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Abstract By allowing shortages as backlogging, the
impact on the cost from the decay of the products
can be balanced out. To attract more sales, suppliers
frequently offer a trade credit if the retailer orders
more than or equal to a predetermined quantity. In this
study, we analyze the partial trade credit financing in a
supply chain by economic order quantity-based model
for decaying items including shortages. We assume that
the supplier may offer a partial permissible delay in
payments even if the order quantity is less than prede-
termined quantity. Lemmas and theorems to determine
the criterion for the existence and uniqueness of the
minimum solution is subsequently developed. A com-
puter code using the software Matlab 7.0 is developed
to derive the optimal solution, and a numerical example
is presented to illustrate the procedures of algorithm.
The results in the numerical example indicate that the
retailer trades off the benefits of full delay in payments
against the partial delay in payments and always enjoys
the full delay in payments. Finally, some important
managerial insights are also inferred from the sensitiv-
ity analysis of the optimal solution with respect to the
major parameters of the system.
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1 Introduction

In recent years, most researches in the area of inventory
control have been oriented toward the development of
more realistic and practical models for decision mak-
ers. Both in deterministic and probabilistic inventory
models of classical type, it is observed that payments
are made to the supplier immediately after receiving
the items. In practice, the supplier will offer the retailer
a delay period in paying for the amount of purchase
to increase the demand known as trade credit period.
Offering such a credit period to the retailer will en-
courage the supplier’s selling and reduce on-hand stock
level. Simultaneously, without a primary payment, the
retailer can take the advantages of a credit period to
reduce cost and increase profit. Thus, the delay in the
payment offered by the supplier is a kind of price
discount since paying later indirectly reduces the cost of
holding, and it encourages the retailer to increase their
order quantity. Moreover, during this credit period,
the retailer can start to accumulate revenues on the
sales and earn interest on that revenue. Hence, paying
later indirectly reduces the cost of holding stock. But a
higher interest is charged if the payment is not settled
by end of this credit period. Hence, trade credit can
play an important role in inventory model for both the
suppliers as well as the retailers.

In recent two decades, the effect of a permissible
delay in payments on the optimal inventory system has
received much attention from numerous researchers.
Teng [1] indicated that the trade credit produces two
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benefits to the supplier: (1) It should attract new
customers who consider it to be a type of price re-
duction, and (2) it should cause a reduction in sales
outstanding, since some established customers will pay
more promptly in order to take advantage of trade
credit more frequently. Over the years, a number of
researchers have appeared in the literature that treat
inventory problems with varying conditions under
trade credit intended to link financing, marketing, as
well as operations concerns. Some of the prominent
papers are discussed below.

Haley and Higgins [2] introduced the first inventory
model to consider the economic order quantity (EOQ)
under conditions of permissible delay in payments with
deterministic demand, no shortages, and zero lead time.
After that, numerous studies dealing with the trade
credit problem have been presented. Hwang and Shinn
[3] considered the problem of determining the retailer’s
optimal price and lot size simultaneously when the sup-
pliers permit delay in payments. Jamal et al. [4] studied
a wholesaler–retailer supply chain where the retailer is
given a permissible credit period to pay back the dues
without paying any interest to the wholesaler. Goyal [5]
considered a model similar to that of Haley and Higgins
[1] model with the exclusion of the penalty cost due to a
late payment. Abbad and Jaggi [6] developed a seller–
buyer model with the permissible delay in payments
by game theory to determine the optimal unit price
under credit period, considering that the demand rate
is a function of retail price. Huang [7] presented an
inventory model assuming that the retailer also prefers
a credit period to his customers which is shorter than
the credit period offered by the supplier, in order
to stimulate the demand. Chung et al. [8] developed
optimal inventory policies under permissible delay in
payments depending on the ordering quantity. Teng
et al. [9] developed the optimal pricing and lot sizing
under permissible delay in payments by considering the
difference between the selling price and the purchase
cost, and demand is a function of price. Xiping Song
and Xiaoqiang [10] discussed on optimal payment time
for a retailer under permitted delay of payment by the
wholesaler. Goyal et al. [11] established an economic
ordering quantity model for a retailer when the supplier
offers a progressive interest charge and provided an
easy-to-use closed form solution to the problem.

It is important to control and maintain the invento-
ries of deteriorating items for the modern corporation.
In daily life, the deteriorating of goods is a common
phenomenon. Recently, deteriorating of item in inven-
tory system has become an interesting topic due to
its practical importance. Deterioration refers to decay,

damage, or spoilage. In respect of foods, films, drugs,
chemicals, electronic components, and radioactive sub-
stances, deterioration may happen during normal pe-
riod of storage. Therefore, the loss due to deterioration
cannot be neglected. Deteriorating inventory models
have been widely studied in recent years. There are
some research articles dealing with deteriorating in-
ventory model under trade credit. Agarwal and Jaggi
[12] developed ordering policies of deteriorating items
under permissible delay in payments. Chang et al. [13]
established an inventory model for deteriorating items
with linear trend demand under conditions of permissi-
ble delay in payments. Dye and Chung [14] proposed
inventory model by considering the stock-dependent
demand for deteriorating items for partial backlogging
and conditions of permissible delay in payments. They
assume initial stock-dependent demand function. In a
recent paper, Ouyang et al. [15] derived optimal or-
dering policy for deteriorating items with partial back-
logging under permissible delay in payments. In the
existing literature about permissible delay in payments,
it is assumed that the demand is either mostly a func-
tion of time or a function of the retail price. Tsao
and Sheen [16] studied the problem of dynamic pric-
ing, promotion, and replenishment for a deteriorating
item subject to the supplier’s trade credit and retailer’s
promotional effort. In all the above articles, although
the presence of credit period has been incorporated in
the mathematical models, the impact of credit period
on demand is ignored. Jaggi et al. [17] investigated
the impact of credit linked demand on the retailer’s
optimal replenishment policy. In a recent paper, Soni
and Shah [18] established optimal ordering policy for
stock-dependent demand under progressive payment
scheme.

In real life, the occurrence of shortage in an in-
ventory system is phenomenon. Under most market
behaviors, we can often observe that many products
of famous brands or fashionable goods such as certain
brand gum shoes, hi-fi equipment, and clothes may
lead to a situation in which customers may prefer to
wait for backorders while shortages occur. Besides the
product, the image of selling shop is one of the potential
factors that will motivate the customers intention of
backorders. In many real situations, for the fashion-
able commodities and high-tech products with short
product life cycle, the willingness for a customer to
wait for backlogging is diminishing with the length of
the waiting time. Hence, during a shortage period, the
longer the waiting time is, the smaller the backlogging
would be. Permitting limited planned shortages can
reduce the pressure on high production capacity and
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hence result in a smother production schedule. Firms
are able to maintain a backlog of orders to certain loyal
customers without losing their business. However, the
costs of shortages or lost sales should not be exorbi-
tant to facilitate the feasibility of the strategy. If the
cost of holding inventory is significantly higher than
the shortage cost, permitting occasional brief shortages
to lower the average inventory level may be a sound
business practice to reduce the total cost. To reflect
this phenomenon, Teng et al. [19] developed inven-
tory models with shortages. Yang et al. [20] proposed
deterministic inventory lot size models under inflation
with shortages and deterioration for fluctuating de-
mand. Most researchers assumed that shortages are
completely backlogged. In practice, some customers
would like to wait for backlogging during the shortage
period, but the others would not. Consequently, the
opportunity cost due to lost sales should be considered
in the modeling. Papachristos and Skouri [21] proposed
a partially backlog inventory model in which the back-
logging rate decreases exponentially as the waiting time
increases. Teng et al. [22] established inventory models
for deteriorating items with time varying demand and
partial backlogging.

To attract more sales, suppliers often offer a per-
missible delay in payments if the retailer orders more
than or equal to a predetermined quantity. On the
other hand, the supplier may offer a partial permissible
delay in payments even if the order quantity is less than
predetermined quantity and such a system is termed as
partial trade credit. In supply chain management, par-
tial trade credit financing is one of central features. In
practice, this partial trade credit financing at a retailer
is more matched to real-life situations in a supply chain.
Recently, Ouyang et al. [23] developed an economic
order quantity model for deteriorating items with par-
tially permissible delay in payments linked to order
quantity. In their model, it is assumed that shortage is
not allowed.

In this study, we extend Ouyang et al. [23] model
by allowing shortages and analyze the partial trade
credit financing in a supply chain by EOQ-based model
for decaying items. We assume that the supplier may
offer a partial permissible delay in payments even if
the order quantity is less than predetermined quantity.
The goal of this research is to determine the optimal
ordering policy in order to minimize the total relevant
cost. The remainder of this paper is organized as fol-
lows: Section 2 describes the notations and assumptions
employed throughout this paper. We formulate the pro-
posed model mathematically in Section 3. In Section 4,
several theoretical results by means of eight lemmas

and three theorems are established. Following this, an
efficient algorithm is designed to determine the opti-
mal policy. Section 5 shows that the inventory models
of numerous previous works are special cases of this
study. To highlight and visualize the results, a specific
example is then given in Section 6. In Section 7, sen-
sitivity analysis is carried out and some managerial in-
sights are obtained. Finally, we draw some conclusions
and provide some suggestions for future research in
Section 8.

2 Notations and assumptions

Notations and assumptions from Ouyang et al. [23]
model are adopted except the backlogging parameter,
shortage cost for backlogged item, and unit selling price
of the item. We outline these notations below for the
sake of completeness and easy reference.

2.1 Notations

The notation is summarized in the following:

A ordering cost per order
Q ordering quantity
D annual demand
w the quantity at which the full delay payment

permitted per order
tw the time interval that w units are depleted to

zero
θ the deterioration rate, where 0 ≤ θ < 1
δ backlogging parameter, where 0 ≤ δ(t) ≤ 1
C unit purchase cost of the item
C1 shortage cost for backlogged item
C2 unit cost of lost sales
h holding cost per unit per unit time excluding

interest charges
P unit selling price of the item
M the permissible delay period offered by the sup-

plier for settling the accounts to the retailer
α the fraction of the delay payments permitted by

the supplier per order, 0 ≤ α ≤ 1
Ie interest which can be earned per dollar per unit

time
Ip interest payable per dollar in stocks per unit time
T length of order cycle
t1 length of time in which the inventory has no

shortage
I(t) inventory level at time t
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2.2 Assumptions

The following assumptions are made in the model:

1. The system involves single item.
2. Replenishment occurs instantaneously at an

infinite rate.
3. Lead time is negligible.
4. Demand rate is known with certainty and uniform.
5. Shortages are allowed and partially backordered,

i.e., only a fraction of shortages backordered is
a differentiable and decreasing function of time t
denoted by δ(t), where t is the waiting time up to
the next replenishment with 0 ≤ δ(t) ≤ 1. Let B(t)
denote this fraction and is given by B(t) = 1

1+δt .
6. There is no repair or replacement of deteriorated

units during the planning horizon. The item will be
withdrawn from warehouse immediately as they
become deteriorated.

7. The inventory carrying cost and deterioration cost
are assumed proportional to the inventory level
and incur instantaneously.

8. During the trade credit period M, the account
is not settled, and generated sales revenue is de-
posited in an interest bearing account. At the end
of the period, the retailer pays off all units bought
and starts to pay the capital opportunity cost for
the items in stock.

9. If the retailer orders more than or equal to a pre-
determined quantity, then he has a grace period
to make the full payment. Otherwise, he must pay
the payment for goods of certain proportion first
while receiving the goods and has a grace period to
pay off the rest. In such situation, the retailer must
take a loan with the interest charged Ip to pay the
supplier the partial payment (1 − α)CQ when the
order is filled at time 0.

10. Total cost per unit time is given by TC(t1, T) =
ordering cost + holding cost (excluding interest
charges) + shortage cost due to backlogging +
opportunity cost due to lost sales + cost of interest
charges for the unsold items after the permissible
delay in payments − interest earned from the sales
during the permissible period.

3 Mathematical formulation

In this section, a mathematical model is developed to
determine the optimal replenishment cycle time that
minimizes the total annual relevant cost in an inventory
system for deteriorating items under partial permissible
delay in payments including shortages. Due to both the

Fig. 1 Graphical representation of the inventory system

demand and deterioration of the item, the inventory
level decreases during the period [0, t1] and ultimately
falls to zero at t = t1. Thereafter, shortages are allowed
to occur and the demand during the period [t1, T] is
partially backlogged. The behavior of inventory system
at any time is depicted in Fig. 1.

As described above, the inventory level decreases
owing to demand as well as deterioration during the
time interval [0, t1]. Hence, the differential equation
representing the inventory status is given by

dI1(t)
dt

+ θ I1(t) = −D; 0 ≤ t ≤ t1, (1)

with boundary condition I1(0) = Imax. The solution of
Eq. 1 is given by

I1(t) = D
θ

[eθ(t1−t) − 1] if 0 ≤ t ≤ t1. (2)

So, the maximum inventory level for each cycle can be
obtained as

Imax = I1(0) = D
θ

(eθ t1 − 1). (3)

During the shortage interval [t1, T], the demand at
time t is partially backlogged at the fraction 1

1+δ(T−t) .
Thus, the differential equation governing the amount
of demand backlogged is as below.

dI2(t)
dt

= − D
1 + δ(T − t)

; t1 ≤ t ≤ T, (4)

with boundary condition I2(t1) = 0. The solution of
Eq. 4 is given by

I2(t) = D
δ

{
ln [1 + δ(T − t)] − ln [1 + δ(T − t1)]

}

if t1 ≤ t ≤ T. (5)
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Thus, we have

I(t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

D
θ

[
eθ(t1−t) − 1

]
if 0 ≤ t ≤ t1

D
δ

[
ln [1 + δ(T − t)] − ln [1 + δ(T − t1)]

]
if t1 ≤ t ≤ T.

(6)

By letting t = T in Eq. 5, we can obtain the maximum
amount of demand backlogged per cycle as

S = −I2(T) = D
δ

ln [1 + δ(T − t1)] . (7)

Hence, the order quantity per cycle is given by

Q = Imax + S = D
θ

(eθ t1 − 1) + D
δ

ln [1 + δ(T − t1)] .

(8)

From Eq. 8, we can obtain the time interval that w

units are depleted to zero due to both demand and
deterioration as tw = 1

θ
ln

(
θw
D + 1

)
.

If the retailer orders more than or equal to a prede-
termined quantity, then he has a grace period to make
the full payment. Otherwise, he must pay the payment
for goods of certain proportion first while receiving the
goods and has a grace period to pay off the rest. Conse-
quently, it is easy to see that the inequality Q ≥ w holds
iff t1 ≥ tw. If Q ≥ w (i.e., t1 ≥ tw ), then fully delayed
payment is permitted. On the other hand, if the retailer
orders less than a predetermined quantity, then he has
only a partial delay in payments. In such situation, the
retailer must take a loan with the interest to pay the
supplier the partial payment. Hence, if Q < w (i.e., t1 <

tw), then the retailer must take a loan with the interest
charged Ip to pay the supplier the partial payment
(1 − α)CQ when the order is filled at time 0 and then
pays the rest on the last time of the credit period. From
the constant sales revenue PD, the retailer will be able
to payoff the loan (1 − α)CQ at time (1−α)C

P

(
eθ t1 −1

θ

)
.

Also if it is shorter or equal to the permissible delay M,

then t1 ≤ t0 = 1
θ

ln
[

θ PM
(1−α)C + 1

]
and vice versa. Here, it

is noted that t0 > M.
Now, the total annual cost of the inventory system

for the retailer is computed using the following various
components:

• Annual ordering cost = A
T• Excluding interest charges, the annual stock hold-

ing cost = h
T

∫ t1
0 I1(t)dt = hD

θ2T

[
eθ t1 − θ t1 − 1

]

• Annual deterioration cost = Cθ
T

∫ t1
0 I1(t)dt =

CD
θT

[
eθ t1 − θ t1 − 1

]
• Shortage cost due to backlogging = C1

T

∫ T
t1

−
I2(t)dt = C1 D

δT

[
(T − t1) − ln[1+δ(T−t1)]

δ

]
• Opportunity cost due to lost sales = C2

T

∫ T
t1

D [1−
B(T − t)] dt = C2 D

T

[
(T − t1) − ln[1+δ(T−t1)]

δ

]

Regarding the interest charged and interest earned,
based on the values of M, tw, and t0, we have the
following three possible cases and we discuss each case
in detail:

(I) t0 > M ≥ tw, (II) t0 ≥ tw > M, and (III) tw > t0 > M.

Case I t0 > M ≥ tw

In this case, there are three sub-cases.

Case i M ≤ t1

When the end point of credit period is smaller than
or equal to the length of period with positive inven-
tory stock of the item (M ≤ t1), payment of goods is
settled and the retailer starts paying the capital oppor-
tunity cost for the items in stock with rate Ip. Hence,

the annual interest payable = IpCD
T

∫ t1
M

(
eθ(t1−t)−1

θ

)
dt =

IpCD
θ2T

[
eθ(t1−M) − θ(t1 − M) − 1

]
.

Furthermore, we assume that during the time 0
through M, when the account is not settled, the retailer
sells the goods and continues to accumulate sales rev-
enue and earns the interest with rate Ie. Hence, in this
case, the annual interest earned starts from 0 to M and
is given by Ie PD

T

∫ M
0 tdt = Ie PDM2

2T .

Case ii tw ≤ t1 ≤ M

In this sub-case, no interest payable is charged by
the retailer, but the retailer earns interest on average
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sales revenues received. Therefore, the annual inter-
est payable = 0 and the annual interest earned =
Ie PD

T

[∫ t1
0 tdt + ∫ t1

0 (M − t1)dt
]

= Ie PDt1
T

[
M − t1

2

]
.

Case iii 0 < t1 < tw

If t1 < tw, then retailer must borrow the partial pay-
ment (1 − α)CQ at time 0 to pay the supplier and
then pays off the loan from sales revenue at time
(1−α)C

P

(
eθ t1 −1

θ

)
. Hence, the interest charged on the par-

tial payment is from time 0 to (1−α)C
P

(
eθ t1 −1

θ

)
. Thus, the

annual interest payable = IpC2 D(1−α)2

2PT

(
eθ t1 −1

θ

)2
and the

annual interest earned = Ie PD
2T

[
t1 − (1−α)C

P

(
eθ t1 −1

θ

)]2 +
Ie PD(M−t1)

T

[
t1 − (1−α)C

P

(
eθ t1 −1

θ

)]
.

Thus, from the above arguments, for case I, the total
annual cost for the retailer can be expressed as

TC(t1, T) =

⎧⎪⎨
⎪⎩

TC1(t1, T) if M ≤ t1
TC2(t1, T) if tw ≤ t1 ≤ M

TC3(t1, T) if 0 < t1 < tw

(9)

where

TC1(t1, T)

= D
T

{
A
D

+ (h + Cθ)

θ2 (eθ t1 − θ t1 − 1)

+ (C1 + δC2)

δ

[
(T − t1) − ln [1 + δ(T − t1)]

δ

]

+ IpC
θ2

[
eθ(t1−M) − θ(t1 − M) − 1

] − Ie PM2

2

}
,

(10)

TC2(t1, T)

= D
T

{
A
D

+ (h + Cθ)

θ2 (eθ t1 − θ t1 − 1)

+ (C1 + δC2)

δ

[
(T − t1) − ln [1 + δ(T − t1)]

δ

]

− Ie Pt1

[
M − t1

2

]}
, (11)

and

TC3(t1, T)

= D
T

{
A
D

+ (h + Cθ)

θ2 (eθ t1 − θ t1 − 1)

+ (C1 + δC2)

δ

[
(T − t1) − ln [1 + δ(T − t1)]

δ

]

+ Ip
[
(1 − α)C

]2

2P

(
eθ t1 − 1

θ

)2

− Ie P
2

[
t1 − (1 − α)C

P

(
eθ t1 − 1

θ

)]2

− Ie P(M − t1)

×
[

t1 − (1 − α)C
P

(
eθ t1 − 1

θ

)]}
.

(12)

Case II t0 ≥ tw > M

Using the similar approach used in case I, in this case
the total annual cost for the retailer can be expressed
as

TC(t1, T) =

⎧⎪⎨
⎪⎩

TC1(t1, T) if tw ≤ t1
TC4(t1, T) if M ≤ t1 < tw
TC3(t1, T) if t1 ≤ M

(13)

where

TC4(t1, T)

= D
T

{
A
D

+ (h + Cθ)

θ2 (eθ t1 − θ t1 − 1)

+ (C1 + δC2)

δ

[
(T − t1) − ln [1 + δ(T − t1)]

δ

]

+ IpC
θ2

[[
eθ(t1−M) − θ(t1 − M) − 1

]

+ C
[
(1 − α)(eθ t1 − 1)

]2

2P

]

− Ie P
2

[
M − (1 − α)C

P

(
eθ t1 − 1

θ

)]2}
. (14)
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Case III tw > t0 > M

In this case, if t0 ≤ t1 ≤ tw, then M < (1−α)C
P

(
eθ t1 −1

θ

)
.

Hence, particularly for this sub-case, the retailer must
take a loan to pay the supplier the partial payment of
(1 − α)CQ at time 0 and then take another loan to pay
the rest of αCQ at time M. The first loan will be paid

from the sales revenue received until (1−α)C
P

(
eθ t1 −1

θ

)
. As

a result, there is no interest earned. The annual interest
payable is

IpC2

2PT
(1 − α)2

(
eθ t1 − 1

θ

)
Q

+ IpCα

T

[
(1 − α)C

P

(
eθ t1 − 1

θ

)
− M

]
Q

+ IpC2α2

2PT

(
eθ t1 − 1

θ

)
Q

= IpC2

2PT
(1 − 2α + 2α2)

(
eθ t1 − 1

θ

)
Q

+ IpCα

T

[
(1 − α)C

P

(
eθ t1 − 1

θ

)
− M

]
Q (15)

For the other sub-cases, we can also obtain the corre-
sponding annual opportunity cost of capital. Therefore,
for the retailer in case III, we have the total annual
cost as

TC(t1, T) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

TC1(t1, T) if tw ≤ t1
TC5(t1, T) if t0 ≤ t1 ≤ tw
TC4(t1, T) if M ≤ t1 ≤ t0
TC3(t1, T) if t1 ≤ M

(16)

where

TC5(t1, T)

= D
T

{
A
D

+ h + Cθ

θ2 (eθ t1 − θ t1 − 1)

+ (C1 + δC2)

δ

[
(T − t1) − ln [1 + δ(T − t1)]

δ

]

+ IpC(1 − 2α + 2α2)(C/P)

2

(
eθ t1 − 1

θ

)2

+ IpCα

(
eθ t1 − 1

θ

)

×
[
(1 − α)(C/P)

(
eθ t1 − 1

θ

)
− M

]}
. (17)

4 Theoretical results

Here, we shall determine the optimal shortage point
and the optimal replenishment cycle time that minimize
the total annual cost for different cases as follows:

Case I tw ≤ t1 ≤ M

The necessary conditions for the total annual cost
TC1(t1, T) in Eq. 10 to be minimum are ∂TC1(t1,T)

∂t1
= 0

and ∂TC1(t1,T)

∂T = 0 which give

∂TC1(t1, T)

∂t1
= D

T

{
(h + Cθ)

θ
(eθ t1 − 1) + (C1 + δC2)

δ

×
[

1
1 + δ(T − t1)

− 1
]

+ IpC
θ

(eθ(t1−M) − 1)

}
= 0,

(18)

∂TC1(t1, T)

∂T

= D
T2

{
(C1 + δC2)

δ

[
(T − t1)(δt1 − 1)

1 + δ(T − t1)

+ ln [1 + δ(T − t1)]
δ

]
+ Ie PM2

2

− IpC
θ2

[
eθ(t1−M) − θ(t1 − M) − 1

]

− (h + Cθ)

θ2 (eθ t1 − θ t1 − 1) − A
D

}
= 0.

(19)

For our convenience, let U = C1+δC2
δ

, V = h+Cθ
θ

, and

W = IpC
θ

. Then solving for T, from Eq. 18, we have

T = t1 + V
(
eθ t1 − 1

) + W
(
eθ(t1−M) − 1

)
δ
[
U − V

(
eθ t1 − 1

) − W
(
eθ(t1−M) − 1

)] (20)

and Eq. 19 becomes

U
[
(T − t1)(δt1 − 1)

1 + δ(T − t1)
+ ln [1 + δ(T − t1)]

δ

]

+ Ie PM2

2
− W

θ
[eθ(t1−M) − θ(t1 − M) − 1]

− V
θ

(eθ t1 − θ t1 − 1) − A
D

= 0. (21)
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Substituting Eq. 20 into Eq. 21 yields

[V(eθ t1 − 1) + W(eθ(t1−M) − 1)]
(

δt1 − 1
δ

)

+ U
δ

ln

[
U

U − V
(
eθ t1 − 1

) + W
(
eθ(t1−M) − 1

)
]

+ Ie PM2

2
− W

θ
[eθ(t1−M) − θ(t1 − M) − 1]

− V
θ

(eθ t1 − θ t1 − 1) − A
D

= 0 (22)

If we let

�1 = V(eθ M − 1)

(
δM − 1

δ

)

+ U
δ

ln

[
U

U − V
(
eθ M − 1

)
]

+ Ie PM2

2

− V
θ

(eθ M − θ M − 1) − A
D

(23)

then, we have the following lemma:

Lemma 1

(a) If �1 ≤ 0, then the total annual cost TC1(t1, T)

has the unique minimum value at (t1, T) = (t11, T1)

which satisf ies Eqs. 20 and 21 where T1 ∈ [M, ∞).
(b) If �1 > 0, then the total annual cost TC1(t1, T) has

a minimum value at (t1, T) = (M, T1).

Proof Refer to the “Appendix 1.” ��

Similarly, the necessary conditions for the total an-
nual cost TC2(t1, T) in Eq. 11 to be minimum are
∂TC2(t1,T)

∂t1
= 0 and ∂TC2(t1,T)

∂T = 0 which give

∂TC2(t1, T)

∂t1
= D

T

{
(h + Cθ)

θ
(eθ t1 − 1)

+ (C1 + δC2)

δ

[
1

1 + δ(T − t1)
− 1

]

+ Ie P(M − t1)
}

= 0, (24)

∂TC2(t1, T)

∂T

= D
T2

{
C1 + δC2

δ

[
(T − t1)(δt1 − 1)

1 + δ(T − t1)
+ ln [1 + δ(T − t1)]

δ

]

+ Ie P
(

M − t1
2

)
− (h + Cθ)

θ2 (eθ t1 − θ t1 − 1)

− A
D

}
= 0. (25)

Again with the help of the same notation, solving for T,
from Eq. 24, we have

T = t1 + V
(
eθ t1 − 1

) + Ie P(M − t1)

δ
[
U − V

(
eθ t1 − 1

) − Ie P(M − t1)
] (26)

and Eq. 25 becomes

U
[
(T − t1)(δt1 − 1)

1 + δ(T − t1)
+ ln [1 + δ(T − t1)]

δ

]

+ Ie Pt1

[
M − t1

2

]
− V

θ
(eθ t1 − θ t1 − 1) − A

D
= 0. (27)

Substituting Eq. 26 into Eq. 27 yields

[V(eθ t1 − 1) + Ie P(M − t1)]
(

δt1 − 1
δ

)

+ U
δ

ln

[
U

U − V
(
eθ t1 − 1

) − Ie P(M − t1)

]

+ Ie Pt1

(
M − t1

2

)
− V(eθ t1 − θ t1 − 1) − A

D
= 0. (28)

Let

�2 = [V(eθ tw − 1) + Ie P(M − t1)]
(

δtw − 1
δ

)

+ U
δ

ln

[
U

U − V
(
eθ tw − 1

) + Ie P(M − t1)

]

+ Ie Pt1

(
M − tw

2

)
− V(eθ tw − θ tw − 1) − A

D
.

(29)

It is clear that if M ≥ tw, then �2 ≤ �1. Then, we have
the following lemma:

Lemma 2

(a) If �2 ≤ 0 ≤ �1, then the total annual cost
TC2(t1, T) has the unique minimum value at
(t1, T) = (t12, T2) which satisf ies Eqs. 26 and 27
where T2 ∈ [tw, M].

(b) If �2 > 0, then the total annual cost TC2(t1, T) has
a minimum value at (t1, T) = (tw, T2).

(c) If �1 < 0, then the total annual cost TC2(t1, T) has
a minimum value at (t1, T) = (M, T2).

Proof The proof is similar to that in Lemma 1. Hence,
we neglect it. ��
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Again, the necessary conditions for the total annual
cost TC3(t1, T) in Eq. 12 to be minimum are ∂TC3(t1,T)

∂t1
=

0 and ∂TC3(t1,T)

∂T = 0 which give

∂TC3(t1, T)

∂t1
= D

T

{
(h + Cθ)

θ
(eθ t1 − 1)

+ (C1 + δC2)

δ

[
1

1 + δ(T − t1)
− 1

]

+ Ip
[
(1 − α)C

]2

P

(
eθ t1−1

θ

)
eθ t1

+ Ie(1 − α)Ceθ t1

×
[(

t1 − (1 − α)C
P

(
eθ t1−1

θ

))
+ 1

]

− Ie P(M − t1)
}

= 0, (30)

∂TC3(t1, T)

∂T

= D
T2

{
(C1 + δC2)

δ

[
(T − t1)(δt1 − 1)

1 + δ(T − t1)

+ ln [1 + δ(T − t1)]
δ

]

+ Ie P(M − t1)
[

t1 − (1 − α)C
P

(
eθ t1 − 1

θ

)]

+ Ie P
2

[
t1 − (1 − α)C

P

(
eθ t1 − 1

θ

)2
]

− IpC(1 − α)2

2P

(
eθ t1 − 1

θ

)2

− (h + Cθ)

θ2 (eθ t1 − θ t1 − 1) − A
D

}
= 0. (31)

With the help of the same notation, solving for T from
Eq. 30, we have

T = t1 + V(eθ t1 − 1) + W(1 − α)2(C/P)eθ t1 (eθ t1 − 1) + Ie(1 − α)Ceθ t1{t1 − (1 − α)(C/P)[(eθ t1 − 1)/θ ] + 1} + Ie P(M − t1)

δ

{
U − V(eθ t1 − 1) − W(1 − α)2(C/P)eθ t1(eθ t1 − 1) − Ie(1 − α)Ceθ t1 {t1 − (1 − α)(C/P)[(eθ t1 − 1)/θ ] + 1}

}

(32)

and Eq. 31 becomes

U
[
(T − t1)(δt1 − 1)

1 + δ(T − t1)
+ ln [1 + δ(T − t1)]

δ

]

+Ie P(M − t1)
[

t1 − (1 − α)C
P

(
eθ t1 − 1

θ

)]

+ Ie P
2

[
t1 − (1 − α)C

P

(
eθ t1 − 1

θ

)2
]

−W(1 − α)2

2θ P
(eθ t1 − 1)2

− V
θ

(eθ t1 − θ t1 − 1) − A
D

= 0. (33)

Substituting Eq. 32 into Eq. 33 yields

[[V + W(1 − α)2(C/P)eθ t1 ](eθ t1 − 1) + Ie(1 − α)Ceθ t1{t1 − (1 − α)(C/P)[(eθ t1 − 1)/θ ] + 1}]
(

δt1 − 1
δ

)

+U
δ

ln
[

U

U − [
V + W(1 − α)2(C/P)eθ t1

]
(eθ t1 − 1) − Ie(1 − α)Ceθ t1

{
t1 − (1 − α)(C/P)[(eθ t1 − 1)/θ ] + 1

}
]

+Ie P(M − t1){t1 − (1 − α)(C/P)[(eθ t1 − 1)/θ ]} + Ie P
2

{t1 − (1 − α)(C/P)[(eθ t1 − 1)/θ ]2}

−C
2

W(1 − α)2(C/P)[(eθ t1 − 1)/θ ]2 − V
θ

(eθ t1 − θ t1 − 1) − A
D

= 0. (34)
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If we let

�3 = [[V + W(1 − α)2(C/P)eθ tw ](eθ tw − 1) + Ie(1 − α)Ceθ tw {tw − (1 − α)(C/P)[(eθ tw − 1)/θ ] + 1}]
(

δtw − 1
δ

)

+ U
δ

ln
[

U

U − [
V + W(1 − α)2(C/P)eθ tw

]
(eθ tw − 1) − Ie(1 − α)Ceθ tw {tw − (1 − α)(C/P)[(eθ tw − 1)/θ ] + 1}

]

+ Ie P(M − tw)[tw − (1 − α)(C/P)(eθ tw − 1)/θ ] + Ie P
2

{tw − (1 − α)(C/P)[(eθ tw − 1)/θ ]2}

− C
2

W(1 − α)2(C/P)[(eθ tw − 1)/θ ]2 − V
θ

(eθ tw − θ tw − 1) − A
D

(35)

then, we have the following lemma:

Lemma 3

(a) If �3 ≥ 0, then the total annual cost TC3(t1, T)

has the unique minimum value at (t1, T) = (t13, T3)

which satisf ies Eqs. 32 and 33 where T3 ∈ (0, tw).
(b) If �3 < 0, then the value of T3 ∈ (0, tw) which

minimizes TC3(t1, T) does not exist.

Proof Refer to the “Appendix 2.” ��

Now, from Eqs. 29 and 35, it is clear that �3 ≥ �2

for 0 ≤ α ≤ 1. Moreover, since M ≥ tw, we come to
know that �1 ≥ �2. Consequently, for case I, combin-
ing the Lemmas 1–3 and the fact that TC1(t1, M) =
TC2(t1, M), we can obtain the following theoretical
result to determine the optimal shortage point t∗1 and
the optimal cycle time T∗:

Theorem 1 For t0 > M ≥ tw, we have

(a) If �1 ≤ 0 and �3 < 0, then TC(t∗1, T∗) =
TC1(t11, T1) and (t∗1, T∗) = (t11, T1).

(b) If �1 ≤ 0 and �3 ≥ 0, then TC(t∗1, T∗) =
min

[
TC1(t11, T1), TC3(t13, T3)

]
and (t∗1, T∗) =

(t11, T1) or (t13, T3) associated with lower cost.
(c) If �1 > 0, �2 < 0 and �3 ≥ 0, then TC(t∗1, T∗) =

min
[
TC2(t12, T2), TC3(t13, T3)

]
and (t∗1, T∗) =

(t12, T2) or (t13, T3) associated with lower cost.
(d) If �2 ≥ 0, then TC(t∗1, T∗) = min

[
TC2(tw, T2),

TC3(t13, T3)
]

and (t∗1, T∗) = (tw, T2) or (t13, T3)

associated with lower cost.
(e) If �1 > 0 and �3 < 0, then TC(t∗1, T∗) = TC2(t12,

T2) and (t∗1, T∗) = (t12, T2).

Case II t0 ≥ tw > M

Applying the same approach used in case I, the nec-
essary conditions for the total annual cost TC1(t1, T) in

Eq. 10 to be minimum are the same as Eqs. 20 and 21.
Similarly, to show that there exists a unique value of
(t1, T) in [tw, ∞) at which TC1(t1, T) is minimized,
we let

�4 = [V(eθ tw − 1) + W(eθ(tw−M) − 1)]
(

δtw − 1
δ

)

+ U
δ

ln

[
U

U − V
(
eθ tw − 1

) − W(eθ(tw−M) − 1)

]

+ Ie PM2

2
− W

θ
[eθ(tw−M) − θ(tw − M) − 1]

− V
θ

(eθ tw − θ tw − 1) − A
D

. (36)

Consequently, we have the following lemma:

Lemma 4

(a) If �4 ≤ 0, then the total annual cost TC1(t1, T)

has the unique minimum value at (t1, T) = (t11, T1)

which satisf ies Eqs. 20 and 21 where T1 ∈ [tw, ∞).
(b) If �4 > 0, then the total annual cost TC1(t1, T) has

a minimum value at (t1, T) = (tw, T1).

Proof The proof is similar to that in Lemma 1. Hence,
we neglect it. ��

Similarly, the necessary conditions for the total an-
nual cost TC4(t1, T) in Eq. 14 to be minimum are
∂TC4(t1,T)

∂t1
= 0 and ∂TC4(t1,T)

∂T = 0 which give

∂TC4(t1, T)

∂t1

= D
T

{
(h + Cθ)

θ
(eθ t1 − 1) + (C1 + δC2)

δ

×
[

1
1 + δ(T − t1)

− 1
]

+ IpC
θ

(eθ(t1−M) − 1)

+
[

IpC
θ

(1 − α) + Ie

θ

]
(1 − α)(C/P)eθ t1(eθ t1 − 1)

}

= 0, (37)
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∂TC4(t1, T)

∂T

= D
T2

{
(C1 + δC2)

δ

[
(T − t1)(δt1 − 1)

1 + δ(T − t1)

+ ln [1 + δ(T − t1)]
δ

]

+ Ie P
2

{[M − [(1 − α)(C/P)][(eθ t1 − 1)/θ ]2]}

+ IpC
θ2

{ [
eθ(t1−M) − θ(t1 − M) − 1

]

+ (C/2P)
[
(1 − α)(eθ t1 − 1)

]2
}

− (h + Cθ)

θ2 (eθ t1 − θ t1 − 1) − A
D

}
. (38)

With the help of the same notation, solving for T, from
Eq. 37, we have

T = t1 + V(eθ t1 − 1) + W[eθ(t1−M) − 1] + [
(1 − α)W + (Ie/θ)

]
(1 − α)(C/P)eθ t1(eθ t1 − 1)

δ

[
U − V(eθ t1 − 1) − W[eθ(t1−M) − 1] − [

(1 − α)W + (Ie/θ)
]
(1 − α)(C/P)eθ t1(eθ t1 − 1)

] (39)

and Eq. 38 becomes

U
[
(T − t1)(δt1 − 1)

1 + δ(T − t1)
+ ln [1 + δ(T − t1)]

δ

]

+ Ie P
2

{[M − [(1 − α)(C/P)][(eθ t1 − 1)/θ ]2}

+W
θ

{
[eθ(t1−M) − θ(t1 − M) − 1]

+ (C/2P)[(1 − α)(eθ t1 − 1)]2
}

− V
θ

(eθ t1 − θ t1 − 1) − A
D

= 0. (40)

Substituting Eq. 39 into Eq. 40 yields
[

V(eθ t1 − 1) + W[eθ(t1−M) − 1] + [(1 − α)W + (Ie/θ)](1 − α)Ceθ t1(eθ t1 − 1)

] (
δt1 − 1

δ

)

+ U
δ

ln
[

U

U − V(eθ t1 − 1) − W[eθ(t1−M) − 1] − [
(1 − α)W + (Ie/θ)

]
(1 − α)Ceθ t1(eθ t1 − 1)

]

+ Ie P
2

{M − [(1 − α)(C/P)][(eθ t1 − 1)/θ ]2} + W
θ

[
eθ(t1−M) − θ(t1 − M) − 1] + (C/2P)[(1 − α)(eθ t1 − 1)]2

]

− V
θ

(eθ t1 − θ t1 − 1) − A
D

= 0. (41)

To show that there exists a unique value of (t1, T) in
[M, tw) at which TC4(t1, T) is minimized, we let

�5 = [
V(eθ M − 1) + [(1 − α)W + (Ie/θ)](1 − α)Ceθ M(eθ M − 1)

] (
δM − 1

δ

)

+U
δ

ln

[
U

U − V(eθ M − 1) − [
(1 − α)W + (Ie/θ)

]
(1 − α)Ceθ M(eθ M − 1)

]

+ Ie P
2

{M − [(1 − α)(C/P)][(eθ M − 1)/θ ]2} + (C/2P)[(1 − α)(eθ M − 1)]2

− V
θ

(eθ M − θ M − 1) − A
D

, (42)
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and

�6 = [
V(eθ tw − 1) + [(1 − α)W + (Ie/θ)](1 − α)Ceθ tw (eθ tw−1)

] (
δtw − 1

δ

)

+U
δ

ln

[
U

U − V(eθ tw − 1) − [
(1 − α)tw + (Ie/θ)

]
(1 − α)Ceθ tw (eθ tw − 1)

]

+ Ie P
2

{tw − [(1 − α)(C/P)][(eθ tw − 1)/θ ]2} + (C/2P)[(1 − α)(eθ tw − 1)]2

− V
θ

(eθ tw − θ tw − 1) − A
D

. (43)

Then, we have the following lemma:

Lemma 5

(a) If �5 ≤ 0 ≤ �6, then the total annual cost
TC4(t1, T) has the unique minimum value at
(t1, T) = (t14, T4) which satisf ies Eqs. 39 and 40
where T4 ∈ [M, tw).

(b) If �5 > 0, then the total annual cost TC4(t1, T) has
a minimum value at (t1, T) = (M, T4).

(c) If �6 < 0, then the value of T ∈ [M, tw) which
minimizes TC4(t1, T) does not exist.

Proof The proof of either (a) or (b) is similar to that in
Lemma 1. As to (c), it is similar to that in Lemma 3(b).

��

Since the necessary conditions for the total annual
cost TC3(t1, T) in Eq. 12 to be minimum are the same
as Eqs. 32 and 33, we have the following lemma:

Lemma 6

(a) If �5 ≥ 0, then the total annual cost TC3(t1, T)

has the unique minimum value at (t1, T) = (t13, T3)

which satisf ies Eqs. 32 and 33 where T3 ∈ (0, M].
(b) If �5 < 0, then the total annual cost TC3(t1, T) has

a minimum value at (t1, T) = (M, T3).

Proof We neglect the proof because it is similar to that
in Lemma 1. ��

Now, from Eqs. 36 and 43, it is clear that �6 ≥
�4 for 0 ≤ α ≤ 1. Moreover, since M < tw, we come to

know that �6 ≥ �5. Consequently, for case II, combin-
ing the Lemmas 4–6 and the fact that TC4(M, T4) =
TC3(M, T3), we can obtain the following theoretical
result to determine the optimal shortage point t∗1 and
the optimal cycle time T∗:

Theorem 2 For t0 ≥ tw > M, we have

(a) If �6 < 0, then TC(t∗1, T∗) = min
[
TC1(t11, T1),

TC3(M, T3)
]

and (t∗1, T∗) = (t11, T1) or (M, T3)

associated with lower cost.
(b) If �4 < 0, �5 < 0 , and �5 ≥ 0, then TC(t∗1, T∗) =

min
[
TC1(t11, T1), TC4(t14, T4)

]
and (t∗1, T∗) =

(t11, T1) or (t14, T4) associated with lower cost.
(c) If �4 < 0 and �5 ≥ 0, then TC(t∗1, T∗) =

min
[
TC1(t11, T1), TC3(t13, T3)

]
and (t∗1, T∗) =

(t11, T1) or (t13, T3) associated with lower cost..
(d) If �4 ≥ 0 and �5 < 0, then TC(t∗1, T∗) =

min
[
TC1(tw, T1), TC4(t14, T4)

]
and (t∗1, T∗) =

(tw, T1) or (t14, T4) associated with lower cost.
(e) If �4 ≥ 0 and �5 ≥ 0, then TC(t∗1, T∗) =

min
[
TC1(tw, T1), TC3(t13, T3)

]
and (t∗1, T∗) =

(tw, T1) or (t13, T3) associated with lower cost.

Case III tw > t0 > M

From Lemma 4, we come to know that if �4 ≤ 0,
then the total annual cost TC1(t1, T) in Eq. 10 has the
unique minimum value at (t11, T1), where T1 ∈ [tw, ∞)

and satisfies Eqs. 20 and 21. Otherwise, TC1(t1, T) has
minimum value at (tw, T1).
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Now, the necessary conditions for the total annual
cost TC5(t1, T) in Eq. 17 to be minimum are ∂TC5(t1,T)

∂t1
=

0 and ∂TC5(t1,T)

∂T = 0 which give

∂TC5(t1, T)

∂t1

= D
T

{
V(eθ t1 − 1) + U

(
1

1 + δ(T − t1)
− 1

)

+ Weθ t1 [(C/P)(eθ t1 − 1) − Mαθ ]
}

= 0, (44)

∂TC5(t1, T)

∂T

= D
T2

{
U

[
(T − t1)(δt1 − 1)

1 + δ(T − t1)
+ ln [1 + δ(T − t1)]

δ

]

− Wα(eθ t1 − 1)

× [
(1 − α)(C/P)[(eθ t1 − 1)/θ ] − M

]

− W
2

(1 − 2α + 2α2)(C/P)(eθ t1 − 1)2

− V
θ

(eθ t1 − θ t1 − 1) − A
D

}
= 0. (45)

With the help of the same notation, solving for T, from
Eq. 44, we have

T = t1 + V(eθ t1 − 1) + Weθ t1
[
(C/P)(eθ t1 − 1) − Mαθ

]
δ
[
V(eθ t1 − 1) − Weθ t1

[
(C/P)(eθ t1 − 1) − Mαθ

]] ,

(46)

and Eq. 45 becomes

U
[
(T − t1)(δt1 − 1)

1 + δ(T − t1)
+ ln [1 + δ(T − t1)]

δ

]

− Wα(eθ t1 − 1)
[
(1 − α)(C/P)[(eθ t1 − 1)/θ ] − M

]

− W
2

(1 − 2α + 2α2)(C/P)(eθ t1 − 1)2

− V
θ

(eθ t1 − θ t1 − 1) − A
D

= 0. (47)

Substituting Eq. 46 into Eq. 47 yields[
V(eθ t1 − 1) + W(eθ(t1−M) − 1) + eθ t1 [(eθ t1 − 1)/θ ](1 − α)C(1 − α)(C/P) + Ie

] (
δt1 − 1

δ

)

+U
δ

ln
[

U
U − V(eθ t1 − 1) − W[eθ(t1−M) − 1] − eθ t1 [(eθ t1 − 1)/θ ](1 − α)C[(1 − α)(C/P) + Ie]

]

−W
2

(1 − 2α + 2α2)(C/P)(eθ t1 − 1)2 − V
θ

(eθ t1 − θ t1 − 1) − A
D

= 0. (48)

To show that there exists a unique value of (t1, T) in
[t0, tw) at which TC5(t1, T) is minimized, we let

�7 = [
V(eθ t0 − 1) + W[eθ(t0−M) − 1] + eθ t0 [(eθ t0 − 1)/θ ](1 − α)C[(1 − α)(C/P) + Ie]

] (
δt0 − 1

δ

)

+ U
δ

ln
[

U
U − V(eθ t0 − 1) − W[eθ(t0−M) − 1] − eθ t0 [(eθ t0 − 1)/θ ](1 − α)C[(1 − α)(C/P) + Ie])

]

− W
2

(1 − 2α + 2α2)(C/P)(eθ t0 − 1)2 − V
θ

(eθ t0 − θ t0 − 1) − A
D

= 0, (49)

and

�8 = [
V(eθ tw − 1) + W[eθ(tw−M) − 1] + eθ tw [(eθ tw − 1)/θ ](1 − α)C[(1 − α)(C/P) + Ie]

] (
δtw − 1

δ

)

+ U
δ

ln
[

U
U − V(eθ tw − 1) − W[eθ(tw−M) − 1] − eθ tw [(eθ tw − 1)/θ ](1 − α)C[(1 − α)(C/P) + Ie]

]

− W
2

(1 − 2α + 2α2)(C/P)(eθ tw − 1)2 − V
θ

(eθ tw − θ tw − 1) − A
D

. (50)
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Consequently, we have the following lemma:

Lemma 7

(a) If �7 ≤0≤�8, then the total annual cost TC5(t1, T)

has the unique minimum value at (t1, T) = (t15, T5)

which satisf ies Eqs. 46 and 47 where T5 ∈ [t0, tw).
(b) If �7 > 0, then the total annual cost TC5(t1, T) has

a minimum value at (t1, T) = (t0, T5).
(c) If �8 < 0, then the value of T ∈ [t0, tw) which min-

imizes TC5(t1, T) does not exist.

Proof The proof of either (a) or (b) is similar to
that in Lemma 1. As to (c), it is similar to that in
Lemma 3(b). ��

Again, the necessary conditions for the total cost
TC4(t1, T) in Eq. 14 to be minimum are the same as
Eqs. 39 and 40. To show that there exists a unique value
of (t1, T) in [M, t0] at which TC4(t4, T) is minimized,
we let

�9 = [
V(eθ t0 − 1) + W[e(θ t0−M) − 1] + [(1 − α)W + (Ie/θ)](1 − α)Ceθ t0(eθ t0 − 1)

] (
δt0 − 1

δ

)

+ U
δ

ln
[

U
U − V(eθ t0 − 1) − W[e(θ t0−M) − 1] − [(1 − α)W + (Ie/θ)](1 − α)Ceθ t0(eθ t0 − 1)

]

+ Ie P
2

[
M − (1 − α)(C/P)[(eθ t0 − 1)/θ ]2

]
+ W

θ

[
[eθ(t0−M) − θ(t0 − M) − 1] + (C/2)[(1 − α)(eθ t0 − 1)]2

]

− V
θ

(eθ t0 − θ t0 − 1) − A
D

= 0. (51)

Then, we have the following lemma:

Lemma 8

(a) If �5 ≤ 0 ≤ �9, then the total annual cost
TC4(t1, T) has the unique minimum value at
(t1, T) = (t14, T4) which satisf ies Eqs. 39 and 40
where T4 ∈ [M, t0].

(b) If �5 > 0, then the total annual cost TC4(t1, T) has
a minimum value at (t1, T) = (M, T4).

(c) If �9 < 0, then the total annual cost TC4(t1, T) has
a minimum value at (t1, T) = (t0, T4).

Proof We neglect the proof because it is similar to that
in Lemma 1. ��

From Lemma 6, we come to know that if �5 ≥ 0,
then the total annual cost TC3(t1, T3) in Eq. 12 has the
unique minimum value at (t13, T3), where T3 ∈ (0, M]
and satisfies Eqs. 32 and 33. Otherwise, TC3(t13, T3) has
minimum value at (M, T3).

From Eqs. 49 and 51, it is clear that �9 ≥ �7. Again,
since tw > t0 > M, we come to know that �9 ≥ �5

and �8 ≥ �7 ≥ �5. Consequently, for case III, combin-
ing Lemmas 7 and 8 and the fact that TC4(M, T4) =
TC3(M, T3), we can obtain the following theorem:

Theorem 3 For t0 ≥ tw > M, we have

(a) If �4 < 0, �8 < 0, and �9 < 0, then TC(t∗1,
T∗)=min

[
TC1(t11,T1), TC4(t0,T4)

]
and (t∗1,T

∗)=
(t11, T1) or (t0, T4) associated with lower
cost.

(b) If �4 < 0, �8 < 0 , and �9 ≥ 0, then TC(t∗1,
T∗)=min

[
TC1(t11,T1),TC4(t14,T4)

]
and (t∗1,T

∗)=
(t11, T1) or (t14, T4) associated with lower cost.

(c) If �4 < 0, �8 ≥ 0 , and �9 ≥ 0, then TC(t∗1, T∗) =
min

[
TC1(t11, T1), TC4(t0, T4), TC5(t15, T5)

]
and

(t∗1, T∗) = (t11, T1) or (t0, T4) or (t15, T5) associated
with lower cost.

(d) If �4 <0, �7 <0, �8 ≥ 0 , and �9 ≥ 0, then TC(t∗1,
T∗)=min

[
TC1(t11,T1), TC4(t14,T4), TC5(t15, T5)

]
and (t∗1, T∗) = (t11, T1) or (t14, T4) or (t15, T5)

associated with lower cost.
(e) If �4 < 0, �5 < 0 , and �7 ≥ 0, then TC(t∗1, T∗) =

min
[
TC1(t11, T1), TC4(t14, T4), TC5(t0, T5)

]
and

(t∗1, T∗) = (t11, T1) or (t14, T4) or (t0, T5) associated
with lower cost.

(f) If �4 < 0 and �5 ≥ 0, then TC(t∗1, T∗) =
min

[
TC1(t11, T1), TC3(t13, T3), TC5(t0, T5)

]
and

(t∗1, T∗) = (t11, T1) or (t13, T3) or (t0, T5) associated
with lower cost.
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(g) If �4 ≥ 0, �8 < 0, and �9 < 0, then
TC(t∗1, T∗) = min

[
TC1(tw, T1), TC4(t0, T4)

]
and

(t∗1, T∗) = (tw, T1) or (t0, T4) associated with lower
cost.

(h) If �4 ≥ 0, �8 < 0 , and �9 ≥ 0, then TC(t∗1, T∗) =
min

[
TC1(tw, T1), TC4(t14, T4)

]
and (t∗11, T∗) =

(tw, T1) or (t14, T4) associated with lower cost.
(i) If �4 ≥ 0, �8 ≥ 0 , and �9 ≥ 0, then TC(t∗1, T∗) =

min
[
TC1(tw, T1), TC4(t0, T4), TC5(t15, T5)

]
and

(t∗1, T∗) = (tw, T1) or (t0, T4) or (t15, T5) associated
with lower cost.

(j) If �4 ≥ 0, �7 < 0, �8 ≥ 0 > , and > �9 ≥ 0,
then TC(t∗1, T∗) = min

[
TC1(tw, T1), TC4(t14, T4),

TC5(t15, T5)big] and (t∗1, T∗) = (tw, T1) or (t14, T4)

or (t15, T5) associated with lower cost.
(k) If �4 ≥ 0, �5 < 0 , and �7 ≥ 0, then TC(t∗1, T∗) =

min
[
TC1(tw, T1), TC4(t14, T4), TC5(t0, T5)

]
and

(t∗1, T∗) = (tw, T1) or (t14, T4) or (t0, T5) associated
with lower cost.

(l) If �4 ≥ 0 and �5 ≥ 0, then TC(t∗1, T∗) =
min

[
TC1(tw, T1), TC3(t13, T3), TC5(t0, T5)

]
and

(t∗1, T∗) = (tw, T1) or (t13, T3) or (t0, T5) associated
with lower cost.

Computational algorithm Combining the above three
theorems, we propose a computational algorithm for
solving the problem, and this algorithm is based on
Ouyang et al. [23] model except that shortage is here
allowed. Based on t0 > M and the values of M, tw
and t0, we have three possible sets of sub-problems:
(1) t0 > M ≥ tw, (2) t0 ≥ tw > M, and (3) tw > t0 > M.
According to Theorems 1 and 2, there are five sub-cases
each in the first two sub-problems, and as per Theorem
3, there are 12 sub-cases in the last sub-problem.

Summarizing the above arguments and by using the
characteristics of Theorems 1–3, we develop the follow-
ing algorithm to solve the problem:

Step 1. Compare the values of t0, M, and tw. If t0 >

M ≥ tw, then go to step 2. If t0 ≥ tw > M, then
go to step 3. Otherwise, if tw > t0 > M, then
go to step 4.

Step 2. Calculate the values of �1, �2, and �3 with the
help of Eqs. 23, 29, and 35, respectively.

(1) If �1 ≤ 0 and �3 < 0, then TC(t∗1, T∗) =
TC1(t11, T1) and (t∗1, T∗) = (t11, T1). Go to
step 5.

(2) If �1 ≤ 0 and �3 ≥ 0, then TC(t∗1, T∗) =
min

[
TC1(t11, T1), TC3(t13, T3)

]
and (t∗1,

T∗) = (t11, T1) or (t13, T3) associated with
lower cost. Go to step 5.

(3) If �1 > 0, �2 < 0 , and �3 ≥ 0, then
TC(t∗1, T∗) = min

[
TC2(t12, T2),TC3(t13,

T3)
]

and (t∗1, T∗) = (t12, T2) or (t13, T3)

associated with lower cost. Go to step 5.
(4) If �2 ≥ 0, then TC(t∗1, T∗) = min

[
TC2(tw,

T3), TC3(t13, T3)
]

and (t∗1, T∗) = (tw, T3)

or (t13, T3) associated with lower cost. Go
to step 5.

(5) If �1 > 0 and �3 < 0, then TC(t∗1, T∗) =
TC2(t12, T2) and (t∗1, T∗) = (t12, T2). Go to
step 5.

Step 3. Calculate the values of �4, �5, and �6 with the
help of Eqs. 36, 42, and 43, respectively.

(1) If �6 <0, then TC(t∗1, T∗)=min
[
TC1(t11,

T1), TC3(M, T3)
]

and (t∗1, T∗) = (t11, T1)

or (M, T3) associated with lower cost. Go
to step 5.

(2) If �4 < 0, �5 < 0 , and �5 ≥ 0, then
TC(t∗1, T∗) = min

[
TC1(t11, T1), TC4(t14,

T4)
]

and (t∗1, T∗) = (t11, T1) or (t14, T4)

associated with lower cost. Go to step 5.
(3) If �4 < 0 and �5 ≥ 0, then TC(t∗1, T∗) =

min
[
TC1(t11, T1), TC3(t13, T3)

]
and (t∗1,

T∗) = (t11, T1) or (t13, T3) associated with
lower cost. Go to step 5.

(4) If �4 ≥ 0 and �5 < 0, then TC(t∗1, T∗) =
min

[
TC1(tw, T1), TC4(t14, T4)

]
and (t∗1,

T∗) = (tw, T1) or (t14, T4) associated with
lower cost. Go to step 5.

(5) If �4 ≥ 0 and �5 ≥ 0, then TC(t∗1, T∗) =
min

[
TC1(tw, T1), TC3(t13, T3)

]
and (t∗1,

T∗) = (tw, T1) or (t13, T3). Go to step 5.

Step 4. Calculate the values of �4, �5, �7, �8, and
�9 with the help of Eqs. 36, 42, and 49–51,
respectively.

(1) If �4 < 0, �8 < 0, and �9 < 0, then
TC(t∗1, T∗) = min

[
TC1(t11, T1),TC4(t0,

T4)
]

and (t∗1, T∗) = (t11, T1) or (t0, T4)

associated with lower cost. Go to step 5.
(2) If �4 < 0, �8 < 0 , and �9 ≥ 0, then

TC(t∗1, T∗)=min
[
TC1(t11, T1), TC4(t14,

T4)
]

and (t∗1, T∗) = (t11, T1) or (t14, T4)

associated with lower cost. Go to step 5.
(3) If �4 < 0, �8 ≥ 0 , and �9 ≥ 0, then

TC(t∗1, T∗)=min
[
TC1(t11, T1), TC4(t0,

T4), TC5(t15, T5)
]

and (t∗1, T∗) = (t11,

T1) or (t0, T4) or (t15, T5) associated
with lower cost. Go to step 5.

(4) If �4 < 0, �7 < 0, �8 ≥ 0 , and �9 ≥
0, then TC(t∗1, T∗) = min

[
TC1(t11, T1),
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TC4(t14, T4), TC5(t15, T5)
]

and (t∗1,
T∗) = (t11, T1) or (t14, T4) or (t15, T5)

associated with lower cost. Go to step 5.
(5) If �4 < 0, �5 < 0 , and �7 ≥ 0, then

TC(t∗1,T
∗) = min

[
TC1(t11,T1),TC4(t14,

T4), TC5(t0, T5)
]

and (t∗1, T∗) = (t11, T1)

or (t14, T4) or (t0, T5) associated with
lower cost. Go to step 5.

(6) If �4 < 0 and �5 ≥ 0, then TC(t∗1,
T∗) = min

[
TC1(t11, T1), TC3(t13, T3),

TC5(t0, T5)
]

and (t∗1, T∗) = (t11, T1) or
(t13, T3) or (t0, T5) associated with
lower cost. Go to step 5.

(7) If �4 ≥ 0, �8 < 0, and �9 < 0, then
TC(t∗1, T∗) = min

[
TC1(tw, T1), TC4(t0,

T4)
]

and (t∗1, T∗) = (tw, T1) or (t0, T4)

associated with lower cost. Go to step 5.
(8) If �4 ≥ 0, �8 < 0 , and �9 ≥ 0, then

TC(t∗1, T∗)=min
[
TC1(tw, T1), TC4(t14,

T4)
]

and (t∗11, T∗) = (tw, T1) or (t14, T4)

associated with lower cost. Go to step 5.
(9) If �4 ≥ 0, �8 ≥ 0 , and �9 ≥ 0, then

TC(t∗1, T∗) = min
[
TC1(tw, T1), TC4(t0,

T4), TC5(t15, T5)
]

and (t∗1, T∗) = (tw,

T1) or (t0, T4) or (t15, T5) associated
with lower cost. Go to step 5.

(10) If �4 ≥ 0, �7 < 0, �8 ≥ 0 , and �9 ≥
0, then TC(t∗1, T∗) = min

[
TC1(tw, T1),

TC4(t14,T4), TC5(t15,T5)
]

and (t∗1,T
∗)=

(tw, T1) or (t14, T4) or (t15, T5) asso-
ciated with lower cost. Go to step 5.

(11) If �4 ≥ 0, �5 < 0 , and �7 ≥ 0, then
TC(t∗1, T∗)=min

[
TC1(tw, T1), TC4(t14,

T4), TC5(t0, T5)
]

and (t∗1, T∗) = (tw, T1)

or (t14, T4) or (t0, T5) associated with
lower cost. Go to step 5.

(12) If �4 ≥ 0 and �5 ≥ 0, then TC(t∗1,
T∗) = min

[
TC1(tw, T1), TC3(t13, T3),

TC5(t0, T5)
]

and (t∗1, T∗) = (tw, T1)

or (t13, T3) or (t0, T5) associated with
lower cost. Go to step 5.

Step 5. Stop.

After obtaining the optimal values of t1 and T denoted
by t∗1 and T∗, respectively, the optimal value of order
quantity Q, denoted by Q∗, can be obtained from Eq. 8.

5 Special cases

In this section, we discuss some special cases listed
below.

(a) If we let δ → ∞, we have T ≈ t1. Thus, the
model becomes the case without shortages. By the
above parametric considerations, the parameters
C1 and C2 do not take place and therefore C1 =
0 and C2 = 0. Adopting the above conditions,
Eqs. 10–12, 14, and 17 become as follows:

TC1(T) = D
T

{
A
D

+ (h + Cθ)

θ2 (eθT − θT − 1)

+ IpC
θ2 [eθ(T−M) − θ(T − M) − 1]

− Ie PM2

2

}
, (52)

TC2(T) = D
T

{
A
D

+ (h + Cθ)

θ2 (eθT − θT − 1)

− Ie PT
[

M − T
2

]}
, (53)

TC3(T) = D
T

{
A
D

+ (h + Cθ)

θ2 (eθT − θT − 1)

+ Ip
[
(1 − α)C

]2

2P

(
eθT − 1

θ

)2

− Ie P
2

[
T − (1 − α)C

P

(
eθT − 1

θ

)]2

− Ie P(M − T)

×
[

T − (1 − α)C
P

(
eθT − 1

θ

)]}
,

(54)

TC4(T) = D
T

{
A
D

+ (h + Cθ)

θ2 (eθT − θT − 1)

+ IpC
θ2

[
[eθ(T−M) − θ(T − M) − 1]

+ C
[
(1 − α)(eθT − 1)

]2

2P

]

− Ie P
2

×
[

M − (1 − α)C
P

(
eθT − 1

θ

)]2}
,

(55)
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TC5(T) = D
T

{
A
D

+ (h + Cθ)

θ2 (eθT − θT − 1)

+ IpC(1 − 2α + 2α2)(C/P)

2

×
(

eθT − 1
θ

)2

+ IpCα

(
eθT − 1

θ

)

×
[
(1 − α)(C/P)

(
eθT −1

θ

)
−M

]}
.

(56)

The Eqs. 52–56 are consistent with Eqs. 9–11, 13
and 16 in Ouyang et al. [23] model.

(b) If we let θ → 0, i.e., when the deterioration is
ignored, there is no cost due to deteriorated
units. Similarly, δ → ∞, we have T ≈ t1. Hence,
the model becomes the case without shortages
and without deterioration. By the above paramet-
ric considerations, we have lim

θ→0+
t1 = 0. Also when

α = 1, w = 0 and adopting the above conditions,
the model can be reduced to economic ordering
quantity model under permissible delay in pay-
ments and the result is the same as that in Teng
[1] model.

(c) When δ → ∞, θ → 0, α = 1, P = C, and w = 0,
the model is the same as Goyal [5] model.

(d) When δ → ∞, α = 1, P = C, and w = 0, the
model becomes the case for deteriorating items
and without shortages. Hence, this model is sim-
ilar to Aggarwal and Jaggi [12] model.

Thus, numerous previous models such as Ouyang et al.
[23], Teng [1], Goyal [5], and Aggarwal and Jaggi [12]
models can be treated as special cases of our model.

6 Numerical examples

In order to illustrate the solution procedure, let us
consider an inventory system with the following data:
Let A = $250 per order, D = 1,000 units per year,
h = $15 per unit per year, M = 0.1233, C1 = $30 per
unit, C2 = $25 per unit, P = $85 per unit, Ip = 0.15 per
dollar per year, Ie = 0.12 per dollar per year, θ = 0.08,
and δ = 0.56.

Using the proposed algorithm, we obtained the opti-
mal results for different parameters of α = 0.3, 0.6, 0.9;
w = 100, 150, 200, and C = 15, 25, 35 as shown in the
Table 1.

Table 1 Optimal solutions under different parametric values

α w C t∗1 T∗ Q∗ TC(t∗1, T∗)
0.3 100 15 0.1364 0.1823 662 2,125.41

25 0.1315 0.1801 659 2,170.72
35 0.1228 0.1753 656 2,203.45

150 15 0.1627 0.1814 689 2,210.54
25 0.1627 0.1814 688 2,260.72
35 0.1627 0.1814 688 2,301.35

200 15 0.1361 0.1810 661 2,270.51
25 0.1302 0.1781 657 2,298.41
35 0.1217 0.1703 650 2,341.52

0.6 100 15 0.1364 0.1823 662 2,125.41
25 0.1315 0.1801 659 2,170.72
35 0.1228 0.1753 656 2,203.45

150 15 0.1358 0.1819 688 2,191.35
25 0.1627 0.1814 687 2,210.51
35 0.1627 0.1814 687 2,251.63

200 15 0.1363 0.1813 663 2,258.62
25 0.1311 0.1791 662 2,270.35
35 0.1223 0.1724 660 2,286.72

0.9 100 15 0.1364 0.1823 662 2,125.41
25 0.1315 0.1801 659 2,170.72
35 0.1228 0.1753 656 2,203.45

150 15 0.1365 0.1821 664 2,191.35
25 0.1317 0.1825 663 2,281.52
35 0.1228 0.1728 655 2,303.72

200 15 0.1361 0.1820 664 2,191.35
25 0.1312 0.1791 663 2,281.53
35 0.1221 0.1703 655 2,303.72

The following inferences can be made from the re-
sults in Table 1:

1. If w is sufficiently large, then the retailer will prefer
the partially delayed payment to the fully delayed
payment. Thus, if w is sufficiently large, then the
benefit from the fully delayed payment is less than
the inventory cost increase. From the economical
point of view, if w is sufficiently large, then the
benefit from the fully delayed payment is made to
avoid huge inventory holding cost.

2. If w is not large, then the retailer will order more
than or equal to w and take the benefit of the fully
delayed payment.

3. If α is sufficiently large, then the partially delayed
payment is almost the same as the fully delayed
payment. Hence, the retailer will order less than w

to reduce inventory cost and enjoy almost the same
benefit as the fully delayed payment.

4. If the purchasing cost C increases, then the opti-
mal shortage point t∗1 , replenishment cycle time T∗,
and the ordering quantity Q∗ will be decreasing
while the optimal total annual cost TC∗ will be
increasing.
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These results not only provide a valuable reference
for decision makers in planning and controlling the
inventory but also provide a useful model for many
organizations that use the decision rule to minimize
their total costs. Our computational results identify that
both supplier and retailer take advantages from the
trade credit.

This analysis also ascertain that if the supplier could
offer a partial permissible delay in payments even if the
order quantity is less than predetermined quantity, then
the total inventory cost will decrease. The proposed
partial trade credit financing strategy can be imple-
mented in the inventory control of the selling items that
deteriorate continuously such as fruits, vegetables, and
others.

7 Sensitivity analysis

In this section, we study the effect of changes in the
major parameters of the system on the optimal length
of inventory interval with positive inventory t∗1 , the opti-
mal length of order cycle T∗, the optimal order quantity
per cycle Q∗, and the minimum total annual cost TC∗,
by assuming the values of the parameters (α, w, C) as
α = 0.3, w = 100, and C = 15. A sensitivity analysis is
performed by considering the same numerical example,
and computed results are shown in Table 2. Based on
the computational results shown in Table 2, we obtain
the following managerial insights:

1. The optimal length of inventory interval with pos-
itive inventory t∗1 , the optimal length of order cy-
cle T∗, and the optimal order quantity per cycle
Q∗ decrease while the minimum total annual cost
TC∗ increases with increase in the values of the
parameters h and θ . It indicates the following man-
agerial phenomena: It is reasonable that when the
holding cost increases, the retailer will shorten the
cycle time. If the retailer can effectively reduce the
deteriorating rate of item by improving equipment
of storehouse, the total annual inventory cost will
be lowered.

2. The values of t∗1 , T∗, Q∗, and TC∗ increase with
increase in the values of parameter A. This shows
that if the ordering cost per order could be reduced
effectively, the total annual cost could be improved.

3. Each of t∗1 , T∗, Q∗, and TC∗ decreases with an
increase in the credit period M. It implies that, the
longer the credit period is, the shorter the replen-
ishment cycle, the lower the order quantity and the
total annual cost will be. From economical point of
view, if the supplier provides a permissible delay in

Table 2 Effect of change in various parameters of the inventory
model

Changing Change in t∗1 T∗ Q∗ TC(t∗1, T∗)
parameters parameters

h 15 0.1364 0.1823 662 2,125.41
20 0.1358 0.1801 661 2,130.34
25 0.1301 0.1783 660 2,136.52
30 0.1257 0.1766 660 2,139.58

A 250 0.1364 0.1823 662 2,125.41
300 0.1368 0.1828 662 2,130.61
350 0.1371 0.1831 663 2,134.75
400 0.1375 0.1836 663 2,140.52

M 0.1233 0.1364 0.1823 663 2,138.34
0.1370 0.1362 0.1815 663 2,135.61
0.1569 0.1358 0.1803 662 2,128.35
0.1644 0.1341 0.1798 662 2,125.41

δ 0.38 0.1345 0.1817 663 2,210.35
0.44 0.1351 0.1811 663 2,216.71
0.50 0.1360 0.1809 662 2,220.51
0.56 0.1364 0.1803 662 2,225.41

C1 30 0.1364 0.1823 662 2,125.41
40 0.1368 0.1818 662 2,136.51
50 0.1372 0.1813 661 2,141.58
60 0.1378 0.1809 661 2,143.62

C2 25 0.1381 0.1810 661 2,144.54
35 0.1376 0.1815 661 2,140.32
45 0.1371 0.1819 662 2,137.56
55 0.1364 0.1823 662 2,125.41

θ 0.02 0.1382 0.1834 663 2,115.67
0.04 0.1379 0.1831 663 2,118.43
0.06 0.1368 0.1829 662 2,121.35
0.08 0.1364 0.1823 662 2,125.41

Ie 0.10 0.1369 0.1826 662 2,138.75
0.12 0.1364 0.1823 662 2,136.67
0.14 0.1360 0.1820 661 2,132.41
0.16 0.1351 0.1814 661 2,128.51

Ip 0.13 0.1369 0.1829 662 2,120.51
0.15 0.1364 0.1823 662 2,125.41
0.18 0.1360 0.1819 661 2,129.67
0.21 0.1351 0.1815 661 2,136.52

payments, the retailer will order lower quantity in
order to take the benefits of the permissible delay
more frequently.

4. Increasing the backlogging parameter δ decreases
the order quantity Q∗ and increases the total an-
nual cost TC∗. It indicates that when shortages are
completely backlogged, total annual cost becomes
lower. Also it can be found that the replenishment
cycle time decreases with an increase in the back-
logging parameter δ.

5. With the augment of the shortage cost for back-
logged item, C1, t∗1 , and TC∗ increase but T∗ and
Q∗ decrease. On the other hand, with the increase
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in the values of the parameter, C2, t∗1 , and TC∗
decrease but T∗ and Q∗ increase.

6. As the interest earned Ie increases, t∗1, T∗, Q∗, and
TC∗ are marginally decreased. That is, the length
of inventory interval with positive inventory, the
length of replenishment cycle, order quantity, and
total annual cost decrease with increase in Ie. This
implies that when the interest earned per dollar is
high, the total cost is low.

7. Increase in the interest payable Ip results in a
decrease in t∗1, T∗, and Q∗ where as an increase
in TC∗. That is, the total annual cost increases
when the annual interest payable per dollar in stock
is high. This shows that when the annual interest
payable per dollar in stock is high, the retailer
should order less amount of inventory.

8 Concluding remarks

In this paper, we extend Ouyang et al. [23] model by
allowing shortages and analyze the partial trade credit
financing in a supply chain by EOQ-based model for
decaying items. We assume that the supplier may offer
a partial permissible delay in payments even if the order
quantity is less than predetermined quantity. Further-
more, we establish several theoretical results which are
given as Lemmas 1–8 and Theorems 1–3 to determine
the optimal solution under different conditions. An
algorithm using the software Matlab 7.0 is developed
to derive the optimal shortage point, cycle time, and
ordering quantity in order to minimize the total annual
cost. A numerical example is presented to illustrate
the procedures of algorithm. Comprehensive sensitivity
analysis for the effects of the parameters on the deci-
sions is also offered. Based on the sensitivity analysis,
we obtain some managerial insights. The results in the
numerical example indicate that the retailer trades off
the benefits of full delay in payment against the partial
delay in payment and always enjoys the full delay in
payment.

There are a number of directions in which this re-
search can be extended. One possible extension stems
from the demand. For instance, we may extend the
constant demand rate to a more realistic time-varying
demand rate that is a function of time, selling price,
and others. Another potential direction for future re-
search lies in the generalization of the model. We could
generalize the model to allow quantity discounts and
inflation rate. Also, it is hoped to further incorporate
the proposed model into more realistic assumptions,
such as a finite rate of replenishment.
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Appendix 1: Proof of Lemma 1

Proof of part (a) Set

F1(x) = [V(eθx − 1) + W(eθ(x−M) − 1)]
(

δx − 1
δ

)

+ U
δ

ln

[
U

U − V
(
eθx − 1

) + W
(
eθ(x−M) − 1

)
]

+ Ie PM2

2
− W

θ
[eθ(x−M) − θ(x − M) − 1]

− V
θ

(eθx − θx − 1) − A
D

(57)

Taking the first derivative of F1(x) with respect to
x ∈ [M, ∞), we get dF1(x)

dx > 0. Thus, F1(x) is strictly
increasing function with respect to x ∈ [M, ∞). Fur-
thermore, from Eq. 57, we know that F1(M) = �1 and
lim

x→∞ F1(x) = +∞. Therefore, using intermediate value

theorem, there exists a unique t1, say, t∗11 ∈ [M, ∞) such
that F(t∗11) = 0.

Furthermore, taking the second derivative of
TC1(t1, T) with respect to t1 and T and then finding
the values of these functions at the point (t∗11, T∗

1 ), we
obtain

∂2TC1(t1, T)

∂t2
1

= D
T∗

1

[
θ(Veθ t∗11 + Weθ(t∗11−M))

+ C1 + δC2[
1 + δ(T∗

1 − t∗11)
]2

]
> 0,

∂2TC1(t1, T)

∂t1∂T
= − D

T∗
1

[
C1 + δC2[

1 + δ(T∗
1 − t∗11)

]2

]
,

∂2TC1(t1, T)

∂T2 = D
T∗

1

[
C1 + δC2[

1 + δ(T∗
1 − t∗11)

]2

]
> 0
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and

(
∂2TC1(t1, T)

∂t2
1

)(
∂2TC1(t1, T)

∂T2

)
−

(
∂2TC1(t1, T)

∂t1∂T

)2

=
(

D
T∗

1

)2

θ [Veθ t∗11 + Weθ(t∗11−M)]

×
[

C1 + δC2[
1 + δ(T∗

1 − t∗11)
]2

]
> 0

Thus, we can easily see that t11 ∈ [M, ∞) is the
unique minimum solution of TC1(t1, T) denoted by t∗11.
Once we obtain t∗11, then the value of T denoted by T∗

1
can be found from Eq. 20 and is given by

T∗
1 = t∗11 + V(eθ t∗11 − 1) + W[eθ(t∗11−M) − 1]

δ
[
U − V(eθ t∗11 − 1) − W[eθ(t∗11−M) − 1]]

Proof of part (b) On the other hand, if �1 > 0,
then we know that F(x) > 0, for all x ∈ [M, ∞). Thus,
∂TC1(t1,T)

∂T = DF1(t1)
T2 > 0 for all t1 ∈ [M, ∞) which implies

that TC1(t1, T) is a strictly increasing function of T.
Thus, TC1(t1, T) has a minimum value when T is mini-
mum. On the other hand, from Eq. 17, we can see that T
has a minimum value of M + V(eθ M−1)

δ[U−V(eθ M−1)] as t11 = M.
Therefore, TC1(t1, T) has minimum value at the point
(t∗11, T∗) = (M, T∗

1 ), where t∗11 = M and

T∗
1 = M + V(eθ M − 1)

δ[U − V(eθ M − 1)]
This completes the proof. ��

Appendix 2: Proof of Lemma 3

Proof of part (a) To prove Lemma 3, we set

F3(x) =
[
[V + W(1 − α)2(C/P)eθx](eθx − 1) + Ie(1 − α)Ceθx [

x − (1 − α)(C/P)[(eθx − 1)/θ ] + 1
]] (

δx − 1
δ

)

+ U
δ

ln
[

U

U − [
V + W(1 − α)2(C/P)eθx

]
(eθx − 1) − Ie(1 − α)Ceθx

{
x − (1 − α)(C/P)[(eθx − 1)/θ ] + 1

}
]

+ Ie P(M − x)[x − (1 − α)(C/P)(eθx − 1)/θ ] + Ie P
2

[
x − (1 − α)(C/P)[(eθx − 1)/θ ]2]

− C
2

W(1 − α)2(C/P)[(eθx − 1)/θ ]2 − V
θ

[eθx − θx − 1] − A
D

(58)

Taking the first derivative of F3(x) with respect to
x ∈ (0, tw), we get dF3(x)

dx > 0. Thus, F3(x) is strictly in-
creasing function with respect to x ∈ (0, tw). Further-
more, from Eq. 58, we know that F3(M) = �3 and
lim
x→0

F3(x) = −A < 0 and lim
x→t−w

F3(x) = �3. Therefore,

if lim
x→t−w

F3(x) = �3 ≥ 0, then by applying intermediate

value theorem, there exists a unique t1, say, t∗13 ∈ (0, tw)

such that F(t∗13) = 0.
Now, taking the second derivative of TC3(t1, T) with

respect to t1 and T and then finding the values

of these functions at the point (t1, T) = (t∗13, T∗
3 ), we

obtain

(
∂2TC3(t1, T)

∂t2
1

)(
∂2TC3(t1, T)

∂T2

)
−

(
∂2TC3(t1, T)

∂t1∂T

)2

> 0

Thus, we can easily see that t13 ∈ (0, tw) is the unique
minimum solution of TC3(t3, T) denoted by t∗13. Once
we obtain t∗13, then the value of T denoted by T∗

3 can be
found from Eq. 32 and is given by

T∗
3 = t∗13 +

V(eθ t∗13 − 1)+ W(1 − α)2(C/P)eθ t∗13 (eθ t∗13 − 1)+ Ie(1− α)Ceθ t∗13

[
t∗13 −(1 − α)(C/P)(eθ t∗13 − 1)/θ+ 1

]
+ Ie P(M − t∗13)

δ

{
U − V(eθ t∗13 − 1)− W(1− α)2(C/P)eθ t∗13(eθ t∗13 − 1)− Ie(1 − α)Ceθ t∗13

[
t∗13− (1 − α)(C/P)[(eθ t∗13 − 1)/θ ]+1

]}

Proof of part (b) However, if lim
x→t−w

F3(x) = �3 < 0,

then F3(x) < 0 for all t13 ∈ (0, tw). Consequently, we

have ∂TC3(t1,T)

∂T = DF3(t1)
T2 < 0 for all t1 ∈ (0, tw) which im-

plies that TC3(t1, T) is a strictly decreasing function of
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T in the open interval (0, tw). Therefore, we cannot find
the value of T in the open interval (0, tw) that minimizes
TC3(t1, T). This completes the proof. ��
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