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Abstract This paper describes a methodology of auto-
matic genetic algorithm parameters adjustment dedi-
cated to a job-shop problem with a no-wait constraint
with a makespan criterion. The numerical results show
that in a given problem, the efficiency of an algorithm
with auto-tuning is placed at the level of an algorithm
steered in a classical way with the best-fit steering
parameters.
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1 Introduction

Every step we take in our surrounding environment
proves to us that we can encounter different kinds of
problems of discrete optimization. To this group, we
can count not only the choice and means of transport
to work but also the arrangement of tools in the cup-
board. The ability of generating good solutions in the
meaning of a chosen criterion (for instance the time
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of journey, its cost, or the accessibility of tools in the
cupboard) definitely facilitates our lives. In the exam-
ples presented, generating a good solution is principally
a question of any intuition. However, it is different
in bigger undertakings (for instance, in planning the
pipeline network in a big city or choosing a schedule for
the mass production of some units) where generating a
good solution is not an easy job. Moreover, applying a
better solution (than the one applied so far) will bring
visible profits (for instance, in the use of raw materials
or shortening the time of production). To find a solu-
tion to such kinds of problems, different types of ad-
vanced algorithms are applied. Some part of algorithms
dedicated to the very narrow group of problems do not
have their analogies in other situations. Nevertheless,
there are algorithms being applied to a wide variety
of problems based on a common idea. Examples of
general schemes of acting include: the exact method—
branch and bound method, approximate methods like
tabu search method, simulated annealing method, or
genetic algorithm method.

These schemes do not specify in what way the solu-
tion must be found, how to implement each separate
elements of algorithm, or how to select the steering
parameters to a given problem; however, they define
the overall draft of an algorithm. At the same time,
it is widely known that scientists are eager to find an
algorithm that would adapt its parameters to a given
problem. This work attempts to create a universal ge-
netic algorithm that would automatically select all the
crucial parameters based on a statistical information
instance of a given problem. Auto-tuning presented
here will take place not only in a single process off-line
(for a given set of examples) in an initiating phase of an
algorithm but also in on-line—during its work. We will
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verify the quality of auto-tuning procedures through a
wide variety of numerical examinations. In this case,
we will assess the efficiency of genetic algorithm with
auto-tuning methods applied to an analogical algorithm
manually manipulated (in an optimal way). Moreover,
we will carry out a test comparing the genetic algorithm
equipped with all auto-tuning techniques to a known
literature algorithm.

2 Description of the problem

The tested algorithms are dedicated to a job-shop
problem with an additional no-wait constraint. The
makespan of all jobs is assumed as a criterion of op-
timization. The algorithm presented here is a three-
field Graham’s notation (Graham et al. [4]) which is
denoted as J|no — wait|Cpax. This problem varies from
its classic equivalent (through a classic equivalent, the
job-shop problem with no constraints is understood)
where the requirement of the beginning time of an
operation should be exactly as that time when the tech-
nological predecessor finishes its operation execution.
This constraint is very often met not only in those
branches of industry where the transformed product
changes quickly its physical-chemical properties, e.g.,
in drug production (Raaymakers and Hoogeveen [9]),
foodstuff production (Hall and Sriskandarajah [6]),
steel melting (Wismer [16]), or concrete elements man-
ufacturing (Grabowski and Pempera [5]), but also in
other branches like in semiconductors testing (Ovacik
and Uzsoy [14]) or in computer systems (Reddi and
Ramamoorth [10]).

Solving methods was proposed by several authors.
Schuster and Framinan [2, 12] proposed a local search-
based approximative procedures for no-wait job-shop
scheduling. Schuster [11] described a tabu search al-
gorithm and considered complexity of subproblems of
the no-wait job shop. Bozejko and Makuchowski [1]
proposed an efficient hybrid tabu search algorithm for
the considered problem.

2.1 Mathematical model

There is a given set of n jobs J = {1, 2, ..., n} which are
executed on a set of machines M = {1, 2, ..., m}. Addi-
tionally, for each job (k € J) there is a sequence Oy =
(o }{ oi, el 0;"), including r; operations. The amount of
all operations in this process is denoted byo = ) ", _, 7«.
The operation 02 € Oy, le{l,2,...,r}, ke J con-
sists of a pair (mi, pﬁ() denoted as follows: first, mi—
the used machine and second, p}—the lasting time of

@ Springer

the operation. Moreover, in the presented model there
exist three types of constraints:

1. Sequencing: the operation of k job must be exe-
cuted in Oy sequence,

2. Synchronic: at the particular moment, each ma-
chine can execute not more than one operation and
more than one operation of a given job cannot be
carried out at the particular moment,

3. No-wait: each operation excluding the first one of
a given job has to begin exactly at the moment of
finishing the previous operation’s conduction of the
same job.

The solution to the classic job-shop problem defined
as a set of moments (S} > 0) of the beginning of oy
operation was executed. However, it must clearly be
seen that in case of an additional no-wait constraint,
there is always a condition

Sﬁ:" =S+ ph, le(1,2,....rc—1).

From the above equation, we can infer directly that
unambiguous setting of the beginning time of some jobs
might be done on the basis of the beginning moment
of other operation of the same job. Let Sy denotes
the beginning time of the k from a definition equating
the beginning moment of the first job operation, Sy =
S}. As a solution to a job-shop problem with no-wait
constraint, we take a vector of non-negative terms of
jobs’ beginning

S=(81,5,...,5).

On the basis of S vector, the beginning moment of
S' of operation execution o can be defined from the

formula:

-1
Sk =S+ Y P

i=1
The solution satisfying all the above constraints is called
a feasible solution. Let C denote the completion time
of the job k, (the moment of finishing the execution of
all operations of a given job),

Vi
Cr =Sk + ZPlk-
i1

The length Cy,x(S) of a sequence S is called the time of
executing all jobs:
Cmax(S) = max Cy.

kel
The problem here consists of finding a feasible solution
S* with a smallest length sequencing Cy,.x(S*), also
called the makespan.
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2.2 Solution coding

Even though a solution to a given problem is S vector
of the times of the beginning of the job’s execution, this
vector will not be a decisive variable in the presented
algorithms. All the analyzed solutions will be gener-
ated by the midpoint algorithm which is later called a
packing procedure, whereas a decisive variable will be a
parameter steering the procedure later called a loading
permutation.

Let 7 = (w(1), 7(2),...,7(n)) denotes a permuta-
tion of all n jobs of J set (loading permutation). The set
of all possible loading permutations will be marked with
I1. The packing procedure consists of n identical steps.
In each of them, on the basis of a previously acquired
partial solution, there is a sequencing of a following
job. The sequencing of one job k € J means setting
Sk as the beginning moment. In the ith step, the job
7 (i) is sequenced in a way that the created partial (or
the finality in the last step) sequencing was a feasible
solution. During this job, the jobs’ beginning moments,
defined in previous steps, cannot be altered.

The effective application of the loading permutation
requires applying a very specific method of coding a
current schedule. Shown here is a sequence of m lists.
The single element of each list is a pair (the beginning
and the end) of moments defining a time interval of
a non-stop usage of a machine. The / list includes a
chronologically ordered set of all time intervals of a /
machine usage. It must be noted that the set moment of
beginning the execution of a sequenced job equals zero
or some operation of a sequenced job is began exactly
at the moment of finishing some other operation on the
same machine (the job is moved towards the left side
on the time axis). Thus, we can deduct from the above,
that in order to find the smallest S; moment of the
sequenced k job, we must check the zero moment and
all the moments resulting from initiating the o} € Oy
operation in all moments of slowing the mﬁc machine.
We must pay attention to the fact that the beginning
of k job in the latest of all analyzed moments always
creates (the partial or the final) feasible solution. Thus,
there is no danger of lack of possibilities to generate
a feasible solution. It can be deducted from this state-
ment that for each possible loading permutation there
is exactly one feasible solution.

Let N denotes the biggest amount of operations in
a given instance of a job, N = maxyc;ry; 0 <n-N. It
must be noted that the number of possible initiating
moments of k job should equal to not more than o - N.
Additionally, in the case where each operation of an
exact k job is executed on a different machine the num-
ber will not exceed the o value. This situation can be

observed in all the tested instances, thus, the analysis of
calculating complexity will be extended by this specific
case:

mz;émz, l<a<b<r, kel, (1)

called later a special case. Moreover, it can be seen that
in the described situation the value of N parameter is
always not bigger than m; N < m.

The effective test of the sequencing acceptability as-
sumes that the analysis of all checked moments must be
carried out in a chronological order. For the analyzed
Sk moment of a given 02 operation, we must exclude
all the time intervals in a mic list which finish before Sﬁ(
moment of beginning this operation. In order to ver-
ify the proper (in the meaning of imposed synchronic
constraints) location of o}, activity, it is enough to check
whether the first from the left intervals begins not ear-
lier than S} + p} moment of finishing the o} operation.
During the test of all analyzed moments, the intervals
in using a machine (for a given operation) are tested
one after another and their number is not bigger than
o. Thus, in the worst case the test of all moments of
beginning the job requires not more than o - N analysis
of intervals (of both excluding and introducing the
constraints). Additionally, in a special case refer to the
formula in Eq. 1 where this number is not bigger than o.

The calculating complexity of one step in a load-
ing procedure in a general case equals the O(oN) =
O(nN?). This is why the whole procedure has the
complexity O(n*N?). In a special case, the calculating
complexity of one step equals O(o) = O(nm) and the
whole procedure has the complexity O(n’m).

The presented approach based on a loading function
can be characterized by the following properties:

1. For each loading permutation, there is only one
feasible solution generated.

2. The generated solutions can be characterized by a
very high quality in the meaning of the value of goal
function.

3. The number of different loading permutations is
much smaller than the number of all active solu-
tions.

4. Different loading permutations can generate the
same solutions.

5. The possibilities of leaving the feasible solution
even in case of the analysis of all possible loading
permutations.

A more thorough analysis, examples and numerical
tests proving the above-mentioned conclusions are pre-
sented in the work of Bozejko and Makuchowski [1].
They propose an additional application of not only the
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loading procedure but also its symmetrical equivalent
which improves the effectiveness of an algorithm. It is
caused by the fact that some of the instances, those
difficult to be solved, become much easier instances
when we look at their symmetrical, mirror equivalents.

Because of the fact that a decisive variable is a
loading permutation, steering the nontrivial loading
procedure, it is difficult to select some of its features
and properties which will decide the quality of the
final solution (e.g., the block properties). Thus, this
is an ideal problem example of applying the genetic
algorithm because these type of algorithms do not use
the specific properties of the problem at all (or very
rarely) and are based mostly on the value of the goal
function of the tested solutions.

2.3 Test examples

All the numerical experiments presented in this work
were carried out on the 40 literature test examples
1a01-1a40 which can be taken from the OR-Library
[13]. These examples are dedicated to the classic job-
shop problem and are considered by the scientists to
be extremely difficult. Obviously, there are many other
difficult sets of tests examples, nevertheless, for the
purpose of this work the set proposed by Lawrence
[8] seems to be large and differentiated enough. It is
divided into eight groups with five instances each. In
each group, all the examples possess the same size,
more exactly, they have the same number of n jobs, m
machines, and o operations. Moreover, the distinctive
feature of these examples is the fact that the number
of all operations equals exactly o = n - m and each job
consists exactly of m operations ry = m, k € J executed
on different machines fulfilling the condition (1). In the
latter part of the work, each group is defined by giving
the size of an instance included in n x m. The results
presented in the tables which are related to the whole
groups are average values of the corresponding values
acquired in all the examples from the given group.

3 Genetic algorithm

The general idea of genetic algorithm’s run is described
in the work of Holland [7], and it imitates Darwin’s the-
ory of evolution encountered in the world of biology.
Such algorithm simulates not only the environment but
also the lives of virtual individuals. Each individual is
identified with one solution and the fitness’ quality is
evaluated on the basis of the value of goal function.
After terminating the simulation of a given number
of generations, the algorithm finishes its run, and for
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the final solution the solution corresponding to the
best individual which appeared in the whole simulation
is taken. Properly fitted parameters of genetic algo-
rithm, more specifically, properly fitted mechanism of
inheriting with a selection promoting individuals with a
demanded feature guarantee that in a simulated world
evolution appears. Evolution is understood here as
a tendency to generate generations with better fitted
individuals. By altering the definition of fitness, thus,
altering the method of evaluating a given individual, we
can make a choice of evolution’s direction. In practice,
the fitting value of a given individual is a value of
optimized goal function for a corresponding solution.
In a life of a single generation, the least fit die mostly
without progeny, whereas those best fit become parents
for the next generation. The new created individuals
inherit the genes (some attributes of solutions) of their
parents. Thanks to this mechanism, the created solu-
tions are combinations of the best solutions from the
previous generation. In order to avoid the generation’s
degeneration in which all the generated individuals are
similar to one another, a small mutation is applied.
Owing to this mutation, the algorithm examines a new
area of the solution space which promotes leaving the
local minima and facilitates in generating the individual
with some features lost in the generation.

In each genetic algorithm, we can distinguish the
following base elements (see also Fig. 1:

1. Generating starting of f population: generating the
first generation’s individuals,

2. Selection: selecting parents from the whole genera-
tion,

3. Crossover: generating of new individuals on the
basis of their parents’ genetic code,

4. Mutation: introducing small alterations in a genetic
material of new individuals,

5. Stop criterion: defines a condition stopping the
algorithm’s work (more often it is a maximum
number of simulated generations or the time of
algorithm’s run).

Defining the above-mentioned elements of GA al-
gorithm is a basic problem with which a creator of
a given implementation of an evolutional algorithm
is confronted. Furthermore, we propose a universal
method of choosing the most beneficial variants of
separate elements.

3.1 Level of mutation
Before we move on to discuss separate methods of

genetic algorithm auto-tuning, we will introduce the
notion called the level of mutation. This notion is linked
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Fig. 1 The outline of the proposed genetic algorithm

directly to the notion called possibility of mutation
widely known in literature. The differences between
them can appear subtle, nevertheless, they are crucial
with respect to the research carried out in the latter
part of the work. The L level of mutation denotes
by definition a relative number of mutations in the
whole generation, (the number of all mutations = L x
the number of all genes), whereas the possibility of P

mutation is by definition the possibility that a single
gene will be mutated.

It must be observed that depending on the method
of solution coding and applied mutation’s operator,
the mutated gene can alter its value in a limited way
whereas in a random solution the value of this gene can
have the values taken from a far more numerous set. In
this case, even for P = 1 (each gene becomes mutated)
there is a huge similarity between the original genotype
and the mutated one.

The example of the above-mentioned phenomenon
is the situation in which the whole genotype consists of
one chromosome which is a permutation. If in such case
the mutation means swapping of the two close-lying
elements of permutation, then even during the muta-
tion of each gene there is a great similarity between
the x original and y-mutated permutation. The proof
for that is the distance between those permutations
d(x, y) understood as the smallest number of neigh-
boring alterations required to transform x permutation
into y permutation. By definition, the distances and the
number of executed mutations of even number of # el-
ements in permutation, the maximum distance between
x and y can reach at most n; d(x, y) < n, whereas the av-
erage distance between the z random permutation and
x permutation is AVE(d(x, 7)) =n - (n — 1)/4 whereby
the biggest possible distance between permutations is
twice as big. This means that x permutation achieved
by the mutation of each y permutation gene is similar
to each other (where d is distance).

It can be deduced directly from the above property
that mutation of previously mutated genes causes even
more disturbances in an individual’s genotype. This
fact is not taken into consideration by P parameter
which discusses the possibility of at least a single gene
mutation. On the contrary, the level of mutation at
a value bigger than 1 means that statistically in one
individual there are more mutations than the number
of genes it possess. However, in practice the optimal
level of L mutation starts at a few percent and more or
less equals P, and the deliberations for L value coming
to 1 and exceeding 1 can be treated as only a theoretical
forecast.

With an assumption that every mutation alters ex-
actly k genes, we can define the relation of the pos-
sibility of P mutation to g number of all genes in a
generation and L level mutation,

—k\%L
P(n,L)=1—<—gg ) . )

Its results is presented in the 6th formula where the set
L level mutation of the amount of genes in a generation

@ Springer



740

Int J Adv Manuf Technol (2011) 57:735-752

does not influence greatly the P value. Moreover, for
a small level of mutation (such levels are applied in a
properly steered algorithms), its value equals almost
exactly as the possibility of a mutation P~ L, L <
0, 1. The additional subjective benefit of dependencies
tested in a further part of the algorithm’s parameters
from the level of mutation instead of the possibility, is
bigger clarity of the presented characteristics.

3.2 Choice of mutation’s operator

In the beginning, we would like to remind that genetic
algorithms do not work directly on solutions but on
their coded representations (codes). Hence, there is a
potential possibility in which individuals differentiate
in codes but they represent exactly the same solution.
In biology nomenclature, that would mean that there
are different genotypes of exactly the same phenotype.
In this case, there might appear a mutation in which
a mutated individual, despite the code’s alteration,
generates exactly the same solution as the original
individual. We will call such a mutation a barren one.
Moreover, let & denotes the operator’s effectiveness by
a definition equalling the possibility that a randomly
processed mutation will not be an idle one.

Despite the fact that mutation appears occasionally
in genetic algorithm, it has an enormous meaning for
the effectiveness of the whole algorithm. The basic aims
of mutation are as follows:

1. Creating individuals partly different from their par-
ents but in a crucial way, which allows moving the
research into the new solution space.

2. Creating an individual with a negative trait not
appearing in a generation which allows generating
a solution that would be locally optimal even in case
of losing some part of the solution in goal function
generation.

3. Countermeasure to computability stagnation, in a
situation when the whole generation is dominated
by one kind of individuals which differ little from
one another.

In order to become a parent (the condition necessary
to reach aim 1), the value of an individual’s fitness
cannot be worse than the solutions in the generation.
Hence, the mutation should generate individuals which
will be different from the original one (in the meaning
of the code), at the same time the fitness value of the
mutated individuals should be similar to the fitness
value of the individuals being mutated.

Differentiating the fitness function of the mutated
individuals can be measured by the so-called autocor-
relation of the solution space (Weinberger [15]). It is
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defined for the whole IT space, goal function C(x),
7 € I1, and distance measure d(x, y), x, y € I1,

AVE((C() - C(y))2>d(x s

AVE((C(x) - C(y))Z)

od)=1- 3)

where AVE((C(x) — C(¥))%)a(x,y)=a denote the average
value (C(x) — C(y))? of all pairs x,y € I1 in which
d(x,y) it equals exactly d, whereas AVE((C(x) —
C(y))?) denotes the value analogous to all possible
pairs. Value o(d) alters from 0 to 1 and defines the
correlation of solutions with a d distance from each
other.

From our point of view, a pair of individuals x, y €
I1, x # y, where y was created from the mutation of
x individual, is distanced from each other by 1, in
measure corresponding to a given mutation (this mea-
sure can be defined as a minimum number of muta-
tion transforming an x individual into a y individual).
It results in a statement that interests us, where the
fitness function differentiation of the mutated indi-
viduals is closely linked to o(1) value of the proper
distance measure. The o(1) value close to 1 means little
differentiation, in the meaning of goal function’s value,
of the mutated individuals from the original individuals.
On the contrary, o(1) value close to 0 means that there
is no relation of goal function’s value between mutated
solutions and the original solution.

In order to define the approximate o(1) value de-
noted later by o, we propose the set of X = {x;, x5, ...}
of the randomly chosen organisms and the set of Y =
{y1, ¥2, ...} of mutants where y; was created by muta-
tion of x; organism. Thus, the ¢ value can be defined
by:

AVE((C(Xi) - C(yi))z)
Z(AVE(C(XL')Z) - AVE(C(xi))2> |

o) ~o=1- 4)

It must be noted that little effectiveness decreases
greatly the roughness of the space solution (increases
the ¢ quotient). As one of the criteria of the mutation
operator’s choice, we propose a modified roughness of
the given operator’s solution space defined by o* which
is counted similarly to ¢ value with a difference that we
do not take into consideration the solution in which the
pairs of x; and y; organisms represent the same solution.
Operators with high o* value stand a great chance that
the organisms created by them (representing a com-
pletely new solutions) will qualify to a parent group.
This means that the operators will efficiently carry out
the given jobs.
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To summarize, from the set of mutation’s operators
among operators with the biggest value of & parameter
it is advised to choose the parameter with the biggest
o* value. An additional suggestion is to make a single
choice of an operator before launching the steered
algorithm. In the opposite example, in the case of an on-
line operator’s choice, we must remember to alter the
value of a mutation’s possibility. It is needed because
the optimal value for the possibility of mutation varies
for different operators. Applying the automatic choice
of the level of mutation described in the further work
may facilitate this process.

4 Computational experiments

All the presented tests were carried out on a personal
computer equipped with an Athlon 2000+ (1,667 MHz)
processor in the multitask environment of Windows
XP. All the described algorithms were programmed in
a C++ language and compiled by Dev C++ in 4.9.9.1
version.

Because the decisive variable is a permutation (here,
a loading permutation) to the test, we chose four com-
monly applied (for permutations) mutation’s operators:

1. Small swap (SSw): the swap of two neighboring
elements of permutation.

2. Swap (Swp): the swap of two different random
elements of permutation.

3. Insert (Ins): one random element is taken out from
the permutation and then put back in a random
position (excluding the original position).

4. Invert (Inv): the sequence of elements in a random
part of permutation is inverted.

The first step was to check the ¢ roughness, modified
o* roughness, and & efficiency of the mentioned muta-
tion’s operators. The average values of the parameters
for the separate groups of examples are presented in

Table 1. After a thorough analysis, there are following
conclusions to be drawn.

In conjunction with the increase of n number of
jobs, the ¢ value has a decreasing tendency (for all the
checked operators). Exactly the contrary influence on
that parameter has m number of machines in a problem,
together with its increase the o value increases as well.
However, the kind of applied mutation’s operator has
the decisive influence on the ¢ parameter. The most dis-
tinctive operator is SSw for which the generated space
of solutions is far more smooth (big o) than in the case
of other operators. It is caused by two factors: (1) the
SSw operator often alters only genotype of an organism
not altering its phenotype (which is indicated by small
& value) and (2) the SSw operator is a special case
(the possibly smallest version) from each of the three
operators. The sequence of all operators towards the
roughness of the generated solution space (according to
non-growing o) is consequently: SSw, Ins, Swp, and Inv.

The analysis of the modified o* roughness shows a
huge positive correlation to the o value. All the proper-
ties observed for g refer also to the modified ¢* value.
However, this time the influence of the mutation’s
operators has little meaning and o* value of the SSw
operator does not diverge that far from the analogous
value of the other operators. This phenomenon can be
explained directly by the fact that a modified value
of roughness of the space does not depend (contrary
to non-modified value) on the effectiveness of the &
operator.

While analyzing the effectiveness’ values of partic-
ular operators, it is noticeable that & value depends
strongly from the chosen operator. The SSw operator
is of very low efficiency, and on an average of 35%
of mutations, it does not alter the solution (despite
the changes in loading permutation, its corresponding
solution was not altered).

The second test shows the influence of mutation
level value of the given operator on the quality of the
solutions generated. The quality is understood here as

Table 1 The average value of o, o* and & parameters for the tested mutation’s operators

Group o o §

nxm SSw Swp Ins Inv SSw Swp Ins Inv SSw Swp Ins Inv
10 x5 0.56 0.37 0.43 0.31 0.42 0.29 0.36 0.24 0.72 0.92 0.90 0.93
15x5 0.66 0.41 0.46 0.34 0.48 0.32 0.39 0.28 0.64 0.93 0.89 0.94
20x 5 0.70 0.44 0.51 0.38 0.54 0.42 0.44 0.33 0.61 0.94 0.88 0.94
10 x 10 0.55 0.30 0.37 0.29 0.36 0.24 0.27 0.22 0.70 0.92 0.88 0.93
15 x 10 0.62 0.35 0.39 0.29 0.43 0.28 0.32 0.24 0.66 0.94 0.89 0.94
20 x 10 0.64 0.35 0.41 0.34 0.44 0.33 0.35 0.27 0.61 0.94 0.89 0.95
30 x 10 0.68 0.39 0.45 0.32 0.45 0.35 0.36 0.27 0.58 0.96 0.89 0.96
15 x 15 0.60 0.30 0.34 0.30 0.39 0.27 0.30 0.25 0.69 0.94 0.90 0.95
Average 0.63 037 0.42 032 0.44 031 035 0.26 0.65 0.94 0.89 0.94
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a relative error of an x solution towards the referential
x" solution,

. Cmax (x) - Cmax(x/)

- 100%.
Crnax (X)) °

®)

As a referential solution, we used the GASA al-
gorithm solution described by Schuster and Framinan
[12]. The tested algorithm was activated with the fol-
lowing parameters: the number of simulated genera-
tions, 1,000; the number of organisms, 50; the crossing
operator, PM X; and the selection process used, the
roulette method. The table presented in Fig. 2 shows
an average p value of the quality of the generated
solutions for the different L values of the mutation
levels.

4.0.1 Evaluation of results

From the table presented in Fig. 2, the results show that
by sequencing the operators of mutations according to
the average p value (with an optimal level of mutation
for a given operator), we were able to obtain the follow-
ing sequence: SSw, Ins, Swp, and Inv. It must be noted
that the sequence was already designated on the basis
of o* parameter.

The second conclusion that can be drawn from the
results is the fact that for the examples in which n = 10
(the examples are characterized by a relatively small
solution space), the smallest p value that can be reached
is slightly smaller than in the p value which corresponds
to the biggest value of the L level. It is caused by the
very narrow space of solutions in which random algo-
rithms (checking relatively big set amount of random

solutions) manage quite well and by the fact that the
genetic algorithm with a big level of mutations becomes
a random algorithm. Hence, it can be said that in an
analyzed problem, using the approach based on a heav-
ily compressed algorithm which reduces the solution
space from (n!)” to n! caused the result in which only
in groups 20 x 5, 20 x 10, 15 x 15, 30 x 10 including
bigger instances to show well all the properties of the
HGA algorithm.

The third observation is the fact that the kind of an
applied mutation’s operator has no crucial influence on
the efficiency of an algorithm. From the table in Fig. 2,
we can draw the conclusion that for the optimal levels
of mutation (different for every operator) the quality of
generated solutions is approximate. At the same time,
it can be noted that badly adjusted level of mutations
lowers the level of generated solutions in a significant
way. Therefore, a special way of automatic adjustment
is presented in the further work.

From the results presented here, especially from
the evaluation of mutations’ operators which are al-
most independent from the instance and from the rela-
tively low influence of the mutation’s operator on the
efficiency of algorithm, the conclusion can be drawn
that there is no need of automatic adjustment of the
operator with on-line method (during the run of an
algorithm). In a final conclusion, for a specific genetic
algorithm dedicated to a given problem, we propose
carrying out only one initial off-line test which will
result in choosing one, based on a & efficiency and
modified o* roughness, potentially best mutation’s op-
erator to be invariably applied during the whole run of
an algorithm.

Fig. 2 The correlation
between the ¢ average value

—— SSw

——Swp —&—Ins —H—Inv

and the level of L mutation
for the tested mutation’s
operators

0,0001 0,001
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4.1 Choice of mutation’s probability

From the research carried out in a previous point, we
can see that some of the conclusions refer directly to
the level of mutation. The most important is the fact
that the level of mutation has a decisive influence on
the efficiency of the algorithm. Besides, the optimal
value of the mutation’s level depends not only on the
applied operator but also on the problem’s data (view

Fig. 3 The correlation
between the o average value
and the level of L mutation

p[%]

group: 10 x5

Fig. 3). The relations of the optimal value of mutation’s
level are easy to be forecasted, that is: together with an
increase of the space roughness of the given operator
(g decreasing) the value of the optimal mutation’s level
increases as well.

In order to make all the phenomena from taking
place in a genetic algorithm, more understandably in
Fig. 4, we show the run of an algorithm with too low,
relatively good, and too big level of mutation.

pl%] group: 10 x 10
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Fig.4 The run of an
exemplary genetic algorithm
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In the presence of too low level of mutation in HGA
algorithm, there appears a counting stagnation (view
the first run in Fig. 4). It is caused by the fact that the
generation is dominated by so-called super organisms
not only in number but in the quality as well. These
organisms are practically identical, differentiated in a
way that does not influence the overall result and the
goal’s function criterion. The super organisms are the
best in the meaning of fitness function’s value that
very often it comes to their crossing which results in
creating a new super organism in the net generation. All
the other crossings in a generation generate offsprings
weaker in the meaning of fitness function’s value. In the
consequence, after the process of natural selection the
new generation is again dominated by the new super
organisms identical with the previous generation. In
this situation, there are only three possible scenarios
of the simulated life: (1) some mutated organism will
be better fit than the super organisms (with regard to
the fact that super organisms are characterized by high
fitness function and low mutation appearance in a gen-
eration, this alternative is less probable), (2) in a new
generation there are no super organisms (this variant
is of little probability as there is a big possibility of
crossover of the two super organisms), and (3) the new
created generation will be exactly the same dominated
by super organisms as the previous generation (the
most probable variant). Thus, there appears counting
stagnation, the algorithm reached some kind of local
optimum with a little chance of its leaving.

The case where the level of mutation is proper, that
is, big enough not to allow the counting stagnation to
appear in the process and low enough to allow the
offspring inherit the traits of their parents, is presented
in Fig. 4. The graph shows basic phenomena appearing
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in a properly steered genetic algorithm. These are: the
fast descending of an algorithm to a local minimum
and effective diversification of calculations shown in a
skipping found local minima.

Because of the impossibility to find an optimal value
of the level of mutation in an analytical way with the
knowledge we currently have, the only method to de-
termine it lies in numerical experiments. With regard
to the fact that for different instances the optimal mu-
tation level value is different, the choice of the proper
level must be made for each instance separately or
change it during on-line work while observing the run
of the steered algorithm. Nevertheless, in this work
the proposed method of mutation is slightly different
from its classic original. To be more precise, instead of
causing the genes’ mutation with a fixed (permanently
or dynamically changing) probability, an initial analy-
sis of the population is proposed and on its basis we
determine the organisms which will be mutated. This
method not only determines the amount of mutations
in a generation, but also appoints the organisms which
should undergo the process of mutation.

The proposed strategy is based on two simple
observations:

1. Incase when the whole generation is strongly diver-
sified, there is no need of an individual’s mutation.
In this example, mutation deprives individuals of
the inherited traits.

2. In case of a few super organisms appearing in a
generation, the mutation must be carried out. This
kind of mutation secures avoiding the stagnation
of calculations through eliminating of identical or-
ganisms. Moreover, it allows fast reaching the local
optimum (in case when super organisms represent
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the solution close to local optimum). Additionally,
it allows easy leaving of the local optimum.

The strategy of proceedings, thus, seems to be clear.
First, all the clones must be identified, secondly, they
must undergo the mutation process. We define a clone
as an organism similar in a way to the other organism
existing in a given generation. This approach, although
based on intuition has no equivalent in a natural world.
In implementing the strategy proposed above, the prob-
lem to be determined is, among others, the method of
detecting clones.

In a problem considered here, the application of
solution coding in the shape of loading permutation
impedes the effective comparison of the solutions (the
comparison based on the loading permutation without
the compressing procedure inducement). Therefore, in
order to detect clones the simplest method was applied,
that is through comparison of the organisms’ fitness
function’s value. Organisms with the same value of
fitness function are treated as clones. Moreover, clones
selected for mutation should be mutated effectively in
a way that the mutation alters not only the genotype
but also the phenotype of an organism. In order to do
that, we can for instance control the value of the fitness
function of the mutated organisms.

The side effects resulting from clone detection and
from the testing of the alterations appearing in an or-
ganisms being mutated on the basis of the goal function
value of the corresponding solutions, is the possibility
to state whether two organisms are identical, despite
different phenotypes and additional time consuming
examinations calculating goal function value of the
muted clone. The first from the above mentioned phe-
nomena occurs relatively rarely and does not cause any

serious disorders in an algorithm, whereas the second
phenomenon definitely slows down the algorithm’s run.
The strategy proposed earlier on the organism’s muta-
tion (its mutation until reaching the alteration in goal
function value), termed here as a FU LL strategy, is
very slow. The acceleration of the algorithm’s run can
be reached by reducing it to a strategy (SING L E) with
a single mutation and a single counting of the modified
value of the fitness function (disregarding whether its
value has changed or not). The last strategy which does
not practically slows down the work of an algorithm is
called a BLIND strategy, which resulted in a single
mutation of a given organism without recounting the
fitness function value. The organism mutated in this
way undergoes the selection process according to the
original value of the fitness function.

4.1.1 Numerical examinations

The first step of the test serves a purpose of generating
the run of genetic algorithm, which is the drawing of
the value of the solution goal’s function corresponding
to the best organism in a current generation. Figure 5
shows an exemplary run of a genetic algorithm with an
automated mutation and the SINGLE strategy. Addi-
tionally, for a comparison it shows the run of an algo-
rithm with a classic mutation with a properly adjusted
level of mutation. From the two runs, we can see that
genetic algorithm with a automatic mutation generates
solutions statistically better than in case of a fixed
(properly adjusted) level of mutation. The domination
of the automated choice of mutation over its classic
equivalent is visible also when an algorithm reaches
local minimum. In the case of a classic mutation, the
algorithm is dominated through several iterations by

Fig. 5 The run of the
exemplary genetic algorithm
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Table 2 Th? allotted level Group Optimal mutation level L* Average deviation p for L*

of L* mutation and

corresponding with it average nxm SSw Swp Ins Inv SSw Swp Ins Inv

p (%) quality of generated 10x5 2.00 0.20 0.10 0.10 -1.91 —2.63 —1.56 —1.47

solutions of the tested 155 0.50 0.10 0.10 0.10 0.31 1.94 1.29 1.77

mutation’ operators 20 x5 1.00 0.05 0.05 0.05 —0.28 -2.01 —0.16 -1.22
10 x 10 1.00 0.50 0.20 1.00 —5.40 -5.29 -5.29 —5.47
15 x 10 0.50 0.10 0.10 0.10 -1.39 0.09 -0.73 0.78
20 x 10 0.50 0.05 0.10 0.05 -1.22 —2.69 -2.10 -2.15
30 x 10 0.20 0.05 0.05 0.05 —5.68 —4.69 —6.54 —3.88
15x 15 1.00 0.05 0.10 0.10 —1.74 —1.86 —2.06 —0.56
All 0.50 0.05 0.10 0.05 -1.72 -0.83 -1.27 —0.86
Average 0.84 0.14 0.10 0.19 —2.16 —2.14 —2.14 —1.53

the same solutions (fragmentally even line of a ta-
ble), this effect almost never occur by the automated
mutation.

The second test serves a purpose of comparing the
average value of p error generated by the genetic algo-
rithm being steered by the adjusted L* level of muta-
tion and by the automatic mutation using the SINGLE,
FULL, and BLIND strategies. The experimentally ad-
justed L* level of mutation comes from the set L*
{ 0.0001, 0.0002, 0.0005, 0.001, 0.002, 0.005, 0.01, 0.02,
0.05,0.1,0.2,0.5,1,2,5,10, 20,50, and 100 } as a level for
which a single run of an algorithm appeared to be the
most beneficial. With regard to the fact that the value
of L* level is denoted experimentally, it is only a rough
approximation of the optimal L** level value.

The discussed examinations were carried out for
each of the tested mutation’s operators, and all the
acquired results were placed in Tables 2 and 3. As
follows, Table 2 includes the value of the optimal L*
level and the average p quality for the algorithm of
mutation at the L* level whereas Table 3 shows the
average p values of the algorithm with an automatic
mutation of the FULL, SINGLE, and BLIND types.
The p value is counted from the formula presented in
Eq. 5 toward the solution acquired through literature
(Schuster and Framinan [12]) and GASA algorithms.
Moreover, the last all and average lines included in

Table 2 need to be commented. The first one includes
the values of the parameters obtained when the level
of mutation was adjusted for all groups. The last line
includes the average parameters obtained in a case
when the level of mutation was adjusted individually for
each group.

4.1.2 Results’ evaluation

In the first part of the chapter concerning the choice of
mutation’s operator, we pointed out the main goals of
applying mutation in genetic algorithms. Hence, it can
be clearly seen from the observation of exemplary run
of the algorithm with an automatically adjusted muta-
tion (Fig. 5) that in the presented example it satisfies
all the requirements concerning proper mutation. The
main disadvantage of the proposed approach appeared
to be the fact that there are operators of the mutation
(in a presented case the SSw operator) which produces
mere results of the presented automatic choice of mu-
tation. However, for the other three Swp, Ins, and Inv
operators, the results of proposed automatic mutation
were very good.

By restricting to the analysis of the above-mentioned
three operators of the mutation, from the comparison
of Tables 2 and 3, it results that in a given problem
all the variants of the automatic mutation is statistically

Table 3 The average p (%) quality of generated solutions for the tested methods of automatic mutation of the tested operators

Grupa FULL mutation SINGLE mutation BLIND mutation

nxm SSw Swp Ins Inv SSw Ins Inv SSw Swp Ins Inv
10x 5 2.25 -1.79 —1.84 —1.68 1.61 —-1.77 —2.47 —-1.99 6.12 —-2.04 —1.96 —1.65
15x5 6.45 1.16 1.29 2.87 5.64 0.69 1.46 2.72 6.14 0.64 1.06 0.32
20 x 5 2.61 —-1.77 —1.80 —-0.71 2.77 —0.68 —1.68 —-1.82 5.13 —1.80 —1.67 —0.95
10 x 10 -0.25 —3.08 -2.39 —-3.94 -0.90 -3.93 —-3.53 -3.89 -0.77 -2.71 —3.44 -3.39
15 x 10 5.51 0.46 -0.74 -0.79 5.91 —-0.34 2.16 0.69 5.63 0.62 1.04 0.33
20 x 10 1.90 -2.11 —-1.99 —1.08 5.28 -0.56 —0.90 —1.58 3.94 —-1.33 —0.93 —-0.56
30 x 10 —2.96 —6.47 —6.19 —4.90 —1.03 —6.15 —17.55 —5.33 0.17 —6.79 —5.05 —-5.80
15 x 15 4.82 -0.45 -2.35 —-2.19 5.09 —-1.93 —0.73 —0.15 7.05 -0.77 0.67 —-0.97
All 2.54 -1.76 —2.00 —1.55 3.05 —-1.83 —1.66 —-1.42 4.18 -1.77 -1.29 —1.58
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better than the best adjusted classic mutation. What is
more, in case when the best possible level of mutation is
adjusted individually to each of the groups of examples,
the algorithms with automatic mutation perform only
little less satisfactory results. It must be stressed that
the last comparison shows the automatic mutation in
a less positive position. It is an effect of the fact that
presented test showed a single run of all algorithms
and the acquired results are partially random. In the
algorithm with a fixed level of mutation it happens that
for some level of L* mutation (statistically weaker than
L' level closer to optimal L** level) the p values from
single runs will be better than for the L’ level. In that
case in order to carry out the comparative assessment
the best results are taken into consideration, that is
the runs for L* level instead of the runs for L’ level.
This experiment eliminates single snags of classical al-
gorithm for L' level and additionally chooses successful
cases of runs with other mutation levels especially at L*
level. In order to assess the algorithm with an automatic
mutation, we take only one run that could be worse or
better than the average.

4.2 Choice of crossover operator

The task of the crossover operators is creating new
individuals from the parents’ solutions. Despite the fact
that in the process of creating the new individual there
is some randomization, the properly adjusted crossover
operators guarantee that the newly created individuals
inherit genes (some properties of the represented solu-
tions) after their parents.

Some analogy explaining the meaning of crossover is
comparing an individual to the idea generating solution
and the whole population to the set of solutions. In this
analogy, a new individual is nothing more than an inno-
vative idea. By giving a careful consideration of what is
an innovative idea, we come to conclusion that more
often these are combinations of concepts previously
used and proved in the past. Thus, the new generated
individuals are some kind of a crossbreed of the best
solutions from the past (classically a crossbreed of the
best adapted individuals from the previous generation).

The method of the purpose of the crossover opera-
tors seems to be clear. The better operator, the better
generating of individuals from the given original popu-
lation in the meaning of fitness function value. Because
classic operators link a pair of individuals together, in
order to create an individual that will be a crossbreed
of more than two solutions we must carry out a few
iterations of crossovers. The second criterion of the op-
erators’ evaluation is the speed (counted in algorithm’s
generations) of the found local minimum. On the basis

of the mentioned observations in order to evaluate the
quality of the crossover operator we propose to take
goal function value of the found solution in a test run
of the genetic algorithm without mutation with a set
of relatively small number of simulated generations.
This evaluation promotes the operators which quickly
find good local minimum. By increasing the number
of simulated generations in a test run of algorithm,
we decrease the weight attached to the speed of local
minimum finding instead concentrating on its quality.
It allows to arrive at the desired priorities between the
speed and the value of the solutions we are looking for.

Because in a genetic algorithm, similarly like in an
ecosystem, there are many subtle bonds between its el-
ements, it seems that the most desirable method would
be taking into consideration the choice of crossover
operator from earlier adjusted mutation’s parameters.
The second—very intuitive method of crossover oper-
ator choice means allowing the run of a fully steered
genetic algorithm for some number of iterations for all
tested crossover operators at some amount of tested ex-
amples. This test is nevertheless time consuming, thus,
we propose only a single run for a newly appointed
method.

4.2.1 Numerical examinations

The following crossover operators will be the subject
of numerical exercises: {LX, RX, LRX, and MX }. The
first two are one-point operators, whereas the following
two are two-point operators. Before a more detailed
description of the separate operators, we would like
to define the base operations on sequences: & oper-
ator linking two sequences in one through position-
ing one by one all elements of the sequence from
the left side of operator, the © operator creating a
sequence from elements of the sequence from the
left side of the operator smaller by elements of a se-
quence from the right side of an operator, and both
operators are left-associative and have the same pri-
ority of arranging the order of doing the jobs. More-
over, for any sequence X = (xo, xq,...,X,) symbol
XijK,0 =< j<k<n+1 denotes the sequence X, =
(Xj, Xjs1, ..., xx—1). Denotations of parental loading
permutations are as follows: A = (ay, ay, ..., a,—1) and
B = (by,by,...,b,_1). Additionally, let j denotes the
point of crossover for the one-point operators and let k
denote the second point of crossover for the two-point
operators. Through applying the introduced notation,
the description of the tested crossing operators can be
presented in brief in an equation:

LX(A, B, j) = Ajp. ) ® (BO Ap ), (6)
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Table 4 The evaluation of

Group p (%) iter = 10 p (%) proper run

the crossover operators based

on p (%) from the test run of nxm LX RX MX LRX LX RX MX LRX

algorithm without mutation 10 x5 6.73 9.20 10.36 10.02 -2.62 —1.11 —0.55 —0.92

and p (%) quality of the 15%5 13.65 14.49 12.68 12.15 1.54 1.49 3.14 0.84

proper algorithm 20%5 1167 1277 1244 1189  -185  —074  -175  —0.14
10 x 10 6.32 6.10 6.20 3.31 —-3.82 —3.46 -2.92 —3.81
15 x 10 12.35 13.04 11.97 13.04 2.28 0.09 0.82 1.80
20 x 10 10.29 13.54 10.65 11.55 —1.05 —1.04 —1.14 0.05
30 x 10 5.92 6.24 7.14 7.62 —-8.75 —6.06 —6.40 —7.01
15 x 15 12.73 11.38 10.13 13.45 —-0.79 —1.98 0.55 —0.78
All 9.96 10.85 10.20 10.38 —1.88 —1.60 -1.03 —1.25

left side of the created permutation is copied from
A parent and the other elements of permutation are
arranged in the sequence of appearing in B parent.

RX(A, B, j) = (B Ajn) ® Apjn, (7

right side of the created permutation is copied from
A parent and the other elements of permutation are
arranges in a sequence of appearing in B parent.

LRX(A, B, j, k)
=Ap,;) ®(BO An) O Akn) © Ay, (®)

Left and right side of the created permutation are
copied from A parent whereas the middle part is com-
pleted with the missing elements in the sequence of
appearing in B.

MX(A, B, j. k)
= (B Ajw) ) ® Alik & (B Aot j—ksm (9)

middle part of the created permutation is copied from
A parent whereas the left and the right side of per-
mutation is completed with the missing elements in the
sequence of appearing in B parent.

In Table 4, p quality values of solutions acquired for
the entry and proper run are presented. The entry run is
a trial of evaluating the use of separate crossover oper-
ators whereas in the proper run there appears an exact

verification of the evaluation. The entry run is acquired
by initiating the genetic algorithm without mutation
and with a small number of ten generations whereas
the verifying run is acquired through running wholly
steered genetic algorithm with a /NS type mutation
being adjusted automatically according to the SINGLE
strategy with a 1,000 number of generations. In Table 5,
p values of acquired solutions with the work of a genetic
algorithm with a mutation described above for the first
ten and 100 generation are presented.

4.2.2 Evaluation of results

From the results presented in Table 4, on the basis
of the entry run, we can expect that in the presented
problem the most promising will be the LX crossover
operator. This theory is confirmed later by the results of
examinations in which a fully steered genetic algorithm
with the above-mentioned LX operator generates the
best solutions among the analogical algorithms with the
other operators. However, the following suppositions
based on the entry run with the reference to all other
operator has not been confirmed in a verifying test. It is
partially caused by the fact that all the operators having
been tested are approximately similarly good in the
sense of efficiency of the tested algorithm and finally
only an accident decides which of them is better in a

Table 5 The evaluation of

Grupa p (%) iter = 10 p (%) iter = 100

the crossover operators on

the basis of p (%) value from nxm LX RX MX LRX LX RX MX LRX

the trial run of a fully steered 10x5 7.09 6.37 5.96 6.47 -0.29 -0.38 2.60 0.14

algorithm 15%x5 13.42 12.93 10.35 11.10 6.33 7.11 5.53 2.90
20 x5 11.05 9.97 10.12 9.47 3.00 4.94 412 2.87
10 x 10 5.81 6.65 3.05 6.48 —0.25 -2.12 —0.60 —1.90
15 x 10 13.13 12.49 12.52 10.84 5.53 6.13 4.49 7.10
20 x 10 11.53 10.49 11.05 10.84 5.36 3.93 322 5.23
30 x 10 5.30 4.67 5.15 6.69 —1.81 0.06 —1.44 —0.47
15x 15 12.19 13.42 10.45 12.42 3.53 3.99 442 3.42
All 9.94 9.62 8.58 9.29 2.67 2.96 2.79 241
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given circumstances. In order to confirm this statement,
we carried out some additional verifying tests with
the application of mutation with an even level. The
acquired result (not presented in this work) showed
other hierarchy of usefulness of individual operators
which proves the theory about the incidental value of
the tested operators.

The weak point of the test evaluating the tested
crossover operators does not result from its su-
perficiality but from the fact that the tested operators
are similarly good, thus, in such a case the other el-
ements of the genetic algorithm such as the number
of individuals in a generation, the selection type, the
number of simulated generations, or some randomness
have a decisive influence on the relative value of the
separate crossover operators. The notion of relative
value of the crossover operators is understood here as
a value of the generated solutions by the genetic algo-
rithm with a checked crossover operator in reference to
the analogical value of the other operator.

In a given problem, among the tested crossover op-
erators, it is impossible to state with no doubt which
of them should be applied. The crossover operator,
which in some circumstances is better from the group of
accessible operators, might appear to be less effective
from the others with an alteration of the algorithm’s
steering parameters. The example of this case are the
results of the proper algorithm presented in Table 4
and the result with a limited number of ten and 100
iterations presented in Table 5. For the number of
iterations equalling to ten, statistically the best operator
appeared to be MX, for the number of 100 generation
the best operator appeared to be LRX whereas for the
simulation with 1,000 generations the best results were
acquired with the LX operator.

4.3 Scaling of the fitness function value

Natural selection existing in a real ecosystem is to
certainly extend an effect of a random choice; never-
theless, it promotes individuals who are better fit than
the others. The fitness in nature can be interpreted as a
sum of elements which have influence on the survival of
a given individual in the environment, e.g., immunity to
diseases, ability to get food, ability to avoid predators,
etc. It is clear that better-fit individuals stand a greater
chance to survive and bear more offsprings. In genetic
algorithms, the value of the goal function of the fitted
individual is calculated on the basis of the goal function
value of the corresponding solution.

The selecting procedure can be carried out in many
different ways, however, the most popular one is a
method using properly calibrated roulette wheel. In this

method, every individual gets some sector of a wheel
with a surface proportional to the value of the fitness
function of this individual in a way that all individuals
in a generation fill in all the gaps in the surface of the
wheel. Then, the drawing of an individual is made by
turning the wheel by the random angle from the bracket
[0, 27) and choosing the individual corresponding to
the chosen fragment of the wheel.

In selecting methods, some function f transforming
directly the goal function values of solution into the
fitting values of a given individual is often applied.
More often, it is a line function represented as f(x) =
ax+ b. In the book of Goldberg [3], the need of an
automated fitting of a and b parameters for each gener-
ation is explained in a following way: it happens often
that in the beginning of the run of a population there
appear a few above average individuals, whereas the
others belong to the average category. If a normal
method of selection was applied, the above average
individuals would take a huge part in the finished pop-
ulation of one generation, which would be an unde-
sirable phenomenon, a major cause of the premature
convergence. In a further phase, the problem is quite
different. It might happen that at the end of the run the
population is quite diversified but the average indicator
of adjustment is placed not far from the average. If we
do react to this phenomenon, in the result, the average
and the best individuals will have the same amount of
progeny in net generations which will lead to the rule
of the best-fit individuals surviving among the average
into a randomly mistaken way.

As an antidote to the two abovementioned wrong
situations, we propose an automated fitting of a and
b parameters of f function. The proposed choice of
parameters means that the f,,, average value of the
fitting function equals the c,,, average value of the goal
function, and the fitting value of the fyes individual
equals Cpyy; of the average fitting value,

favg =a- Cavg + b
fbest =a - Cpest + b (10)

f avg = Cavg
fbest = Cruie - favg

It must be noticed that in the above dependencies on
the basis of ¢,y and the best cpe; goal function and the
taken Cyyyx parameter we can unequivocally designate
a and b parameters. Unfortunately, in some situations
this scaling could lead to designating minus values
of the fitting function to the weakest individuals (the
fitting value of a given individual is a non-minus figure
by definition). In order to avoid the above mentioned
situations in Goldberg [3], we propose an additional
modification of Cpy parameter, in a way that the
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Table 6 Results of the proposed HGA with automatic adjustment compared with GASA of Schuster and Framinan [12], and TS of
Framinan and Schuster [2]

Inst. Ref GASA(Schuster) TS(Schuster) HTS

name max COASA (GASA pGASA crs. (TS pHGA CHGA HGA pHGA
1a01 971 1,037 23 6.80 1,043 1 7.42 971 8 0.00
1a02 937 990 24 5.66 990 0 5.66 961 8 2.56
1a03 820 832 24 1.46 832 1 1.46 820 8 0.00
la04 887 889 25 0.23 889 0 0.23 887 7 0.00
la05 777 817 24 5.15 817 0 5.15 777 7 0.00
1a06 1,248 1,339 80 7.29 1,299 2 4.09 1,248 18 0.00
1a07 1,172 1,240 70 5.80 1,227 5 4.69 1,207 18 2.99
1a08 1,244 1,296 72 4.18 1,305 2 4.90 1,289 18 3.62
1a09 1,358 1,447 83 6.55 1,450 3 6.77 1,371 18 0.96
lal0 1,287 1,338 70 3.96 1,338 4 3.96 1,327 18 3.11
lall 1,621 1,825 170 12.58 1,737 11 7.16 1,724 33 6.35
la12 1,434 1,631 164 13.74 1,550 10 8.09 1,542 32 7.53
lal3 1,580 1,766 183 11.77 1,701 17 7.66 1,685 33 6.65
lal4 1,610 1,805 176 12.11 1,771 10 10.00 1,677 33 4.16
lal5 1,686 1,829 167 8.48 1,808 7 7.24 1,780 33 5.58
lal6 1,575 1,637 39 3.94 1,637 1 3.94 1,575 26 0.00
lal7 1,371 1,430 42 4.30 1,430 1 4.30 1,371 26 0.00
lal8 1,417 1,555 42 9.74 1,555 1 9.74 1,485 25 4.80
lal9 1,482 1,610 40 8.64 1,610 1 8.64 1,482 26 0.00
1a20 1,526 1,693 45 10.94 1,705 1 11.73 1,526 26 0.00
la21 2,030 2,182 147 7.49 2,242 5 10.44 2,098 64 3.35
la22 1,852 1,965 135 6.10 2,008 3 8.42 1,912 63 3.24
la23 2,021 2,193 136 8.51 2,093 5 3.56 2,093 65 3.56
la24 1,972 2,150 133 9.03 2,061 5 4.51 2,054 64 4.16
la25 1,906 2,034 142 6.72 2,072 6 8.71 1,976 62 3.67
1a26 2,506 2,945 332 17.52 2,664 14 6.30 2,649 120 5.71
1a27 2,675 3,036 311 13.50 2,968 27 10.95 2,880 123 7.66
1a28 2,552 2,902 324 13.71 2,886 24 13.09 2,756 121 7.99
1a29 2,300 2,617 311 13.78 2,671 12 16.13 2,592 119 12.70
1a30 2,452 2,892 346 17.94 2,939 12 19.86 2,743 117 11.87
la31 3,498 4,298 957 22.87 3,822 151 9.26 3,743 282 7.00
la32 3,882 4,686 869 20.71 4,186 176 7.83 4275 288 10.12
la33 3,454 4214 860 22.00 3,869 120 12.02 3,835 284 11.03
la34 3,659 4,401 968 20.28 3,957 102 8.14 3,909 287 6.83
la35 3,552 4,299 897 21.03 3,908 120 10.02 3,990 287 12.33
la36 2,685 2,949 203 9.83 2,993 9 11.47 2,858 136 6.44
la37 2,831 3,216 192 13.60 3,171 7 12.01 3,093 137 9.25
la38 2,525 2,762 202 9.39 2,734 6 8.28 2,695 132 6.73
1a39 2,687 2,908 195 8.22 2,804 9 4.35 2,697 136 0.37
1a40 2,580 2,950 214 14.34 2,977 12 15.39 2,594 138 0.54
Average 235.93 10.50 22.58 8.09 86.15 4.57

t in second, p in percents

smallest value of the fitting function corresponding with
the worst solution in a generation was not less than 0.
In the algorithms presented, we propose a little
bit different strategy to avoid minus values of the
fitting function. Once designated in a generation, a
and b values according to the formula (10) do not
undergo modifications, and any possible minus values

@ Springer

of the fitting function are transformed into the values
equalling 0. Finally, we thus propose to replace a line f
function with its f’ equivalent

f'(x) = max{0, ax + b} (11)

where a and b values are designated depending on
Eqg. 10. Selection method can be regulated by the Cryie



Int J Adv Manuf Technol (2011) 57:735-752

751

parameter alteration. For the Cpy;; = 1, all individuals
stand the same chance to be chosen. By gradual in-
crease of the parameter’s value, better individuals are
promoted (better in the sense of goal function value of
the corresponding solution).

4.4 Numerical verification

Here, we will provide a final test of all the described
automatic steering application in the HGA. Obtained
results will be compared with GASA as proposed by
Schuster and Framinan [12]. The following parameters
of the proposed HGA have been used: 20 individuals in
a generation, 10,000 generations, LX crossover opera-
tor, SWP mutation with the BLIND mutation strategy,
and Cyue = 5.

Numerical tests of the proposed HGA algorithm
consist of generated solutions quality and working time
comparison with other algorithms (GASA [12], TS
[11]) taken from the literature. For each instance, a
relative deviation of a scheduled length to a reference
solution taken from Bozejko and Makuchowski [1] was
calculated:

CAlg _ CRef
pAlg — WTgfmax -100%,
Alg € {GASA, TS, HGA}. (12)

Comparing researches between algorithm include
computers’ speed differences on which calculations
have been executed. An algorithm HGA was tested on
the computer with the Athlon (1,667 MHz) processor;
GASA and TS algorithms was executed on an insignif-
icantly slower computer with the Athlon (1,400 MHz)
processor. Results presented in Table 6 show that solu-
tions generated by the HGA algorithm are statistically
better than results of the GASA algorithm. More pre-
cisely, for all 40 tested instances, the HGA algorithm
generates better solutions in 39 instances. An average
scheduled length obtained by the proposed HGA algo-
rithm is 5% lower (better) than the scheduled length
obtained by the GASA algorithm. Additionally, the
HGA algorithm is about 2.5 times faster than GASA.
Comparing with the next literature algorithm, TS [11],
the proposed approach gives better results in 37 of the
40 instances tested. An average relative deviation to
reference solutions was also lower (over 3%).

5 Summary

The presented methods of auto-tuning can be applied
to any genetic algorithm. They are based on entities

existing in every genetic algorithm regardless of the
problem being solved. Automated adjustment of the
mutation’s probability of designating individuals which
will undergo mutation and automatic scaling of the
fitness function value takes place on-line that is during
the run of an algorithm. The proposed choice of a
crossover operator and mutation’s operator takes place
off-line that is in the initiating calculations. The begin-
ning calculations can be carried one only once during
the creation of the genetic algorithm dedicated to a
given problem or built in the algorithm as an initiating
phase carried out each time before solution to given
instance. The values of the proposed solutions were
verified on the genetic algorithm specialized to find the
schedule of the job-shop problem with an additional
“no-wait” constraint.
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