm (t). The temperature on this surface equals the
melting temperature Tm

Tl(Zm(t), t) = Ts(Zm(t), t) = Tm. (3.6)

The velocity of the moving boundary between the two
regions is set by the latent heat of fusion Lf . The relevant
boundary condition is the so-called Stefan condition, which
is the energy conservation at the phase-separating surface.

− kl
∂Tl(z, t)

∂z

∣∣∣∣
z=Zm(t)

−
+ ks

∂Ts(z, t)

∂z

∣∣∣∣
z=Zm(t)

+

= Lf ρ
dZm(t)

dt
. (3.7)

Finally, the boundary condition is again given by
Eq. (3.3) and the initial condition for the melting phase is
provided by the outcome of the previous heating phase.
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3.1.3 Vaporization phase

The vaporization phase begins when the surface temperature
reaches the vaporization point. In the following approach,
all materials that turn to a gaseous state is considered to
be instantaneously escaping. Then, in the liquid and solid
regions, the heat equation has to be satisfied as described by
Eqs. (3.4) and (3.5).

The solid and liquid regions are separated by a planar sur-
face at z = Zm (t), while the liquid and gaseous regions are
separated by another planar surface z = Zv (t). The tem-
perature at these surfaces equals the melting temperature Tm
and the vaporization temperature Tv respectively, resulting
in condition (3.6) and

Tl(Zv(t), t) = Tv. (3.8)

Similarly to the melting phase, the velocity of the moving
boundaries among the three regions is set by the latent heat
of fusion Lf and the latent heat of vaporization Lv . The
relevant boundary conditions are Eq. (3.7) and

Ia (Zv(t), t)+ kl
∂Tl(z, t)

∂z

∣∣∣∣
z=Zv(t)

+
= Lvρ

dZv(t)

dt
(3.9)

Finally, the initial condition for the vaporization phase is
provided by the outcome of the previous melting phase.

3.1.4 Cooling phase

When the pulse ends, a cooling phase follows, until the next
pulse begins. The treatment of the cooling phase is identical
to that of the heating and melting phases, in the sense that
at the beginning of the cooling phase, the liquid and solid
phases coexist and interchange energy. The melting phase
will cease to exist very fast and cooling will continue in the
presence of merely the solid phase. The only difference in
the treatment is that the surface separating the liquid and the
gaseous states stops moving and the boundary condition at
this surface becomes:

∂T (z, t)

∂z

∣∣∣∣
z=Zv

= 0, (3.10)

since there is no influx of energy during the cooling period.
The appropriate initial condition is given by the outcome of
the previous vaporization phase.

3.2 The numerical model

The finite differences method has been used to model laser
drilling numerically. A restriction imposed by this approach
is that the spatial dimension of the problem cannot be con-
sidered infinite. For the analytical approach, it is easier to
consider the spatial dimension as infinite. However, if the
length of the spatial dimension in the numerical approach

is larger than the depth of the region affected by the laser,
any reflection phenomena will be limited and therefore the
difference between the two approaches may not be large.

In this study, the discrete depths are considered uniformly
spaced in the interval 0 ≤ z ≤ D, where D is the depth
of the workpiece. There are nodes at z = 0 and z = D,
thus zi = (i − 1)	z, where i takes values from 1 to Nz

and 	z = D/ (Nz − 1). Similarly, the discrete times are
also considered uniformly spaced, thus tj = (j − 1)	t ,
where j takes values from 1 to Nt and 	t = tmax/ (Nt − 1).
The temperature field is a finite set of the elements Tij =
T

(
zi , tj

)
.

A discrete version of the heat equation can be expressed
and solved time slice by time slice. However, such an
approach has the disadvantage that phase transitions have
to be dealt manually, as described by Eqs. (3.7) and (3.9).
Additionally, the heat equation has to be solved separately
in the region of each phase.

There is an alternative way of bypassing this obstacle
in a numerical method. The second spatial derivative that
appears in the heat equation has the meaning of the infinites-
imal difference of the incoming and outgoing heat currents,
in an infinitesimal region. Hence, the second spatial deriva-
tive (multiplied with the thermal conductivity to recover the
heat current) is the amount of heat rate that settles in this
infinitesimal element. This is proportional (with constant of
proportionality equal to the density times the specific heat)
to the temperature rate of change at this infinitesimal ele-
ment, resulting in the heat equation. The non-smoothness
of the temperature field at a phase-separating surface is due
to the fact that during a phase transition, the incoming heat
does not correspond to an increase of temperature because
of the existence of the latent heat. This phenomenon can be
dealt more easily with the introduction of a new field corre-
sponding to the energy density. Then, the second derivative
of the temperature will result in a rate of change for the
energy density and then the energy density will be con-
nected to the local temperature by taking into account not
only the specific heat but also the latent heat of fusion and
evaporation. In other words, the heat equation, including
phase transitions, can be expressed as

Ui,j+1 − Ui,j

	t
= k

Ti+1,j − 2Ti,j + Ti−1,j

	z2
, (3.11)

Tij = T
(
Uij

)
, (3.12)

where energy density and temperature are connected
through

T (U) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

U
ρc
, U < ρcTm,

Tm, ρcTm < U < Um,
U−ρLf

ρc
, Um < U < ρ

(
cTv + Lf

)
,

Tv, ρ
(
cTv + Lf

)
< U < Uv,

(3.13)
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where Um and Uv are the required energy densities for
melting and vaporization respectively. They equal

Um = ρ
(
cTm + Lf

)
, (3.14)

Uv = ρ
(
cTv + Lf + Lv

)
. (3.15)

The relation between energy density and temperature is
indicated in Fig. 2.

It is clear from Eqs. (3.11) and (3.12) that since the Ui1

and Ti1 are given in the form of the initial conditions

Ti1 = T0, (3.16)

Ui1 = ρcT0 ≡ U0, (3.17)

the problem can be integrated time slice by time slice.
Equation (3.11) allows the calculation of the energy den-
sity values in the next step, which can be translated into the
temperatures in the next step using Eq. (3.12) and so on.

The last detail deals with the fact that the definition of
the second spatial derivative is problematic at i = 1 and
i = Nz or alternatively the way the boundary conditions are
implemented need to be determined. A relevant concern is
the fact that when evaporation starts, the boundary of the
region studied is moving since material is removed. Thus, at
each time slice, the position of the left boundary has to be
specified. Evaporation is occurring when energy density is
exceeding the critical value Uv, given by Eq. (3.15). Thus,
at each time slice, the boundary has to be specified as the
minimum i for which the energy density is smaller than the
critical value

bj = min
{
i|Uij < Uv

}
. (3.18)

Finally, the boundary condition, described by Eq. (3.3)
and a similar one for the opposite boundary describing
vanishing heat flow can be expressed as

Ubj ,j+1 − Ubj ,j

	t
=k

Tbj+1,j−Tbj ,j

	z2
+ Ia

(
zbj , tj

)

	z
, (3.19)

UNz,j+1 − UNz,j

	t
= −k

TNz,j − TNz−1,j

	z2
, (3.20)

where Ia
(
zbj , tj

)
is given by Eq. (2.6). The problem is com-

pletely described by Eqs. (3.11), (3.12), (3.18), (3.19) and

Fig. 2 Relation between energy density and temperature

(3.20), which can be integrated time slice by time slice, pro-
viding the temperature field as a function of depth and time.
This method can serve as a standalone numerical model for
evaporation laser drilling. In this study, it also serves as a
benchmark for the validity of the approximations used for
the development of the analytical model in Section 3.3.

3.3 The analytical model

The phase transitions that occur during the specific process
make the mathematical nature of the problem nonlinear. The
solutions of the heat equation are characterized by an expo-
nential decay towards a temperature field with no curvature;
if there is no curvature of the temperature field, then it is
also time independent. The approach followed was based on
the assumption that the absorbed power density was so high
that it locally “stretched” the temperature field sufficiently
enough to assume it had a linear profile with depth. Once,
such an assumption is made, the partial differential equation
is transformable into an ordinary one for the parameters of
the linear “ansatz” plugged into the equations.

3.3.1 Heating phase

According to the above-mentioned, in the current approx-
imation, the temperature field during the heating phase is
considered being equal to

T (z) =
{
As (t) z + Bs (t) , z < Zmax(t),

T0, z > Zmax(t),
(3.21)

This assumption can be visualized as the red curve in Fig. 3.
Continuity demands that

As (t) Zmax + Bs (t) = T0. (3.22)

It is assumed that the inclination of the aforementioned
linear function in the heated zone z < Zmax (t) is set by the
heat flow boundary condition (3.3). Thus,

−kAs (t) = Ia. (3.23)

Zv ZmZmaxZm Zmax Zmax
z

T0

Tm

Tv

T

heating phase ansatz
melting phase ansatz
evaporation phase ansatz

Fig. 3 The approximation of the temperature field during the heating,
melting and vaporization phase
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Finally, there is the constraint of the overall energy con-
servation. The energy that has been transferred into the
material has resulted in a temperature increase. This energy
is simply cρ times the surface under the red curve in Fig. 3,
where c is the specific heat. Thus, the energy conservation
per area can be written as

Iat = 1

2
cρZmax(t) (Bs (t) − T0) . (3.24)

Equations (3.22), (3.23) and (3.24) are sufficient for
determining the time evolution of the three unknown func-
tions of the problem, namely Zmax (t), As (t) and Bs (t).

3.3.2 Melting phase

During the melting phase, like during the heating phase, it
is assumed that the temperature field is a linear function
of depth. However, it may be a different linear function
in the liquid region from that in the solid region. So, the
temperature field is given by

T (z) =
⎧
⎨

⎩

Al (t) z + Bl (t) , z < Zm (t) ,

As (t) z+ Bs (t) , Zm (t) < z < Zmax (t) ,

T0, z > Zmax (t) .

(3.25)

This assumption can be visualized as the green curve in
Fig. 3.

This “ansatz” contains six unknown functions of time.
However, the temperature field has to be continuous in
space. The temperature has to be equal to the melting tem-
perature at the phase-separating surface z = Zm (t) and the
environment temperature at z = Zmax (t). These demands
result in the following constraints

Bl (t) = Tm −Al (t) Zm (t) , (3.26)

Bs (t) = Tm − As (t) Zm (t) , (3.27)

As (t) = − Tm − T0

Zmax (t) − Zm (t)
. (3.28)

After the continuity constraints, the problem has three
unknown parameters that depend on time, the temperature
inclination in the liquid region Al(t), the depth of the phase-
separating surface z = Zm (t) and the maximum depth that
has been affected by the heat flow z = Zmax (t). So, three
equations are needed in order to specify the above param-
eters. The first of those is the same as the one used in the
heating phase. The inclination of the aforementioned linear
function in the liquid region, which is directly hit by the
laser beam, is set by the heat flow boundary condition,

−kAl (t) = Ia. (3.29)

The second equation is the Stefan condition (3.7), which
in the linear “ansatz” is expressed as

−kAl (t)+ kAs (t) = Lf ρ
dZm (t)

dt
. (3.30)

Finally, the third relation is simply the overall energy
conservation. The energy that has been transferred into the
material has been spent in two ways. The first way is the
phase change latent heat, which is Lf ρ multiplied by the
volume that has changed phase. The second one is the
energy corresponding to the temperature change, which is
cρ multiplied by the surface under the green curve of Fig. 3.
Thus, energy conservation (per area) can be written as

Iat = ρLfZm (t)+ 1

2
cρZm (t) (Bl (t)− T0)

+1

2
cρZmax (t) (Tm − T0) . (3.31)

Out of the three equations describing the problem, only
the second one is a differential equation. Thus, Eqs. (3.29)
and (3.31) can be solved algebraically for Zmax (t) and
Bl (t) and the latter can be substituted in Eq. (3.30) to get an
easily solvable first-order differential equation for Zm (t).
Then, the other two parameters of the solution can be spec-
ified by Zm (t) with the use of Eqs. (3.29) and (3.31). The
aforementioned differential equation can be written as

Lf ρ
dZm (t)

dt
= Ia − k

Tm − T0

Zmax (t)− Zm (t)
. (3.32)

where

Zmax (t) = 1

Tm − T0

{
2

cρ

[
Iat − ρLf Zm (t)

]

− Zm (t)

[
Ia

k
Zm (t)+ Tm − T0

]}
. (3.33)

The appropriate initial condition for this differential equa-
tion is a vanishing Zm at the time melting starts.

3.3.3 Vaporization phase

In the vaporization phase, similarly to the previous two
phases, it is assumed that the temperature field is a linear
function of depth; however, it may be a different linear func-
tion in the liquid region from that in the solid region. The
temperature field is given by

T (z) =
⎧
⎨

⎩

Al (t) z + Bl (t) , Zv (t) < z < Zm (t) ,

As (t) z+ Bs (t) , Zm (t) < z < Zmax (t) ,

T0, z > Zmax (t) .

(3.34)

This assumption is depicted as the blue curve in Fig. 3.
This “ansatz” contains seven unknown functions of time.

The temperature field has to be continuous in space. The
temperature equals the vaporization point at z = Zv (t), the
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melting point at the phase-separating surface z = Zm (t)

and the environment temperature at z = Zmax (t). These
demands result in the following constraints

Bl (t) = Tv −Al (t) Zv (t) , (3.35)

Bs (t) = Tm − As (t) Zm (t) , (3.36)

Al (t) = − Tv − Tm

Zm (t)− Zv (t)
, (3.37)

As (t) = − Tm − T0

Zmax (t) − Zm (t)
. (3.38)

After the continuity constraints, the problem has three
unknown parameters that depend on time, the depth of the
vapour-liquid separating surface z = Zv (t), the depth of
the liquid-solid separating surface z = Zm (t) and the max-
imum depth that has been affected by the heat flow z =
Zmax (t). Three equations are required to specify the above
parameters. Two of these are the Stefan conditions at the
two phase-separating surfaces namely Eq. (3.30) and

Ia + kAl (t) = Lvρ
dZv (t)

dt
. (3.39)

The third relation is simply the overall energy conserva-
tion. The energy that has been transferred into the material
has been spent in three ways. The first is the vaporization
latent heat, which equals Lvρ times the volume that has
been vaporized. The second is the melting latent heat, which
is Lf ρ times the volume that has been melted. Finally,
the third is the energy corresponding to the temperature
change. This is simply cρ times the surface under the blue
curve in Fig. 3, where c is the specific heat. Thus, energy
conservation (per area) can be written as

Iat = ρLvZv (t) + ρLf Zm (t) + 1

2
cρZv (t) (Tv − Tm)

+ 1

2
cρZm (t) (Tv − T0)+ 1

2
cρZmax (t) (Tm − T0).

(3.40)

Out of the three equations regarding the problem, only
two are differential equations. Therefore, Eq. (3.40) can be
solved algebraically for Zmax (t) and the latter can be sub-
stituted into Eqs. (3.30) and (3.39) to get an easily solvable
first-order system of two differential equations for Zm (t)

and Zv (t)

Lvρ
dZv(t)
dt

= Ia − k Tv−Tm
Zm(t)−Zv(t)

, (3.41)

Lf ρ
dZm(t)

dt
= k Tv−Tm

Zm(t)−Zv(t)
− k

Tm−T0
Zmax(t)−Zm(t)

, (3.42)

where

Zmax (t) = 1

Tm − T0

{
2

cρ

[
Iat − ρLvZv (t)− ρLf Zm (t)

]

−Zv (t) (Tv − Tm)− Zm (t) (Tv − T0)

}
.

(3.43)

The appropriate initial conditions for this system of dif-
ferential equations are a vanishing Zv at the time that
evaporation starts and the outcome of the melting phases
Eq. (3.32) for Zm.

3.3.4 Cooling phase

As described in Section 3.1.4, at the beginning of the cool-
ing phase, the solid and liquid phases coexist. Soon enough,
the liquid phase transmits adequate amount of heat to the
solid phase and ceases to exist. Then, heat diffusion con-
tinues in the solid phase, homogenizing the temperature
distribution into the workpiece, resulting in the cooling of
the surface.

As the numerical model indicates, the coexistence of the
two phases lasts for a very short period of time thus, it is
negligible. It is desirable to find an appropriate form for
the temperature field during the cooling phase in order to
study the cooling of the surface, using the same method
as the one applied to the heating, melting and evaporation
phases. Since only the solid state is involved, a natural guess
would be the “ansatz” is used for the study of the heating
phase. However, the boundary condition is now different,
not allowing the use of a linear profile for the temperature
field.

The physics of the problem and the numerical model
solution indicate that a good candidate for the temperature
field profile is a Gaussian profile of the form

T (z, t) = C (t) e−
(t)z2 + T0. (3.44)

Energy conservation relates the two unknown functions
of time C (t) and 
(t). The integral of the temperature field
in the whole z semi-axis times the density times the specific
heat should equal the amount of energy left into the work-
piece after the removal of the evaporated material and the
end of the evaporation phase. The latter equals

Ecool = Lf ρ (Zm − Zv)+ cρ

2
Zv (Tv − 3Tm + 2T0)

+cρ

2
Zm (Tv − T0)+ cρ

2
Zmax (Tm − T0) , (3.45)

where Zv, Zm and Zmax are calculated at the time instance
the pulse ends. So, conservation of energy results in the
following relation between C (t) and 
(t)

cρ

2
C (t)

√
π


 (t)
= Ecool. (3.46)

Substituting the temperature profile in the heat equation and
using Eq. (3.46) to eliminate C (t) results in the following
equation

−4
(t)2 + 8
(t)3z2 = 1

a

(

′ (t)− 2
(t)
′ (t) z2

)
,

(3.47)
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which stands if


′ (t) = −4a
(t)2. (3.48)

The solution to the latter is simply


(t) = 1

4a (t − t0)
, (3.49)

where t0 is the integral constant to be specified by condition
(3.46) and the demand that C (0) = Tv − T0.

3.4 The first pulse solution

The first step towards the solution of the model developed
is the acquisition of the solution for the first pulsing period.
In this case, the initial condition is the temperature field
being equal to the environment temperature. The results for
the first pulse will be the basis for the description of the
advancement of drilling during many pulses in Section 3.5.

In the following graphs, the solutions of the analytical
and numerical models are presented and a comparison is
made between the two. For these graphs, the material of the
workpiece is assumed to be described by the thermal prop-
erties given in Table 1. These numbers correspond to the
properties of mild steels [38]. For the laser source, the vari-
ables given in Table 2 are used. These correspond to values
characterizing CO2 laser sources.

3.4.1 Heating phase

The solution of the analytical model for the heating phase is
obtained by solving Eqs. (3.22), (3.23) and (3.24) to find

Bs(t) = T0 + Ia

√
2t

kcρ
, (3.50)

Zmax(t) =
√

2kt

cρ
. (3.51)

Table 1 The material thermal properties used for the graphs exposing
the outcome of the model

T0 300 K

Tm 1,808 K

Tv 2,860 K

k 35 W/mK

a 8 × 10−6m2/s

R 0.93

ρ 7,775 kg/m3

Lf 275 kJ/kg

Lv 6,090 kJ/kg

Table 2 The laser variables used for the graphs exposing the outcome
of the model

r0 0.16 mm

δf 0

M 1.66

λ 10.6 μm

P 600 W

tp 10 μs

τ 2 ms

Thus, using the fact that diffusivity, conductivity, specific
heat and density are connected as a = k/cρ, the solution for
the heating phase (3.21) can be written as

T (z, t) =
{
T0 + Ia

1
k

(√
2at − z

)
, z <

√
2at,

T0, z >
√

2at.
(3.52)

A correct prediction of the approximation used is the fact
that surface temperature increases with time like

√
t [39].

The time that the surface temperature reaches the melting
point equals

tm = 1

2a

[
k (Tm − T0)

Ia

]2

. (3.53)

In Fig. 4, the temperature field during the heating phase
of the first pulse is shown. In the displayed diagram, time
stops when the melting point is reached. For Fig. 4, the
material variables and the laser variables given in Tables 1
and 2 were used. It is noticeable that the time necessary
to reach the melting point is very short, for the parameters
used; it equals tm = 0.016 μs.

3.4.2 Melting Phase

In order to acquire the analytical model solution for the
melting phase, Eq. (3.32) has to be integrated, so that the
depth of the phase-separating surface as a function of time
is specified. Once this is done, the full temperature field
solution can be found using Eqs. (3.29) and (3.31). With the
variables of Tables 1 and 2, the solution for the tempera-
ture field has been calculated and is shown in Fig. 5. It can

Fig. 4 The temperature field solution for the heating phase
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Fig. 5 The temperature field during the heating and melting phases

be observed that the analytical model is in good agreement
with the numerical model.

The temperature gradient in the liquid phase remains
constant because of the boundary condition. For the same
reason, the temperature gradient in the solid phase also
remains constant before the melting starts. However, as the
melting starts, a maximum deviation of the latter from the
value given by the boundary conditions is acquired very
fast, and then it slowly converges towards this value. This
effect is also visible in Fig. 6, which shows the depth of
the phase-separating surface and the depth of the heated
zone as functions of time. As Eq. (3.7) describes, the differ-
ence between the two inclinations is proportional to the rate
that the boundary between the liquid and the solid regions
moves. In conclusion, this velocity acquires a maximum
value very fast once the melting starts and then it slows down.

When melting starts, there appears an extra obstacle in
the heat conduction, the latent heat of fusion, resulting in
an initially vanishing velocity of the phase-separating sur-
face. Once the obstacle is surpassed, and there is a pool of
liquid material on top of the solid phase, the advancement
of the front of the phase transition increases, acquiring a
maximum rate and then it slows down as it moves away
from the heat source. This slowing down occurs because the
phase-separating surface is getting further away from the
workpiece surface, thus making heat transfer more and more
difficult, as more time is required for the heat to travel this
distance and additionally, because there is more material

0.01 0.02 0.03 0.04 0.05
t sec

0.2

0.4

0.6

0.8

z m

Analytical
Numerical
Zmax

Zm

Fig. 6 The depth of the phase-separating surface and the heated zone
as a function of time

that absorbs some amount of this heat in the intermediate
region.

3.4.3 Vaporization phase

In order for the solution of the temperature field, during
the vaporization phase to be acquired, the differential sys-
tem, Eqs. (3.41) and (3.42) has to be solved. In Figs. 7, 8, 9
and 10, the solution of these equations is presented, for the
parameters given in Tables 1 and 2. The analytical model is
in good agreement with the numerical model.

Fig. 7 The temperature field during the beginning of the vaporization
phase

0 5 10 15 20 25

T0

Tm

Tv

T K

Fig. 8 The temperature field for the whole pulse duration

Fig. 9 The temperature field during heating, melting and the begin-
ning of vaporization phases; the solid lines correspond to the two
phase-separating surfaces and the boundary of the heated zone; the
dashed lines separate the heating, melting and evaporation phases
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Fig. 10 The temperature field for the whole pulse duration; the solid
lines correspond to the two phase-separating surfaces and the boundary
of the heated zone
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Fig. 11 The depth of the phase-separating surfaces and the heated
zone as a function of time for heating, melting and the beginning of
the vaporization phase
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Fig. 12 The depth of the phase-separating surfaces and the heated
zone as a function of time for the whole pulse duration

Unlike the melting phase, the temperature gradient in
the liquid phase does not remain constant. This is clearly
visible in Fig. 7. This is happening due to the latent heat
of evaporation. Alike the melting phase, in the beginning
of the vaporization phase, the velocity of the gas-liquid
phase-separating surface is low; since at the time evapora-
tion starts, an extra obstacle in heat conduction that of the
latent heat of evaporation appears. This is clearly visible in
Figs. 11 and 12, where the depth of the phase-separating
surfaces and the heated zone as function of time are plotted.

Most importantly, after some time, the phase-separating
surfaces acquire a constant velocity, the same for all of them

20 25 30 35 40 45 50

T0

Tm

Tv

T K

z m

Analytical
Numerical
t 1.0msec
t 0.2msec
t 40 sec
t 20 sec
t 12 sec
t 10 sec

Fig. 13 The temperature field during the cooling phase

as seen in Figs. 8, 10 and 12. This stands for the majority of
the pulse duration.

3.4.4 Cooling phase

The analytical solution for the cooling phase has already
been provided in Section 3.3.4. The results of the analytical
and numerical models for the parameters given in Tables 1
and 2 are shown in Fig. 13. The surface temperature is
shown in Fig. 14. The numerical and analytical models are
in good agreement, especially for time scales larger than
that of the pulse duration. Since the typical process vari-
ables used in laser drilling allow for a cooling period much
larger than the pulse duration, the analytical model pre-
sented here is a good approximation for the time evolution
of the temperature field during the cooling period.

As it can be seen in Fig. 14, the temperature reaches that
of the environment very fast. This, combined with the fact
that the heating phase does not actually last long, as shown
in Section 3.4.1, results in the remaining heat from one pulse
being insignificant for the next one. Thus, it is a reasonable
approximation to consider that the initial condition for any
pulse is the temperature field being equal to the environment
temperature.

3.5 Time evolution of drilling

In previous sections, the time evolution of the erosion front
as a function of time has been modelled. An approxima-
tion of the differential equation solutions is going to be

0 200 400 600 800 1000
t sec0

500

1000

1500

2000

2500

T K

Analytical

Numerical

Fig. 14 The surface temperature during the cooling phase



Int J Adv Manuf Technol (2014) 72:1227–1241 1237

investigated into the following sections. Figure 12 suggests
that both phase-separating surfaces and the depth of the
heated zone can be very well approximated by three parallel
straight lines,

Zv (t) = vt − zv, (3.54)

Zm (t) = vt + zm, (3.55)

Zmax (t) = vt + zmax. (3.56)

Substituting the three expressions above into Eqs. (3.40),
(3.41) and (3.42), the following result for the velocity of the
erosion front is yielded

v = Ia

ρ
(
Lv + Lf + c (Tv − T0)

) = Ia

Uv − U0
, (3.57)

which is expected from energy conservation arguments, and
also

zv = k

2Ia

[
(Tv − Tm)

2

Tv − T0

ρLf

Uv − U0 − ρLv

+ Tv − T0

]
,

(3.58)

zm = k

2Ia

[
(Tv − Tm)

Uv − Um + ρLv

Uv − U0 − ρLv

− (Tm − T0)
2

Tv − T0

]
,

(3.59)

zmax = k

Ia

Tm − T0

Tv − T0

(Uv − U0)

c
+ zm. (3.60)

Figure 15 depicts a comparison of the full solutions of
the differential system, Eqs. (3.40), (3.41) and (3.42) with
the approximations Eqs. (3.54), (3.55) and (3.56). It is visi-
ble that since evaporation starts at a very early stage of the
pulse, the approximations are adequately accurate.

The linear approximation for the advancement of the
erosion front during one pulse is a good approximation
when the pulse duration is sufficient. However, as drilling
advances, the laser defocusing will reduce the incident
power density, resulting in lower drilling speed, meaning
that evaporation does not really start early and the linear

2 4 6 8 10
t sec
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20

z m

vt zmax

vt zm
vt zv
Zmax

Zm

Zv

Fig. 15 The depth of the phase-separating surface and the heated zone
as function of time and the approximations

approximation may not be sufficient. Thus, the linear
approximation requires to be improved as it concerns the
temporally advanced stages of laser drilling. The aforemen-
tioned will be analytically developed so as for the used
function to reach the asymptotic linear form, for times larger
than, zv/v for the evaporation front and be simultaneously
enforced to vanish at the time that evaporation starts. Such
an appropriate form is

Zv (t) = v (t − tv)

1 + zv−vtv
v(t−tv)

, (3.61)

where tv and the time instant evaporation starts and v and zv
are given by Eqs. (3.57) and (3.58). The evaporation starting
time tv can be approximated, assuming that the inclination
in both solid and liquid regions is specified by the boundary
conditions during the melting phase. In this case, it is given
by

tv = 1

2a

[
k (Tv − T0)

Ia

]2

+ ρLf k (Tv − Tm)

Ia
2

. (3.62)

In Fig. 16, it can be seen that the approximation (3.61)
is much better than the linear one described by Eq. (3.54),
especially for short times.

Since the evaporated depth is well approximated by
Eq. (3.61), the advancement of drilling with time can be
studied with the help of this equation. A key point of the pro-
cess is the fact that the absorbed laser intensity is decreasing
as drilling advances due to laser defocusing as described by
Eq. (2.5). The constants v and zv depend on the absorbed
intensity, as indicated in Eqs. (3.57) and (3.58). Thus, the
drilling rate will decrease to reach asymptotically zero at a
finite depth.

In the following approximation, the depth that is drilled
in one pulse equals to:

	z1−pulse = Zv

(
tp

) = v (t − tv)

1 + zv−vtv
v(t−tv)

, (3.63)

where v and zv are considered to depend on the drilled depth
as explained above and Zv (t) is given by Eq. (3.61). Since
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v t tv
1 zz vtv
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Fig. 16 The approximation for the drilling front
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there is no more drilling during the cooling phase, this is
the advancement of drilling occurring in the entire pulsing
period τ . Thus, the drilling process can be described by the
differential equation

dz

dt
= Zv

(
tp

)

τ
. (3.64)

The solution of the differential equation above, for the
parameters given in Tables 1 and 2, is presented in Fig. 17.

The drilling rate decreases as drilling advances, going
asymptotically to zero at a finite depth. As long as drilling
has not advanced too much, so that the linear approxima-
tion of Fig. 15 is accurate, it can be said that the drilling rate
is proportional to the absorbed intensity, thus formula (2.5)
also describes the decrease of the drilling rate with depth.

3.5.1 Maximum drill depth

As indicated in Fig. 17, the drilling depth reaches an asymp-
totic value. This value could be calculated with Eq. (3.62) as
being the depth for which the time for the starting of evap-
oration equals the pulse duration. The minimum absorbed
energy density resulting in evaporation is

Ia,min =
√

1

tp

{
1

2a
[k (Tv − T0)]2 + ρLf k (Tv − Tm)

}
.

(3.65)

Then the maximum drill depth is reached when the absorbed
laser power density has reached the critical value due to
beam defocusing, given by Eq. (3.65)

dmax = δf + πr0
2

M2λ

√
Ia (0)

Ia,min
− 1. (3.66)

Equation (3.66) implies that higher laser power corre-
sponds to larger maximum depth. Moreover, the maximum
drill depth increases as the ratio of the pulse duration to the
pulsing frequency decreases.
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Fig. 17 The advancement of drilling with time

4 Discussion on energy efficiency

An appropriate definition for the energy efficiency of a pro-
cess is the ratio of an appropriate “result” and the energy
required in order for this result to be attained [5]. The
“result” can be selected as a quantity with energy units,
typically the theoretical minimum energy required for the
same “result” [40–43], and then, the energy efficiency is
defined as being dimensionless. This kind of definition,
although it can be implemented for a specific single pro-
cess, it is difficult to be generalized for the entire class of
processes that can provide the same “result”, given that the
theoretical minimum energy for the required “result” may
be different for each kind of process. Thus, such a defini-
tion may not be appropriate for an energy efficiency that has
to be used as a comparative measure among different pro-
cesses. On the contrary, if the “result” is quantified by some
geometric characteristic, these disadvantages do not appear,
and additionally, an easy connection between the geome-
try described in a CAD file and the prediction of energy
consumption can be provided by an IT system. For these
reasons, the energy efficiency definition used in this study
is given by the following relation [5]:

Eef = Vremoved

E
, (4.1)

where Vremoved is the removed volume and E is the energy
required to remove this volume. In the following approach,
the removed volume can be predicted as a function of the
processing time, using the results of Section 3. The required
energy can be simply calculated as

E = P t, (4.2)

where P is the laser beam power and t is the processing
time.

4.1 Dependence of energy efficiency on process parameters

Since the speed of the erosion front is decelerating as shown
in Fig. 17, the material removal rate also decreases. On
the other hand, the energy consumption rate is constant;
thus, the energy efficiency decreases as the process time
increases. However, the most energy efficient selection of
parameters for the opening of a hole with a specific depth
has still to be determined. The previous argument suggests
that the most energy efficient selection of parameters is the
one that minimizes the process time too. In the following,
three parameters will be considered, namely laser power,
pulsing frequency and duty percentage; the latter being the
ratio between the pulse duration and the pulsing period.

The dependence of energy efficiency on the aforemen-
tioned process parameters is shown in Figs. 18, 19 and 20
for desired hole depth equal to 1, 2 and 4 mm.
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Fig. 18 The dependence of energy efficiency on laser power

The parameters used for these graphs are given in
Table 3, with the exception of the corresponding horizontal
axis variable for each graph.

The trend of the plotted curves can be explained as fol-
lows: the increase in laser power as well as the decrease
in duty results in higher laser beam intensity, thus in faster
drilling and less time for heat lost due to conduction. The
laser beam intensity does not depend on the pulsing fre-
quency; however, reduction in the pulsing frequency simply
results in less pulses being required for the process. In
Section 3, it was shown that a specific part of each pulse,
that depended on the laser beam intensity was lost due to
conduction as described by Eq. (3.45). Consequently, lower
pulsing frequency results in fewer losses and higher energy
efficiency.

The selection of the process variables leading to higher
energy efficiency is made clear in Figs. 18, 19 and 20. The
most efficient laser power and duty selection correspond to
higher laser intensities. It is well known [44, 45] that inten-
sities higher than 108 W/cm2 result in multiphotonic and
thermionic emission processes, both responsible for the pri-
mary electron generation from the irradiated metal target
(plasma formation). When plasma is generated, the energy
provided by the source is not consumed for processing pur-
poses, but for plasma conservation. As a result, the energy
efficiency of the process will decrease. Consequently, it is
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Fig. 19 The dependence of energy efficiency on pulsing frequency
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Fig. 20 The dependence of energy efficiency on duty

expected that the energy efficiency will reach a maximum
value, as the laser intensity increases up to the point of
decrease. The use of lower pulsing frequencies can prevent
the generation of plasma [46].

Since lower pulsing frequencies prevent plasma forma-
tion and correspond to higher energy efficiencies, aiming at
the increase of the latter, regarding the pulsed laser drilling
process, it is the lowest available pulsing frequency of a
machine that has to be applied. Then, the highest possible
power and lowest possible duty that do not lead to plasma
formation should be used. Plasma generation has not been
considered in the current modelling approach; however, the
process variables used for Figs. 18, 19 and 20 correspond
to laser beam intensities smaller or marginally equal to the
limit of 108 W/cm2, implying that there is negligible plasma
formation.

As indicated in Figs. 18, 19 and 20, the energy efficiency
takes a wide range of values, depending on the selection
of process variables. Thus, proper adjustment of the latter
can provide a significant improvement on energy efficiency,
resulting in the corresponding gains in energy cost. As
shown in Fig. 18, the energy efficiency for the drilling of
a 4mm hole is doubled, when the laser power is being
increased from 1.5 to 4 kW.

4.2 Physical analysis of energy efficiency

If an imaginary perfect machine is considered, driving all
its energy flow towards heating only the material to be
removed, from room temperature to evaporation tempera-
ture and then providing the latent heat in order for this

Table 3 The laser variables used for the energy efficiency graphs

P 2 kW

f 1 kHz

d 10 %
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material to be evaporated and disposed, its energy efficiency
would be

Eefideal = 1

ρ
[
c (Tv − T0)+

(
Lf + Lv

)] = 1

Uv − U0
.

(4.3)

For the parameters used in this study, this corresponds
to ideal energy efficiency about equal to Eefideal =
16 mm3/kJ. In Figs. 18, 19 and 20, it is shown that the best
selection of process variables corresponds to energy effi-
ciency equal to about Eefbest = 1.1 mm3/kJ. Thus, the best
achieved energy efficiency is about 6.5 % of the theoretical
ideal.

Reflectivity is responsible for the loss of a percentage of
the in-falling energy equal to

Qr = R. (4.4)

The rest of the losses are due to heat being diffused into
the material and to the laser defocusing. Other factors may
certainly intervene. However, these are the most important
ones and those considered in the present study. The percent-
age of losses because of laser defocusing can be estimated
as the complementary of the ratio of the volume of the cylin-
der with radius equal to the minimum beam radius, over the
volume of the hourglass-shaped solid that is described by
Eq. (2.4). This factor equals

Qdf = M4λ2z2

3
(
πr0

2
)2 +M4λ2z2

. (4.5)

The percentage of losses due to conduction is indi-
rectly calculated in Section 3 since the energy efficiency
calculated based of the results of this section is equal to

Eef = (1 −Qr) (1 −Qdf) (1 −Qc) Eefideal. (4.6)

In Fig. 21, it is shown how energy efficiency is deter-
mined by these factors, as drilling advances. The parameters
for this graph are the ones given in Table 3. It is evi-
dent that the most important factor determining the laser
drilling energy efficiency, at process level, is the materials
reflectivity.
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Fig. 21 A physical analysis of the energy efficiency

5 Conclusions

In the current study, an analytical and numerical approach
of evaporation laser drilling, towards the theoretical specifi-
cation of the process parameters that maximize energy effi-
ciency, has been developed. The process has been described
as a function of the processing time, a critical factor, for the
retrieval of a prediction of energy consumption. Based on
these models, the energy efficiency and its dependence on
the process parameters have been investigated. The investi-
gation has revealed that the material removal rate decreased
as the drilling/processing time increased, reaching a zero
value at a given depth. The maximum drill depth was laser
parameter dependent, increasing with the increase in laser
power and/or duty. Furthermore, the energy efficiency of
the pulsed laser drilling process was also found dependent
on the laser source parameters, indicating an increase with
the increase of the laser power and maintaining this trend
with the decrease of the pulsing frequency and duty. It can
be stated that there is enough evidence to prove that the
energy losses during the laser drilling process, determining
the energy efficiency, are occurring mainly due the mate-
rial reflectivity, laser beam defocusing and heat conduction,
with the most detrimental being reflectivity.

A future study will focus on the adaptation of the analyti-
cal model developed with experimental data. Improvements
on the model are possibly necessary in order to include other
factors, such as plasma formation, variations of reflectivity
due to the formed geometry or heat losses due to convection.
Another improvement of the analytical model that can be
developed is the substitution of the last linear sector of the
solution “ansatz” with an exponential one as it is suggested
by the results of the numerical model. The introduced model
can also be used for the study of the drilled hole’s shape and
for providing guidelines as to the way that effects such as
barreling can be prevented.
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