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Abstract The joint interface plays a significant role in
machine tools and other machineries. A novel type of joint
which consists of oily porous material was proposed. The
equivalent stiffness and damping of oily porous joint could
be divided into solid and liquid parts, and the two parts are
shunt connection. Theoretically, the stiffness and damping
of solid part were established using Hertz contact and fractal
theory, and the liquid counterpart was also deduced from the
average flow of generalized Reynolds equation through a
correlation parameter Ar. It was concluded from simulation
and calculation that the total equivalent stiffness of oily joint
is increased with D and decreased with increased G. The
experiment was carried out to compare the normal character-
istics of porous material–steel oily joint with non-media
steel–steel joint, and the result was that the joint which
contains an oil film interlayer formed by porous and steel
is superior to the joint with non-media formed by steel in
stiffness and damping characteristics. In the case of the same
preload, the former’s stiffness is increased by about 30 %,
and the damping is increased about five to six times
meanwhile.

Keywords Fractal theory . Stiffness . Damping . Joint
interface . Machine tools

1 Introduction

Awhole machine tool structure, unlike a single structure or a
component, is composed of many components connected with
many joint interfaces. The various types of joint interfaces

play very significant roles in an integrated machine tool struc-
ture. Obviously, the transmission of force and precision be-
tween machine tool structures are related to the status and
performance of joint interfaces. Therefore, the research of the
joint interface is the foundation study of the mechanical prop-
erties in machine tool [1–3]. In reference [4], Bartosz Powałka
and Tomasz Okulik presented a new technology for the as-
sembly of ball guideway systems which involve the use of a
thin layer of a casting compound to suppress vibration and
chatter in machine tools. Since 40–60 % of the total dynamic
stiffness and about 90 % of the total damping in a whole
machine tool structure originate in joint interfaces [5–8], it is
beneficial to design and build high stiffness and damping joint
interface for the mechanical properties of an integrated ma-
chine tool to improve the cutting machining accuracy.

As well known, the contact state of the joint can be well
improved by taking lubricating oil or grease as addition in
the joint interface, and the stiffness and damping are in-
creased meanwhile [9–11]. Oil-soaked porous material can
be used as one or both parts of the joint interface and even as
the middle of the sandwich structure (as shown in Fig. 1).

In a working condition, the lubricating oil in the porous
material exudes and fills in the joint interface due to external
excitation and elevated temperature. While stopping, a part
of the oil in the joint interfaces may seep back into the
porous material when the loads disappear.

However, the dynamic characteristic of the oily joint
interface mentioned above is complex due to hybrid contact
of liquid and solid; it is difficult to quantitatively demon-
strate the dynamic parameters of the joint interface. The
development of fractal theory makes it feasible to explain
the mechanism of this kind of joint interface consisting of
porous material [12, 13].

In this paper, a novel type of joint which consisted of oily
porous material was proposed. The normal modal based on
fractal contact theory was established, which divided the
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stiffness of oily fixed joint interface into the solid contact
stiffness and the liquid film dynamic stiffness, and the two
parts were shunt connection. Thereby the comprehensive
stiffness modal for the joint interface which consisted of
porous material was derived. The damping coefficient mod-
al of the joint interface was developed in accordance with
the same method. The advantage of this kind of joint is not
only increasing the stiffness and damping, but also filling oil
for a considerable long period is not needed. High stiffness
and damping are essential for machine tools because the
higher stiffness may directly increase the first-order
natural frequency, which may improve the precision of
the machined surface. Furthermore, the higher stiffness
and damping may play an important role for reducing
the receptance between the tool tip and the workpiece to
minimize vibration and chatter.

2 Shunt contact modal

At the micro level, the joint interface could be considered as
a mixture which contains some convex peaks and concave
valleys whose size is randomly distributed due to the ma-
chining method restrictions (as shown in Fig. 2).

When contact happens, it must be that the higher
convex peaks meet each other at first between two

surfaces. The protruding peaks become flexibility (even
plastic) deformation under the loadings. Meanwhile, oil
soaked in the porous material exudes partly due to the
changes of the pores volume and fills in the concave
valley at the two contact surfaces, and the oil leaks out
at the contact boundary, as shown in Fig. 1b, c. The
normal load is supported by both solid and liquid con-
tact areas. Then, the characteristics of stiffness and
damping of the joint interface depend on the counterpart
of the asperity and the micro-pressure oil film in the
constrained space.

In most cases, the contact of the joint interface contains
two parts: solid one and liquid one. Normal load is sup-
ported by both of them. Usually, joint interface can be
equivalent to a stand-alone dynamic unit, which contains
the mass, the stiffness, the damping coefficient, and the
distribution rule of these parameters. Because the convex
peak of the surface is tiny, the mass of the joint interface unit
can be neglected, and then the dynamic parameters of the
joint unit can be considered to contain only the stiffness and
the damping. Thus, the stiffness of the joint can be divided
into the solid stiffness and the liquid dynamic stiffness, and
the two parts are shunt connection [14], and so does the
damping coefficient. It is assumed that the oil in the porous
material was seeped and filled in the concave valleys of the
surface meanwhile. The hypothesis is consistent with the
reality mostly [15, 16].

Generally, finite element was used to calculate the me-
chanical properties of the joint interface, where the general
simplified method is to simplify as one or several integrated
points, not to consider the mutual influence of the joint and
its base. This simplifying method can be used only in the
situation if the stiffness of a joint base is greatly bigger than
the stiffness of the joint interface; in other words, in the
situation when the vibrating mass is horizontally movable.
Thus, we could select an appropriate contact area to consid-
er that the vibrating mass is horizontally movable for theo-
retical analysis, which would also make it easy to carry out
the experiment, and then the joint interface could be
described as Fig. 3.

In Fig. 3, Ks is the total stiffness of solid part, KL is the
total stiffness of liquid part, Cs is the total damping coeffi-
cient of solid part, and CL is the total damping coefficient of
liquid part. Considering shunt connection, the comprehen-
sive equivalent stiffness and damping of the joint interface
can be described as Eq. (1).

K ¼ KS þ KL

C ¼ CS þ CL

�
ð1Þ

In Eq. (1), K and C are the comprehensive equivalent
stiffness and damping of the joint interface consists of
porous material.

oil-soaked porous Joint surface oil-soaked porous Joint surface

(a) (b)

oil-soaked porousJoint surface

(c)

Fig. 1 Joint interfaces consist of oil-soaked porous material: a porous
as one part; b porous as both parts; c porous as middle in sandwich
structure
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3 Fractal modal of stiffness

3.1 Normal stiffness of solid

According to Hertz theory and Majumdar–Bhushan (M-B)
fractal contact modal [17, 18], the critical area of a single
convex peak while it yields elastic–plastic deformation com-
plies with Eq. (2):

ac ¼ G2 2E H=ð Þ2 D�1ð Þ= ð2Þ
where D(1<D<2) is the fractal dimension of the surface
contour, G is the fractal roughness coefficient, E is the
comprehensive elastic modulus of the joint interface, and
H is the hardness of the softer material. Wherein, E can be
defined by the formula

E�1 ¼ 1� v1
2

� �
E1

2 þ 1� v2
2

� �
E2

2;E1; E2; v1; v2

which is the elastic modulus and Poisson’s ratio of two parts
which consist the joint interface, respectively.

According to the Hertz theory, when the contact area of a
single point is greater than the critical area ac, the contact
point is elastically deformed and shows stiffness character-
istics, while the contact area of a single point is smaller than
the critical area ac, the plastic deformation occurs, and the
contact point shows damping characteristics. For a point of
contact area a, as shown in Fig. 4, the radius of the tiny
convex peak is R, and the radius of the contact area is r.
Under the normal load P(a), the normal contact deformation
is δ. Based on Hertz theory and fractal contact theory, all the
parameters satisfy the following formulas [19].

PðaÞ ¼ 4

3
ER

1
2d

3
2 ð3Þ

R ¼ aD 2=

p2G D�1
ð4Þ

r ¼ 3PðaÞR
4E

� �1
3

ð5Þ

a ¼ pr2 ¼ pRd ð6Þ

Force Porous material

Non-porous
material

Force Porous material

Non-porous
material

Oil film

(a) (b)

Solid contact area

Liquid contact area

(c)

Oil film

Fig. 2 Schematic diagram of
contact with oily porous
surface: a before contact;
b after contact; c contact
partially enlarged

Vibrating
mass

Ks KL CLCs

X

Fig. 3 Shunt modal of joint interface
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When a is greater than ac, elastic deformation occurs, and
then, the normal contact load of one convex peak is

PeðaÞ ¼ 4
ffiffiffi
p

p
3

EG D�1a 3�D 2= ð7Þ

When a is smaller than ac, plastic deformation occurs, and
then the normal contact load of one convex peak is

PpðaÞ ¼ Ha ð8Þ

From the Eqs. (3)–(6), the normal stiffness of one convex
peak can be derived, which is,

kn ¼ dPa

dd
¼ 2ER

1
2d

1
2 ¼ 2E

ffiffiffiffi
a

p

r
ð9Þ

And then the comprehensive stiffness of the solid contact,
that is, the stiffness from all the convex peaks is,

Ks ¼
Z aL

ac

knnðaÞda ð10Þ

Meanwhile the normal load, which is contains elastic and
plastic load is,

P ¼
Z aL

ac

nðaÞPeðaÞdaþ
Z ac

0
nðaÞPpðaÞda ð11Þ

wherein, aL is the biggest convex peak on the contact
surface, and n(a) is the distribution function of all the peaks
on the contact surface. In reference [13], n(a) is a power-law
function, and it can be quoted from the M-B modal, as
shown in Eq. (12)

nðaÞ ¼ D

2

aD 2=
L

aD 2þ1=
ð12Þ

Substitute Eqs. (9) and (12) into Eq. (10), the compre-
hensive stiffness of solid contact is derived, which is

Ks ¼ 2DEffiffiffi
p

p
1� Dð Þ a1 2=

L � aD 2=
L a 1�Dð Þ 2=

c

� 	
ð13Þ

From Eq. (12), we can get the real contact area Ar,

Ar ¼
Z aL

0
nðaÞda ¼ D

2� D
aL ð14Þ

That is, aL=(2−D) Ar/D
Substitute ac, aL (Eqs. 2 and 14) into the Eq. (13), the

modal of comprehensive stiffness of solid contact of the
porous joint interface can be obtained as,

Ks ¼ f1ðDÞA
1
2
r 1� f2ðDÞA

D�1
2

r

� 	
ð15Þ

Wherein,

f1ðDÞ ¼ 2ED

1� Dð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2� D

pD

r
; f2ðDÞ ¼ 2EGD�1

H

2� D

D

� �D�1
2

Through Eqs. (11) and (12), the total elastic–plastic load
can be evaluated as

P ¼ 4
ffiffi
p

p
3 EGD�1g1ðDÞA

D
2
r

2�D
D

� �3�2D
2 � a

3�2D
2

c

h i
þ Hg2ðDÞA

D
2
r a

2�D
2

c D 6¼ 1:5ð Þ

P ¼ EG
1
2A

3
4
r ln Ar

ac

� 	
þ HA

3
4
r a

1
4
c ðD ¼ 1:5Þ

8>><
>>:

ð16Þ
where,

g1ðDÞ ¼ D
3�2D

2�D
D

� �D
2 ;g2ðDÞ ¼ D

2�D

� �2�D
2 :

Equation (15) shows the nonlinear relationship be-
tween the normal stiffness of solid and the real solid
contact area. Since the real solid contact area is associ-
ated to the normal load (see Eq. 16), the Eqs. (15) and
(16) demonstrate the implied relationship between the
normal stiffness and load.

3.2 Normal damping of solid

As mentioned above, while the contact area of a single
point is smaller than the critical area ac, the plastic
deformation occurs, and the contact point shows damp-
ing characteristics. And then the plastic strain energy can
be evaluated as,

wp ¼ HDGD�1

4 2� Dð Þ a
D=2
L a2�D

c ð17Þ

Similarly, the elastic strain energy generated in the elastic
contact area can be evaluated as

we ¼ 8EDG2 D�1ð Þ

15
ffiffiffi
p

p
5� 3Dð Þ a 5�2Dð Þ 2=

L � aD 2=
L a 5�3Dð Þ 2=

c

� 	
ð18Þ

2r

a

¦Ä

convex peak

normal load P(a)

R
ideal rigid plane

Fig. 4 Simplified schematic of convex peak contact
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Therefore, the damping loss factor can be deduced
through Eqs. (17) and (18), which is,

x ¼ wp we= ð19Þ
Assuming that the mass of the substrate (which

contains the rough surface) is m, then the normal damping
coefficient is,

Cs ¼ x mKnð Þ12 ð20Þ
Equation (20) illustrates that the normal damping coeffi-

cient is determined by normal load, material properties of
the rough surface, and fractal parameters. Equations (17)–(20)
constitute the normal damping fractal modal of the joint
interface.

3.3 Equivalent stiffness of liquid

In the working condition, the oil in the porous material is
exuded because of external excitation and filled in the
concave valleys between the joint interfaces. The contact
area is divided into two solid and liquid parts. Thus, the
liquid contact area is Ao=A−Ar, where, Ao means oil
contact area.

According to the average flow of generalized Reynolds
equation, not considering lateral leakage, the average

Reynolds equation only contains extruded items and is
shown as Eq. (21),

@

@x
8 x

@p

@x

� �
þ @

@y
8 y

@p

@y

� �
¼ �8 c

12η
h3

@h

@t
ð21Þ

In Eq. (21), the parameters 8 x and 8y are pressure flow
factors at directions x and y, respectively, 8c is contact
factor, η is fluid dynamic viscosity, and h is the oil film
thickness; its initial value is assumed as the distance be-
tween the rough midline under a certain normal load, that is,
nominally the thickness of the oil film h0 (shown in Fig. 5).
Assuming the contact surface of the joint interface is isotropic,
then 8x=8y.

The parameter 8 x represents the ratio of the average
lubricating oil flow rate between rough surface and the
corresponding smooth surface. Considering the relationship
between real contact area Ar, the nominal contact area A, and
the lubricating oil flow rate, the parameter 8x is defined as
8x=Ar/A.

The parameter 8c represents the proportion of non-
contact in the rough surface. In oily joint interface, that is,
8c is the proportion of liquid contact throughout the nominal
contact area. It can be defined as 8c=Ao/A=(A−Ar) /A.

The average Reynolds equation only contains x-direction is

d2p

dx2
¼ � A� Ar

Ar

12η
h3

@h

@t
ð22Þ

By solving Eq. (22) and simplifying the liquid contact
area in joint interface as circular contact, the load carrying
capacity of oil film, that is, the anti-squeeze force of oil can
be obtained as

W ¼ � A� Ar

Ar

3pη
2h3

dh

dt

� �
R04 ð23Þ

h0

Y

X

Fig. 5 Oily joint interface

Table 1 Solid and
liquid contact dynamic
parameter modal

Solid stiffness Ks ¼ f1ðDÞA
1
2
r 1� f2ðDÞA

D�1
2

r

� 	

Solid damping Cs ¼ x mKnð Þ12

Liquid stiffness KL ¼ 9
2

A�Arð Þ3b1b2ηv
Arph4

Liquid damping CL ¼ 3
2

A�Arð Þ3
Ar

ηb1b2
ph3

Total stiffness K ¼ Ks þ KL ¼ f1ðDÞA
1
2
r 1� f2ðDÞA

D�1
2

r

� 	
þ 9

2
A�Arð Þ3b1b2ηv

Arph4

Total damping C ¼ Cs þ CL ¼ x mKnð Þ12 þ 3
2

A�Arð Þ3
Ar

ηb1b2
ph3

Total load
P ¼ 4

ffiffi
p

p
3 EGD�1g1ðDÞA

D
2
r

2�D
D

� �3�2D
2 � a

3�2D
2

c

h i
þ Hg2ðDÞA

D
2
r a

2�D
2

c D 6¼ 1:5ð Þ

P ¼ EG
1
2A

3
4
r ln Ar

ac

� 	
þ HA

3
4
r a

1
4
c ðD ¼ 1:5Þ

8>><
>>:

Int J Adv Manuf Technol (2013) 68:2159–2167 2163



where, R0 ¼
ffiffiffiffiffiffiffiffiffi
A�Ar
p

q
, dh

dt is the normal vibrating speed of

the joint interface, that is, v ¼ dh
dt . Then Eq. (23) can be

transformed into Eq. (24).

W ¼ � A� Arð Þ3
Ar

3η
2ph3

v ð24Þ

The derivation of Eq. (24) by the parameter h is,

KL ¼ dW

dh
¼ 9

2

A� Arð Þ3b1b2ηv
Arph4

ð25Þ

Equation (25) shows the normal equivalent stiffness
of oil contact, the parameter β1 is shape factor [20], and
β1=0.421, while circular contact. β2 is the factor intro-
duced to modify the deviation caused by the jointed
surface profile and topography, and it can be fitted from
experiment results. In this paper, β2=0.7. Equation (25)
shows the relationship between the normal liquid dy-
namic stiffness, the vibrating velocity, the real contact
area, the liquid viscosity, and the nominal oil film
thickness. It also describes the relationship between the
liquid dynamic stiffness and the normal load through
the parameter Ar. From Eq. (25), it can be concluded
that the stiffness of liquid contact is dynamic under the
role of normal vibrating velocity v. Meanwhile, the liquid
stiffness is inversely proportional to the fourth power of h;
the smaller film thickness, the greater the film dynamic
stiffness contributes.

3.4 Equivalent damping of liquid

Similarly, the derivation of Eq. (24) by the parameter v is,

CL ¼ dW

dv
¼ 3

2

A� Arð Þ3
Ar

ηb1b2
ph3

ð26Þ

Equation (26) shows the relationship between the equiv-
alent damping of liquid and real contact area, liquid viscos-
ity, and nominal oil film thickness.

3.5 Comprehensive fractal modal of joint interface

From the above analysis and formula (1), the normal dynamic
parameters in oily porous joint interface contain two parts, and
the two parts are shunt connection. The comprehensive
normal parameters can be summarized in Table 1.

4 Experimental setup and discussion

The designed joint interface and experimental setup is
shown in Fig. 6. The porous material is cut to be four little
square shims, whose size is 10×10×mm. They are centro-
symmetric placed around the exciting point between the
base and the vibrating mass.

According to the designed setup, the nominal contact
area is A=4×10−4m2. The values of other parameters are
given as Table 2. Additionally, joint interface is pre-stressed
in normal direction with twoM10 screws, and the initial pre-
tightening torque is 10 Nm.

4.1 Variation of the contact area

While contact occurs, the real contact area is not equal to the
nominal contact area. The main factors affecting the real
contact area are fractal parameters and normal load. The var-
iation of real contact area Ar along with fractal dimensions D
and G is shown in Fig. 7. The real contact area Ar is merely a
small part of the nominal contact area A, and Ar is reduced
while G was increasing, that is, the coarser the surface is, the
smaller the Ar is. Meanwhile, the real contact area Ar is in-
creased along with increased D at first and then decreased.

4.2 Variation of equivalent stiffness

As mentioned above, the equivalent stiffness of oily porous
fixed joint interface consists of solid and liquid part. Variation

Fig. 6 Designed joint interface and experimental setup. (1, 2, 3, 4 are
acceleration sensors, 5 is impedance head, ① is charge amplifier, ② is
data acquisition card, ③ is computer, ④ is power amplifier, A accel-
eration signal, F force signal)

Table 2 Values of some
parameters Parameters H (Pa) E (Pa) G (m) h (m) η (Pa·s) v (m/s) m (kg)

Value 9×109 2×1011 10−11–10−13 1×10−5 0.018 3×10−3 15
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of solid stiffness along with parameters Ar (percentage), G
(constant), and D (variable) is shown in Fig. 8.

From Fig. 8a, the stiffness of solid part was in-
creased with the real contact area Ar and the fractal
dimension D increased while the fractal roughness co-
efficient G is a constant. On the contrary, it was in-
creased when fractal roughness coefficient G decreased
while D is a constant. G decreased implies the surface
roughness decreased. Thus, decreasing the surface rough-
ness is beneficial to improve the stiffness characteristic of
joint interface.

Variation of liquid stiffness along with parameters Ar

(percentage), G (constant), and D (variable) is shown in
Fig. 9. It is concluded from Fig. 9 that stiffness of liquid
part has the same change trend when parameter G is con-
stant and D is variable or under the opposite situation. That
is, the stiffness of liquid part was decreased with the real
contact area Ar increased, and it was also increased while

fractal dimension D increased or fractal roughness coefficient
G decreased.

The variation of total equivalent stiffness of oily porous
fixed joint interface is shown in Fig. 10. It is concluded from
Fig. 10 that equivalent stiffness had a turning point at actual
contact area Ar is about 30 % of nominal contact area A. The

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
0.1

0.15

0.2
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A
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Fig. 7 Relationship of parameters Ar, D, and G
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Fig. 8 Relationship of parameters Ks, Ar, G, and D: a as G (variable)
and D (constant); b as G (constant) and D (variable)
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Fig. 9 Relationship of parameters KL, Ar, G, and D: a as G (variable)
and D (constant); b as G (constant) and D (variable)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
6

8

10

12

14

16

Ar

K
*1

010
/N

/m

G=10-11,D=1.4

G=10-12,D=1.4

G=10-13,D=1.4

(a) 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
8

10

12

14

16

18

20

Ar

K
*1

010
/N

/m

G=10-13,D=1.4

G=10-13,D=1.6

G=10-13,D=1.8

 (b) 

Fig. 10 Total equivalent stiffness along with Ar, G, and D: a as G
(variable) and D (constant); b as G (constant) and D (variable)

Int J Adv Manuf Technol (2013) 68:2159–2167 2165



variation of total equivalent stiffness was also increased
with D increased and then decreased with G increased.

The liquid stiffness plays a major role while real contact
area is below 30 % of nominal contact area, and the total
equivalent stiffness of joint is mainly determined by oil film
pressure. What is more, when real contact area is below
10 % of nominal contact area, the liquid stiffness is equiv-
alent to hydrostatic stiffness approximately. On the contrary,
the solid stiffness plays a major role while real contact area
is above 50 % of nominal contact area, and the joint is
equivalent to pure solid contact. However, the situation is
difficult to achieve due to manufacturing constraints.

From the discussion above, it has more practical engineer-
ing value to research the dynamic characteristics of oily joint
while real contact area is in 30–50 % of nominal contact area.

5 Experiment

Designed experimental setup is shown in Fig. 6. Experimen-
tal subjects were the joints constituted by the mass, the base,
and the shims between them. There are two sets of experi-
mental shims: 45 steel and Fe-based porous material, re-
spectively. Roughness of the surface is 3.2 μm. The
production place of the porous is Quebec, Canada, and its
trademark is 4001.

The density of the porous is 6.5×103kg/m3. The porosity
is 15 %. The hardness is HRB50. The weight of the vibrat-
ing mass is 15 kg. There were two bolts to be used for pre-
tightening in normal direction, and the initial tightening
torque was 10 Nm. The picture of specific experimental
setup is shown in Fig. 11.

Experiment was carried out under different preload using
the two sets of shims respectively. Before the experiment,
the porous shims were soaked in 0.018 Pa·s lubricants for a
week to ensure that the porous material is full of oil. The
experimental result is shown in Table 3.

In Table 3, normal stiffness and damping are described in
per unit area. From the experimental result, some conclu-
sions are obtained as follows.

1. The joint which contains an oil film interlayer formed
by porous material and steel is superior to the joint with
non-media formed by steel–steel in stiffness and damp-
ing characteristics. In the case of the same preload, the
former’s stiffness was increased by about 30 %.

It is mainly because it would form the tiny oil-
resilient support body while oil film as an interlayer
filled in the joint. The stiffness of this oil-resilient sup-
port body and solid asperity parallel superimposed to
form the total equivalent stiffness of joint. Although the
base body of Fe-based porous material has degradation
of stiffness compared with the dense 45 steel, however,
the oily porous joint has a better stiffness performance
compared with non-media 45 steel joint due to the role
of pressurized oil film in the limited slit.

2. In an oil-free joint, the damping coefficient is related to
the number of plastic-deformed asperities. The change
of normal load has a little effect on the number, thus
the damping coefficient changes a little with normal
load. However, the damping coefficient may be in-
creased several times in the oily joint due to some
energy that is dissipated in the tiny oil-resilient support
body. From Table 1, we can see the damping is increased
five to six times.

(a)

Shims

Base

(b)  

Vibrating
mass

Fig. 11 Picture of designed experimental setup. a Before assembly.
b After assembly

Table 3 Normal experimental results of two kinds of gaskets under
different pre-tightening

Material
of joint

Surface
roughness,
μm

Pre-tightening
torque of the
bolts (Nm)

Normal
stiffness

Normal
damping

Kn (×10
12)

N/m3
Cn (×10

7)
Ns/m3

Steel–steel 3.2 15 2.05 0.11

20 2.52 0.09

25 2.70 0.09

Steel–porous
material

3.2 15 3.20 0.54

20 3.63 0.60

25 3.62 0.60
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6 Conclusions

This paper proposes a kind of joint interface which consists
of oily porous material, and the advantages of this kind of
joint are not only increasing the stiffness and damping, but
to fill oil for a very long period is not needed. Theoretically,
it derived the normal shunt modal of fixed oily joint inter-
face using fractal and Hertz contact theory, which divides
the total contact area into solid and liquid part. At first,
stiffness and damping of solid are described by fractal
parameters, and then, the liquid counterpart is deduced from
the average flow of generalized Reynolds equation through
the real contact area. It is concluded from simulation and
calculation that the total equivalent stiffness of oily joint is
increased with D and decreased with an increased G.

An experiment was also carried out to compare the per-
formance of the porous material–steel oily joint with the
non-media steel–steel joint. It is verified that the joint which
contains the oil film interlayer formed by porous and steel is
superior to the joint with non-media formed by steel in
stiffness and damping characteristics. In the case of the same
preload, the former’s stiffness was increased by about 30 %.
Meanwhile, the damping was increased of five to six times.

The mechanism of the oily joint is also discussed. Because
of the role of tiny oil-resilient support body, although the base
body of Fe-based porous has degradation of stiffness com-
pared with dense 45 steel, the oily porous joint has a better
stiffness performance compared with non-media 45 steel joint
due to the role of pressurized oil film in the limited slit.
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