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Abstract Optimization of multi-criteria problems is a great
need of producers to produce precision parts with low costs.
Optimization of multi-performance characteristics is more
complex compared to optimization of single-performance char-
acteristics. The theory of grey system is a new technique for
performing prediction, relational analysis, and decision making
in many areas. In this paper, the use of grey relational analysis
for optimizing the turning process parameters for the workpiece
surface roughness and the chip thickness is introduced. Various
turning parameters, such as cutting speed, feed rate, tool nose
radius, and concentration of solid–liquid lubricants (minimum-
quantity lubricant) were considered. A factorial design with
eight added center points was used for the experimental design.
Optimal machining parameters were determined by the grey
relational grade obtained from the grey relational analysis for
multi-performance characteristics (the surface roughness and
the chip thickness). The results of confirmation experiments
reveal that grey relational analysis coupled with factorial design
can effectively be used to obtain the optimal combination of
turning parameters. Experimental results have shown that the
surface roughness and the chip thickness in the turning process
can be improved effectively through the new approach. The
minimum surface roughness and smallest chip thickness are
9.83 and 0.32 mm, respectively, obtained at optimal conditions
of cutting speed, 1,200 rpm; feed rate, 0.06 mm/rev; nose
radius, 0.8 mm; and concentration of solid–liquid lubricant
(10% boric acid + SAE-40 base oil).
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1 Introduction

Machining by turning involves the use of a lathe and is used
primarily to produce cylindrical or conical parts. With com-
mon attachments, flat faces curved surfaces grinding, and
boring can be done on a lathe. Therefore, it is valuable to
increase tool life, to improve surface accuracy, to reduce
cutting force and chip thickness in turning operations through
an optimization study. Among these four characteristics,
surface roughness and chip thickness play the most important
roles in the performance of a turned part. Cutting speed, feed
rate, depth of cut, tool-workpiece material, tool geometry, and
coolant conditions are the turning parameters which highly
affect the performance measures. In order to improve
machining efficiency, reduce the machining cost, and improve
the quality of machined parts, it is necessary to select the most
appropriate machining conditions. The setting of turning
parameters relies strongly on the experience of operators. It
is difficult to achieve the highest performance of a machine
because there are too many adjustable machining parameters.
In order to minimize these machining problems, there is a
need to develop scientific methods to select cutting conditions
and tool geometry for free machining of metals. In this article,
the use of factorial design with eight added center points and
grey relational analysis to optimize the turning parameters
with multiple performance characteristics, including surface
roughness and chip thickness, is reported. Turning process
parameters such as cutting tool geometry and materials, depth
of cut, cutting speed feed rates, as well as the use of
cutting fluids, will impact the material removal rates and the
machining quality such as surface roughness and chip thickness
[1, 2]. Proper selection of the cutting parameters can produce
higher tool life, better surface roughness, and minimum chip
thickness. Yang et al. [3] used the Taguchi method to
investigate the cutting characteristics of S45C steel bars using
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tungsten carbide cutting tools. The optimal cutting parameters,
namely, cutting speed, feed rate, and depth of cut for turning
operations, with regard to performance indexes such as tool
life and surface roughness were considered. In their study,
cutting speed, feed rate, and depth of cut were the primary
factors investigated. One of the most important parameters in
tool geometry is the tool nose radius. It strengthens the tool
point. It also produced better surface finish, because tool
marks are not deep as formed by sharp tools. In this study,
tool nose radius has been taken into account along with cutting
speed, feed rate, and depth of cut. Kopac et al. [4] investigated
the optimal machining parameters for achieving good surface
roughness in fine turning of cold pre-formed steel C15E4
(ISO). Taylor [5] introduced the concept of optimum speed
for metal-cutting operations. Since then, many approaches
have been proposed for optimizing machining parameters
for better economic performance. Trang et al. [6] utilized
a fuzzy logic Taguchi method to optimize the process
parameters of the submerged arc welding in hard facing.
Bhattacharyaa [7] used the Lagrangian function method
in searching for optimum cutting parameters. Modeling
and optimization are necessary for the control of the steel
turning process, to achieve improved product quality,
high productivity, and low cost. Suresh et al. [8] developed a
surface roughness prediction model for turning mild steel
using response surface methodology. Surface roughness
prediction model has also been optimized by using
genetic algorithms [8]. Abhang et al. [9] developed a
surface roughness prediction model for dry turning of
EN-31 steel alloy using a response surface methodology.
Surface roughness prediction model has also been optimized
by using lingo-solver approach. Nihat Tosun [10] used the
grey relational analysis technique and determined the opti-
mum drilling process parameters. Various drilling parameters
such as feed rate, cutting speed, drill type, and point angles
were considered and optimized by the grey relational
grade obtained from the grey relational analysis for
multi-performance characteristics (surface roughness and the
burr height). Lin [11] investigated the tool life, surface rough-
ness, and bur formation in high-speed drilling of stainless steel
using tin-coated carbide drill. Kao et al. [12] obtained grey
relational grade using grey relational analysis while
electrochemical polishing of the stainless steel. Optimal
machining parameters were determined by the grey relational
grade as the performance index. They observed that the
performance characteristics such as surface roughness and
passivation strength are improved.

In the present study, the minimum quantity lubrication is
provided with solid lubricant mixed with SAE-40 base oil
(10% boric acid, 10% MoS2, and 10% graphite powder
mixed with SAE-40 base oil by weight separately). Mini-
mum quantity of lubrication without formation of foam is
applied to the workpiece at approximately 4 to 5 ml/min,

which is not in contact with the tool. It is also required to see
the effect of increasing concentration of solid lubricant with
SAE-40 base oil on the cutting force for the machining of
EN-31 steels. After running pilot experiments of different
concentrations of solid lubricant (MoS2, boric acid, and
graphite with base oil SAE 40, i.e., 2%, 3%, 5%, 10%,
15%, 20%, and 25% by weight) at a cutting speed of
710 rpm, feed rate 0.10 mm/rev, depth of cut 0.4 mm, and
tool nose radius 0.8 mm [13], 10% of each solid lubricant
with SAE-40 base oil gave minimum (stable) cutting force
during pilot experiments [13]. Therefore, we have selected
10% solid lubricant with SAE-40 base oil during perfor-
mance of the experiments. Machining with 10% concentra-
tion of solid lubricant (MoS2, boric acid, and graphite
powder) mixed with SAE-40 base oil is an environmentally
safe alternative to conventional metal cutting. Hence, an
attempt has been made in the present work to investigate
and select the proper minimum quantity lubricants in metal
cutting; SAE-40 base oil is chosen as the mixing medium,
due to its higher viscosity and hence improved lubricating
properties. Minimum quantity lubricants (solid lubricants,
MoS2, boric acid, and graphite) exhibit minimal friction and
provide effective separation between workpiece and tool
surfaces. Several studies related to the lubrication properties
of solid lubricants (boric acid) are carried out over the past
several decades [14]. Another study focused on the use of
solid lubricant (boric acid and MoS2) as a lubricant in
forming and drilling [15]. In metal-forming applications
[15], it is shown that the boric acid provided very low
friction between an aluminum workpiece and steel-forming
tool. Shaji et al. [16] investigated the possibility of using
graphite as a lubricating medium to reduce the heat gener-
ated in the grinding zone in surface grinding. Different
process parameters like cutting forces, cutting temperature,
specific energy, and surface roughness were observed and
reported to be reduced when compared to those in grinding
with conventional coolant. Graphite and molybdenum
disulphide-assisted end milling process resulted in consid-
erable improvement in the process performance as com-
pared to that of machining with cutting fluid in terms of
cutting forces, surface quality, and specific energy [17].
Solid lubricants like MoS2, MoS2-based grease, graphite-
based grease, and silicon compound mixed with SAE-20 oil
have been reported to improve surface quality at different
proportions while machining aluminum and brass [18]. The
feasibility of application of graphite as a solid lubricant in
surface grinding was investigated by applying it in a suitable
paste form to the workpiece surface of the wheel [19].
Ingole et al. [20] studied the effect of lubricants on the
surface finish in burnishing of En8 specimens. Using 23

factorial designs, surface roughness, model equations were
developed. The burnishing parameters considered were
speed, feed, and force, and the other parameters were
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constant. The lubricants studied were SAE-30, grease, and a
mixture of the two. Out of these, SAE-30 was found to be
better. Venugopal et al. [21] investigated the use of graphite
as a lubricating medium in the grinding process to reduce
the heat generated at the grinding zone. The effective role of
graphite as lubricant is evident from the overall improve-
ment in the grinding process. Different process performance
parameters like cutting forces, cutting zone temperatures
specific energy, and surface roughness were observed and
reported to be reduced when compared to those with grind-
ing with conventional coolant. Shirsat et al. [22] studied the
influence of burnishing parameters on surface finish in
burnishing of aluminum specimens. The finishing parame-
ters considered were speed, feed rate, and burnishing force.
It was found that the surface roughness improves initially
with an increase in these parameters. After a certain stage,
the surface finish deteriorates, and fatigue life decreases.
The lubricant studied were kerosene, SAE-30 oil, 5% graphite
by weight in SAE-30 oil, and 10% graphite by weight
in SAE-30 oil. Out of these, kerosene was found to be better.

The grey system theory initiated by Deng [23] in 1982
has been proven to be useful for dealing with poor, incom-
plete, and uncertain information. The grey relational based on
the grey system theory can be used to solve the complicated
interrelationships among the multiple performance character-
istics effectively [24]. Palanikumar et al. [25] applied Taguchi
and response surface methodologies for optimizingmachining
conditions in turning of Al/sic particulate metal matrix com-
posites. They concluded that feed rate is a factor which has
greater influence on surface roughness (Ra), followed by
cutting speed and percentage of volume fraction of Sic. Lin
[26] used grey relational analysis to optimize turning opera-
tions with multiple performance characteristics. He analyzed
tool life, cutting force, and surface roughness in turning
operations. Chaudhury et al. [27] had predicted surface
roughness parameter Ra using response surface methodology
and 23 factorial designs when turning high-strength steel. Lin et
al. [28] used the grey relational analysis based on an orthogonal
and fuzzy-based Taguchi method for optimizing a multi-
response electrical discharge machining process. Brahmankar
et al. [29] used a new combination of response surface method
and grey relational analysis to optimize electro-discharge
machining parameters with multi-performance characteristics.

The purpose of the present work is to introduce the use of
grey relational analysis in selecting optimum turning condi-
tions on multi-performance characteristics, namely the surface
roughness and chip thickness. To the best knowledge of the
authors, there is no published work evaluating the optimiza-
tion and the effect of metal-cutting parameters on the multi-
performance characteristics in turning process by using grey
relational analysis. The setting of turning parameters was
accomplished using the factorial design with eight added
center point (24+8) composite design [30]. In addition, the

most effective factor and the order of importance of the
controllable factors to the multi-performance characteristics
in the turning process were determined. Thus, by properly
adjusting the control factors, we can improve work efficiency
and produce quality parts.

2 Experimental conditions and procedure

In the metal-cutting process, the surface finish and chip
thickness depend upon many parameters. Out of these
parameters, cutting conditions and tool geometry play a
major role in deciding the chip and surface quality. The
range of each parameter is set at three different levels,
namely low, medium, and high based on industrial practice.
The initial cutting parameters were cutting speed of
710 rpm, a feed rate of 0.10 mm/rev, tool nose radius
of 0.8 mm, and concentration of lubricants of 10%
MoS2+SAE-40 base oil. To perform the experimental
design, three levels of the cutting parameters were se-
lected and listed in Table 1. Since the considered vari-
ables are multilevel variables and their outcome effects
are not linearly related, it has been decided to use three
level tests for each factor. The depth of cut 0.4 mm is
kept constant throughout the experiments. In full facto-
rial design, the number of experimental runs exponen-
tially increases as the number of factors, and their
levels. This results in a huge experimentation cost and
considerable time periods. Fewer trials imply that time
and cost are reduced, for example, for an experiment
with four factors at three levels; a full factorial design
would require 34081 trials. With three replications, the
number of trials would be 243. So, in order to compro-
mise these two adverse factors and to search for the
optimal process condition through a limited number of
experimental runs, composite factorial (24+8) consisting
of 24 sets of data was selected to optimize the multiple perfor-
mance characteristics of the turning process. Experiments were
conducted with the process parameters given in Table 1, to
obtain the machined surface on the EN-31 steel. A high-
precision (LTM-20) heavy-duty lathe machine was used for
experimentation as shown in Fig. 1. The workpiece material
used for experimentation was EN-31 steel (size 500 mm in
length and 51 mm in diameter). This material is suitable for a
wide variety of automotive-type applications like axle,
roller bearings, ball bearings, shear blades, spindle mandrels,
forming and molding dies, rollers, blanking and forming tools,
knurling tools, and spline shafts. These are produced using this
material by turning process. The cutting tools used for experi-
mentation were CNMA 120404, CNMA 120408, CNMA
120412, and a diamond-shaped carbide. The tool holder used
for experimentation was WIDAX SCLCR 1212Fo9T3 (ISO-
designated). Twenty-four experiments were conducted by
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varying all the parameters identified to study the influence and
optimization of these parameters on surface roughness and chip
thickness. To obtain a more accurate result, each combination
of experiments was repeated three times. In order to prevent a
sudden increase of the cutting forces due to the dullness of the
cutting edge, the carbide tool was changed after three
repetitions of each experiment. Table 2 shows the selected
design matrix based on composite factorial design consisting
of 24 sets of coded conditions and the experimental results for
the responses of surface roughness and chip thickness. All
these data were utilized for the analysis and evaluation of the
optimal parameter combination required to achieve the desired
quality within the experimental domain. An optical surface
roughness-measuring microscope was used to measure the
surface roughness (Ra) of the machined components as shown
in Fig. 2. The surface roughness wasmeasured at three equally
spaced locations around the circumference of the workpiece to
obtain the statistically significant data for each test.

The chip thickness is a parameter that is used to under-
stand the basic metal-cutting process. The comparison of
chip produced is one of the major parameters influencing
productivity in the metal-cutting industry. A lower chip
thickness implies better lubrication at the chip tool interface
and formation of chips of thinner sections, i.e., if the chip
thickness decreases, the process efficiency goes up. The
chips were collected at the end of each experiment, and the
chip thickness was measured using a slider caliper. The chips
were produced during machining with different lubricants as
shown in Fig. 3a–c. The chip thickness values are the
mathematical average of three measurements taken from
the different specimens turned in the same experimental
conditions.

3 Grey relational analysis

In the recent years, Deng proposed application of the principles
of grey relational analysis [31]. Grey relational analysis is a
method of measuring the degree of approximation among
sequences according to the grey relational grade. The theories
of grey relational analysis have already attracted the interest of
researchers. In the grey relational analysis, themeasured values
of the experimental results of surface finish and chip thickness
were first normalized in the range between zero and one, which
is also called grey relational generation. Next, the grey
relational coefficients were calculated from the normalized
experimental results to express the relationship between the
desired and actual experimental results. Then, the grey rela-
tional grades were computed by averaging the grey relational
coefficient corresponding to each performance characteristic
[32]. The overall equation of the multiple performance char-
acteristic is based on the grey relational grade. As a result,
optimization of the complicated multiple performance charac-
teristics can be converted into optimization of a single grey
relational grade. The optimal level of the process parameters is
the level with highest grey relational grade. With the grey
relational analysis, the optimal combination of the process
parameters can be predicted.

Based on the above discussion, the use of the factorial
design with grey relational analysis to optimize the turning
parameters with multiple performance characteristics includes
the following steps [26]:

a. Identify the performance characteristics and cutting
parameters to be evaluated.

b. Determine the number of levels for the turning parameters.
c. Select the factorial design matrix and assign the turning

parameters.
d. Conduct the experiments based on the factorial design

of the experiment.
e. Normalize the experimental results of surface roughness

and chip thickness.
f. Perform the grey relational generating and calculate the

grey relational coefficient.
g. Calculate the grey relational grade by averaging the

grey relational coefficient.
h. Analyze the experimental results using the grey relational

grade.
i. Select the optimal levels of turning parameters.

Table 1 Experimental conditions

Levels of turning parameters A B C D
Cutting speed (rpm) Feed rate (mm/rev) Tool nose radius (mm) Concentration of lubricants (%)

Low 1 (−1) 250 0.06 0.4 10% graphite + SAE-40 base oil

Middle 2 (0) 710 0.10 0.8 10% MOS2 + SAE-40 base oil

Higher 3 (+1) 1200 0.15 1.2 10% boric Acid + SAE-40 base oil

Fig. 1 Experimental setup on HMT heavy-duty lathe machine
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3.1 Data preprocessing

Data preprocessing is normally required since the range
and unit in one data sequence may differ from the others.
Data preprocessing is also necessary when the sequence
scatter range is too large or when the directions of the
target in the sequences are different. Data preprocessing
is a means of transferring the original sequence to a
comparable sequence. Depending on the characteristics

of a data sequence, there are various methodologies of
data preprocessing available for the gray relational analysis
[33].

If the target value of the original sequence is infinite, then
it has a characteristic of the “higher is better.” The original
sequence can be normalized as follows:

x�i ðkÞ ¼
xoi ðkÞ �min xoi ðkÞ

max xoi ðkÞ �min xoi ðkÞ
ð1Þ

When the “lower is better” is a characteristic of the
original sequence, then the original sequence should be
normalized as follows:

x�i ðkÞ ¼
max xoi ðkÞ � xoi ðkÞ

max xoi ðkÞ �min xoi ðkÞ
ð2Þ

However, if there is a definite target value (desired value)
to be achieved, the original sequence will be normalized in
from:

x�i ðkÞ ¼ 1� xoi ðkÞ � xoi
�� ��

max xoi ðkÞ � xoi
ð3Þ

Table 2 Design matrix

aAverage of three experiment
results

Exp. no. A B C D Surface roughness
(Ra) (μm)a

Chip thickness
(mm)aCutting speed

(RPM)
Feed rate
(mm/rev)

Nose radius
(mm)

Concentration
of lubricants (%)

1 −1 −1 −1 −1 11.86 0.41

2 −1 −1 −1 +1 10.43 0.34

3 −1 −1 +1 −1 12.30 0.38

4 −1 −1 +1 +1 11.53 0.35

5 −1 +1 −1 −1 12.79 0.50

6 −1 +1 −1 +1 10.58 0.40

7 −1 +1 +1 −1 13.84 0.51

8 −1 +1 +1 +1 12.80 0.42

9 +1 −1 −1 −1 11.82 0.43

10 +1 −1 −1 +1 9.94 0.31

11 +1 −1 +1 −1 10.86 0.40

12 +1 −1 +1 +1 9.86 0.30

13 +1 +1 −1 −1 13.87 0.46

14 +1 +1 −1 +1 11.60 0.45

15 +1 +1 +1 −1 11.80 0.49

16 +1 +1 +1 +1 10.44 0.46

17 0 0 0 0 12.49 0.48

18 0 0 0 0 11.50 0.39

19 0 0 0 0 10.55 0.49

20 0 0 0 0 11.70 0.44

21 0 0 0 0 11.20 0.35

22 0 0 0 0 10.08 0.37

23 0 0 0 0 9.85 0.45

24 0 0 0 0 12.23 0.32

Fig. 2 Surface roughness-measuring microscope with workpiece
EN-31 steel
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Or, the original sequence can be simply normalized by
the most basic methodology, i.e., let the value of the original
sequence be divided by the first value of the sequence:

x�i ðkÞ ¼
xoi ðkÞ
xoi ð1Þ

ð4Þ

Where i01,…, m; k01,…, n. m is the number of
experimental data items, and n is the number of parameters.
xoi ðkÞ denotes the original sequence, x�i ðkÞ the sequence after
the data preprocessing, max. xoi ðkÞ the largest value of xoi ðkÞ,
min. xoi ðkÞ the smallest value of xoi ðkÞ, and xoi is the desired
value of xoi ðkÞ.

3.2 Gray relational coefficient and gray relational grade

In gray relational analysis, the measure of the relevancy
between two systems or two sequences is defined as the
gray relational grade. When only one sequence, xo (k), is
available as the reference sequence, and all other sequences
serve as comparison sequences, it is called a local gray
relation measurement. After data preprocessing is carried
out, the gray relation coefficient ξi(k) for the kth perfor-
mance characteristics in the ith experiment can be expressed
as follows [31, 32]

xiðkÞ ¼
Δmin þ z:Δmax

ΔoiðkÞ þ z:Δmax

ΔoiðkÞ ¼ x�oðkÞ � x�i ðkÞ
�� ��;

Δmax ¼ 1:00; Δmin ¼ 0:00

ð5Þ

Where, Δoi(k) is the deviation sequence of the reference
sequence x�0ðkÞ and the comparability sequence x�i ðkÞ. z is
the distinguishing or identification coefficient which is de-
fined in the range 0≤z≤1 (the value may be adjusted based
on the practical needs of the system). A value of z is the
smaller, and the distinguished ability is the larger.

The purpose of defining this coefficient is to show the
relational degree between the reference sequence x�0ðkÞ and
the comparability 24 sequences x�i ðkÞ , where, i01, 2… m
and k01, 2… n with m024 and n02 in this study.

The definition of grey relational grade in the course of
grey relational analysis is to reveal the degree of relation
between the 24 sequences [x�oðkÞ and x�i ðkÞ, i01, 2, 3….24].

After the grey relational coefficient is derived, it is usual to
take the average value of the grey relational coefficients as
the grey relational grade [31, 32]. The grey relational grade
is defined as follows:

g i ¼
1

n

Xn

k¼1

xiðkÞ ð6Þ

However, in a real engineering system, the relative
importance of various factors varies. In the real condition of
unequal weight being carried by the various factors, the
grey relational grade in Eq. 6 was extended and defined
as recommended by Deng [31] and Lin et al. [32].

g i ¼ 1
n

Pn

k¼1
wkxiðkÞ

Pn

k¼1
wk ¼1 ð7Þ

Where wk denotes the normalized weight of factor k.
Given the same weight, Eqs. 6 and 7 are equal.

Here, the grey relational grade gi represents the level of
correlation between the reference sequence and the compa-
rability sequence. If the two sequences are identical by
coincidence, then the value of grey relational grade is equal
to 1. The grey relational grade also indicates the degree of
influence that the comparability sequence could exert over
the reference sequence. Therefore, if a particular compara-
bility sequence is more important than the other compara-
bility sequences to the reference sequence, then the grey
relational grade for that comparability sequence and refer-
ence sequence will be higher than other grey relational
grades [33]. Grey relational analysis is actually a mea-
surement of absolute value of data difference between
sequences, and it could be used to measure approximation
correlation between sequences.

4 Analysis and discussion of experimental results

In the present study, the workpiece surface roughness and
chip thickness values in different turning parameters are
listed in Table 2. In the turning process, lower surface
roughness and chip thickness are indications of better perfor-
mance. For data preprocessing in the grey relational analysis
process, both surface roughness and chip thickness are taken
as “lower is the better.” Let the results of 24 experiments be

10% graphite + SAE-40 oil 10% MoS2 + SAE-40 oil 10% boric acid + SAE-40 oil 

a b c
Fig. 3 Chips produced with
different lubricant during
experiments. a 10% graphite +
SAE-40 oil, b 10% MoS2 +
SAE-40 oil, c 10% boric acid +
SAE-40 oil
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the comparability sequences xoi ðkÞ , i01–24, k01. All the
sequences after data preprocessing using Eq. 2 are listed in
Table 3 and denoted as x�oðkÞ and x�i ðkÞ for reference sequence
and comparability sequence, respectively.

The deviation sequences Δoi can be calculated as follows.

Δoið1Þ ¼ xo � ð1Þ � xi � ð1Þj j ¼ 1:00� 0:5j j ¼ 0:5

Δoið2Þ ¼ xo � ð2Þ � xi � ð2Þj j ¼ 1:00� 0:476j j ¼ 0:524

So Δoi ¼ 0:5; 0:524ð Þ:

The same calculation method was performed for i01–24,
and the results of all Δoi for i01–24 are given in Table 4.
Using Table 4, Δmax. and Δmin., can be found as follows.

Δmax ¼ Δ01ð1Þ ¼ Δ24ð2Þ ¼ 1:00
Δmin ¼ Δ24ð1Þ ¼ Δ24ð2Þ ¼ 0:00

The distinguishing coefficient z can be substituted into
Eq. 5 to produce the grey relational coefficient. The value
for z is taken as 0.5 since both the process parameters are of
equal weight. The grey relational coefficients and grade
values of each experiment of the factorial design were

calculated by applying Eqs. 5 and 7 (Table 5). Table 5 shows
the grey relational grade for each experiment using factorial
design. The higher grey relational grade represents that the
corresponding experimental result is closer to the ideally
normalized value. Experiment 12 has the best multi-
performance characteristics among 24 experiments because
it has the highest grey relational grade as shown in Table 5
and Fig. 4. It can be seen that in the present study, optimi-
zation of the complicated multi-performance characteristics
of turning En-31 steel alloy has been converted into optimi-
zation of a grey relational grade.

In addition to the determination of optimum turning
parameters for surface roughness and chip thickness, the
response table for the factorial design method was used to
calculate the average grey relational grade for each level of
the turning parameters. The procedure is:

1. Group the grey relational grades by factor level for each
column in the factorial design.

2. Take their average; for example, the grey relational grade
for factor A at level 1 can be calculated as follows.

Level1ðAÞ ¼ 1=8 ð0:494þ 0:750þ 0:509þ 0:611þ 0:375

þ0:622þ 0:334þ 0:436Þ ¼ 0:516

Table 3 The sequence after data preprocessing

Reference/comparability sequence Surface
roughness

Chip
thickness

Reference sequence, comp. sequence 1.0000 1.0000

Exp. no. 1 0.500 0.476

Exp. no. 2 0.856 0.810

Exp. no. 3 0.391 0.619

Exp. no. 4 0.582 0.762

Exp. no. 5 0.269 0.048

Exp. no. 6 0.818 0.524

Exp. no. 7 0.007 0.000

Exp. no. 8 0.266 0.429

Exp. no. 9 0.510 0.381

Exp. no. 10 0.978 0.952

Exp. no. 11 0.749 0.524

Exp. no. 12 0.998 1.000

Exp. no. 13 0.000 0.238

Exp. no. 14 0.565 0.286

Exp. no. 15 0.515 0.095

Exp. no. 16 0.853 0.238

Exp. no. 17 0.343 0.143

Exp. no. 18 0.590 0.571

Exp. no. 19 0.826 0.095

Exp. no. 20 0.540 0.333

Exp. no. 21 0.664 0.762

Exp. no. 22 0.943 0.667

Exp. no. 23 1.00 0.286

Exp. no. 24 0.408 0.905

Table 4 The deviation sequence

Deviation sequences Δoi (1) Δoi (2)

Exp. no. 1 0.500 0.524

Exp. no. 2 0.144 0.190

Exp. no. 3 0.609 0.381

Exp. no. 4 0.418 0.238

Exp. no. 5 0.731 0.952

Exp. no. 6 0.182 0.476

Exp. no. 7 0.993 1.000

Exp. no. 8 0.734 0.571

Exp. no. 9 0.490 0.619

Exp. no. 10 0.022 0.048

Exp. no. 11 0.251 0.476

Exp. no. 12 0.002 0.000

Exp. no. 13 1.000 0.762

Exp. no. 14 0.435 0.714

Exp. no. 15 0.485 0.905

Exp. no. 16 0.147 0.762

Exp. no. 17 0.657 0.857

Exp. no. 18 0.410 0.429

Exp. no. 19 0.174 0.905

Exp. no. 20 0.460 0.667

Exp. no. 21 0.336 0.238

Exp. no. 22 0.057 0.333

Exp. no. 23 0.000 0.714

Exp. no. 24 0.592 0.095
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The mean of the grey relational grade values for each
level of the turning parameters was calculated using the
same method. The grey relational grade represents the level
of correlation between the reference sequence and the com-
parability sequence, the greater value of the grey relational
grade means that the comparability sequence has a stronger
correlation to the reference sequence [32]. The mean of the
grey relational grade for each level of the turning parameters
is summarized and shown in the multi-response performance

index (Table 6). Figure 5 shows the grey relational grade
obtained for different turning parameters. Basically, the larger
the grey relational grade is, the closer will be the product
quality to the ideal value. Thus, a larger grey relational grade
is desired for optimum performance. Therefore, the optimal
level of machining parameters setting for improved surface
quality and minimum chip thickness is (A3, B1, C2, and D3) as
given in Table 6. The optimal level of the turning parameters is
the level with the highest grey relational grade. An asterisk (*)
indicates that the level value represents in a better turning
performance. Based on the grey relational grade values given
in Table 6, the optimal machining performance for both the
surface roughness and the chip thickness was obtained for 10%
boric acid lubricant (level 3), 1,200 rpm cutting speed (level 3),
0.06 mm/rev feed rate (level 1), and 0.8 mm tool nose radius
(level 2) combination. The greater values in Fig. 5 give the
smaller chip thickness and good surface finish quality. There-
fore, experiment 12, as shown in Table 5 and Fig. 4, may be
considered as very close to fit the optimal process conditions.

As listed in Table 6, the difference between the maximum
and the minimum value of the grey relational grade of the
turning parameters is as follows: 0.09 for cutting speed,
0.218 for feed rate, 0.028 for tool nose radius, and 0.230
for lubricant type. The most effective factor affecting
performance characteristics is determined by comparing
these values. This comparison will give the level of
significance of the controllable factors over the multi-
performance characteristics. The most effective controllable
factor was the maximum of these values. Here, the maximum
value among 0.09, 0.218, 0.028, and 0.230 is 0.230. The value
indicates that the lubricant type has the strongest effect on the
multi-performance characteristics among the other turning
parameters. On the other hand, the significance of the role that
every controllable factor plays over the multi-performance
characteristics can be obtained by examining these values.
The order of importance of the controllable factors to
the multi-performance characteristics in the turning parameters,
in sequence, can be listed as: factor D (lubricant type),
B (feed rate), A (cutting speed), and C (tool nose radius) (i.e.,
0.230>0.218>0.09>0.028). Factor D (lubricant type) was the
most effective factor to the performance. This indicates that the

Table 5 The calculated grey relational coefficient and grey relational
grade for 24 comparability sequences

Exp. no. Grey relational
coeff. Ra (μm)

Grey relational
coeff. Tc(mm)

Grey relational
grade

Exp. no. 1 0.500 0.488 0.494

Exp. no. 2 0.776 0.724 0.750

Exp. no. 3 0.451 0.568 0.509

Exp. no. 4 0.545 0.678 0.611

Exp. no. 5 0.406 0.344 0.375

Exp. no. 6 0.733 0.512 0.622

Exp. no. 7 0.335 0.333 0.334

Exp. no. 8 0.405 0.467 0.436

Exp. no. 9 0.505 0.447 0.476

Exp. no. 10 0.958 0.912 0.935

Exp. no. 11 0.666 0.512 0.589

Exp. no. 12 0.996 1.000 0.998

Exp. no. 13 0.333 0.396 0.364

Exp. no. 14 0.535 0.412 0.473

Exp. no. 15 0.508 0.356 0.432

Exp. no. 16 0.773 0.396 0.584

Exp. no. 17 0.432 0.368 0.400

Exp. no. 18 0.549 0.538 0.543

Exp. no. 19 0.742 0.356 0.549

Exp. no. 20 0.521 0.428 0.474

Exp. no. 21 0.598 0.678 0.638

Exp. no. 22 0.898 0.600 0.749

Exp. no. 23 1.000 0.412 0.706

Exp. no. 24 0.458 0.840 0.649

Fig. 4 Grey relation grades for the minimum surface roughness and
chip thickness

Table 6 Response table for grey relational grade

Turning
parameters

Level 1 (−1) Level 2 (0) Level 3 (+1) Max–min

A (V) m/min 0.516 0.589 0.606a 0.090

B (F) mm/rev 0.670a 0.589 0.453 0.217

C (R) mm 0.561 0.589a 0.562 0.028

D (lubricant) 0.446 0.589 0.676a 0.230

Average grey relational grade by factor level
a Shows optimal turning parameters
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turning performance was strongly affected by the lubricant
type.

4.1 Effect of turning parameters on performance measures

The multi-performance characteristic called grey relational
grade was found to be significantly affected by lubricant
concentration (lubricant type), feed rate, cutting speed, and
tool nose radius. Figure 5 shows the effects of turning
parameters on the multi-performance characteristics (the
surface roughness and chip thickness) and the response
graph of each level of the turning parameters for the perfor-
mance. The response surfaces are developed by using the
response surface methodology referred by Montgomery
[30]. Basically, the larger the grey relational grade, the better
are the multi-performance characteristics. The greater values
in Figure 5 give the lower chip thickness and good surface
finish quality. Figure 6 shows the response surface of grey
relational grade. It is clear from Fig. 6 that the cutting speed
and feed rate are the most significant factors that affect the
grey relational grade. With an increase in cutting speed, both
surface roughness and chip thickness decrease which
increases grey relational grade. While an increase in surface
roughness and chip thickness with increase in feed rate
results into reduction of grey relational grade.

Figure 7 shows the effect of turning parameters on surface
roughness value. From this figure, a smoother surface can be
produced by 10% boric acid+SAE-40 base oil (level 3),
smaller feed rate ( level 1), or using higher cutting
speed (level 3) followed by nose radius at middle level.
Variation in surface roughness is very small in the range of
0.4, 0.8, and 1.2 mm nose radii. For nose radii beyond
0.8 mm, it was found that the self-excited vibrations tend to
deteriorate the surface roughness. The best results were
obtained in the range of 0.4 to 0.8 mm nose radii [13]. The
reason for improved surface finish at the range 0.4 to 0.8 mm
nose radii is that the chip thickness is reduced at the nose
region of the tool. If the nose radius is excessive, chatter may
be introduced and small particles of work material may form a
burr on the tool at the trailing edge of the nose causing a
breakout of tool material. Under such conditions, the surface
roughness tends to deteriorate.

Figure 8a and b shows the estimated response surface for
the combined effects of turning parameters on Ra values at
selected levels. The height of the surface represents the
value of the Ra. It can be realized that the combination
between high cutting speed and low feed rate results in a
considerable reduction in surface roughness (Ra) and also
between a high level of lubricant type concentration (10%
boric acid + SAE-40 oil) and low feed rate results in a
considerable reduction in surface roughness (Ra). The
response surface plot (Fig. 8a) indicates that the minimum
surface roughness is at about 1,200 rpm and 0.06 mm/rev.
The response surface plot (Fig. 8b) indicates that the
minimum surface roughness (Ra) is at about 10% boric
acid + SAE-40 oil) (level 3), and 0.06 mm/rev.

Figure 9 shows the effect of turning parameters on chip
thickness. From this figure, a minimum chip thickness can
be produced by lubricant concentration at higher level (10%
boric acid + SAE-40 oil), lower feed rate, and higher cutting
speed followed by tool nose radius. Figure 10a and b shows
the response surface of chip thickness. It clearly shows an
increase in chip thickness with increase in the feed rate and
also a decrease in chip thickness with the increase in cutting

Fig. 5 Effect of turning parameters on the multi-performance
characteristics

Fig. 6 Response surface of grey relational grade for combined effect
of cutting speed and feed rate Fig.7 Effect of turning parameters on surface roughness
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speed [13]. The reduction in chip thickness was observed
and is maximum with 10% boric acid + SAE-40 base oil
lubrication (level 3) as compared to other solid–liquid (10%
graphite + SAE-40 , 10%MoS2 + SAE-40) lubricant. This is
because of better lubrication effect produced by 10% boric
acid + SAE-40 oil at the chip tool interface due to the
formation of fluid cushion. Reduced chip thickness in 10%
boric acid + SAE-40 oil lubricant machining results from the
lowered cutting temperature and reduced adhesion between
the tool and chip [13–15]. The variations in the surface
roughness and chip thickness values were approved by these
counters (Figs. 8 and 10) more clearly.

5 Confirmation test

After obtaining the optimal level of the turning parameters,
the next step is to verify the improvement of the performance
characteristics using this optimal combination. Table 7
compares the results of the confirmation experiments using
the optimal turning parameters (A3, B1, C2, D3) obtained by
the proposed method and with those of the initial turning
parameters (A2, B2, C2, D2), which are often introduced into
the confirmation experiment in many of the studies (10, 11,
and 26) for comparison to the optimum parameters, are
performed on the lathe and drilling. Three trials were
conducted at optimal level, and the corresponding surface
roughness and chip thickness values (average of three trials)

Fig. 8 a Response surface of combined effect of cutting speed and
feed rate on surface roughness. b Response surface of combined effect
of lubricant type and feed rate on surface roughness

Fig. 9 Effect of turning parameters on chip thickness

Fig. 10 a Response surface of combined effect of cutting speed and
feed rate on chip thickness. b Response surface of combined effect of
lubricant type and feed rate on chip thickness

Table 7 Comparison between initial level and optimal level

Name of design Best
combination

Surface roughness
(μm)

Chip
thickness
(mm)

Initial design A2B2C2D2 11.70 0.44

Optimal design A3B1C2D3 9.83a 0.32a

Final gain at optimum
combination of parameters

– 16.06% 27.30%

a Shows the average of three trial results
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were measured and reported in Table 7. As shown in Table 7,
surface roughness decreases from 11.70 to 9.83 μm and chip
thickness decreases from 0.44 mm to 0.32 mm, or, in other
words, the corresponding confirmation tests show that the
values of surface roughness and chip thickness are
greatly improved by 16.06% and 27.30%, respectively.
Consequently, these confirmation tests reveal that the pro-
posed method for solving the optimal combinations of the
turning parameters in this work improves surface finish and
chip thickness. It can be seen that the overall performance of
turning process has been improved.

6 Conclusions

In this paper, the optimal turning parameters were deter-
mined for the multi-performance characteristics (surface
roughness and chip thickness) in the turning process by
using the grey relational analysis. The grey relational
analysis, based on the factorial design matrix response
table, was proposed as a way of studying the optimization of
turning operation factors. The surface roughness and the chip
thickness were selected to be the quality targets. From the
response table of the average grey relational grade, the largest
value of grey relational coefficient for the turning parameters
was found. These values are the recommended levels of
controllable turning parameters for the multi-performance
characteristics. It was found that the lubricant type has the
strongest effect among the other turning parameters used on
the multi-performance characteristics. In other words, the
most influential factor is lubricant type. The order of impor-
tance of the controllable factors to the multi-performance
characteristics is lubricant type, feed rate, cutting speed, and
tool nose radius. Experimental results have shown clearly that
the surface roughness and the chip thickness in the turning
operation can be improved effectively through the proposed
approach. As a result, optimization of the complicated
multiple performance characteristics can be greatly simplified
through this approach. It is shown that the performance
characteristics of the turning process such as surface finish and
chip thickness are improved together by using the method
proposed by this study. Optimum cutting conditions for
minimum surface roughness and smallest chip thickness
are minimum quantity of lubricant, 10% concentration
of boric acid + SAE-40 base oil, feed rate 0.06 mm/rev,
cutting speed 1,200 rpm, and 0.8 mm tool nose radius.
The percentage reduction in surface roughness and the
chip thickness at optimum combination of parameters
are 16.06% and 27.30%, respectively. The effectiveness
of this approach has been successfully established by
confirmation experiment. Thus, the solutions from this
method can be used by production/industrial engineers who
are willing to search for an optimal solution of metal-cutting

operation. In the future, this study can be extended to different
metal cutting operations with different work materials and
machine tools.
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