
ORIGINAL ARTICLE

A study on the generation of silicon-based hardware
Plc by means of the direct conversion of the ladder diagram
to circuit design language

Daoshan Du & Xiaodong Xu & Kazuo Yamazaki

Received: 29 September 2008 /Accepted: 26 October 2009 /Published online: 18 November 2009
The Author(s) 2009. This article is published with open access at Springerlink.com

Abstract Programmable logic controller (PLC) is one of
the most important components in today’s manufacturing.
Its performance-based microprocessor and software have
been a bottleneck for improving its efficiency. To enhance
the PLC performance and flexibility, a new PLC design
based on field programmable gate array (FPGA) has been a
hot topic because of its parallel execution mechanism and
reconfigurable hardware structure. From practical view-
point, in this paper, the authors propose an approach to
implement the existing ladder diagram (LD) inside FPGA
making full use of the advantage of FPGA device. The
essential of this research includes two issues: (a) analyze
the LD program and organize it with sequential and parallel
structure and (b) implement the sequential and parallel
structure of the LD program with hardware description
language inside FPGA. To the first work, the condensed
simultaneity graph theory is applied to optimize the LD
program with sequential and parallel structure. To the
second work, Boolean equations are taken as the bridge to
convert the optimized LD program to the hardware descrip-
tion language program. Finite state machine is used to
generate sensitive signals to guarantee that the performance
of the converted very high-speed integrated circuit hard-
ware description language design is the same as the original

ladder diagram. A case study is practiced to verify the
proposed approach in this paper.

Keywords Programmable logic controller .

Ladder diagram . Very high-speed circuit design hard
description language . Field programmable gate array .

Condensed simultaneity graph . Finite state machine

1 Introduction

Programmable logic controllers (PLCs) have been widely
used for the logic control in the manufacturing system [1].
In industrial application, ladder diagram is the most popular
programming language for PLC development. Traditional-
ly, PLC includes a microprocessor, and the ladder diagram
is sequentially executed inside this PLC microprocessor in
a cyclic scan period. Based on this solution, PLC performance
is limited by the cyclic scan period, which depends on the
program length and the microprocessor’s processing speed.

In order to overcome these drawbacks with the pro-
grammable hardware solution, field programmable gate
array (FPGA)-based PLC has been focused on by many
researchers with its reconfigurable hardware structure and
parallel execution advantage. Miyazawa [2] and Ikeshita et
al. [3] developed a very rough manner in 1999 to convert
the graphic ladder diagram into program description of very
high-speed integrated circuit hardware description language
(VHDL). Chen and Patyra [4] designed a VHDL model of
the whole system directly from the original system require-
ments to build a controller. Abdel-Hamid et al. [5] and
Kuusilinna et al. [6] developed an algorithm to convert
finite state machine (FSM) into VHDL. Adamski, M. et al.

D. Du (*) :X. Xu :K. Yamazaki
IMS-Mechatronics Laboratory,
Department of Mechanical and Aeronautic Engineering,
University of California,
Davis, CA 95616, USA
e-mail: dudaoshan@hotmail.com

Int J Adv Manuf Technol (2010) 49:615–626
DOI 10.1007/s00170-009-2405-0

[7–10] did an effective work in choosing Petri net model as
a substitute of ladder diagram in manufacturing control.
These studies show that reconfigurable hardware has
advantages of simplicity of programming, size, and cost,
while parallel execution of FPGA can improve the PLC
performance dramatically.

In FPGA design, parallel execution exists not only in
one combinational logic operation but also in the multiple
combinational logic operations. To the first case, in one
combinational logic operation, there is only one output.
But, all of the combinational logics which influence this
output have been designed in a flat way as the existing
circuit. The operation can be executed at the electrical
speed. To the second case, in the multiple combinational
logic operations, all of these combinational logic operations
that influence every output have been designed in a flat way
as the existing circuits. So they can occur in a parallel way.
For the first case, it is very easy to be realized in VHDL. In
this paper, the parallel execution to be discussed here
specially means the second case.

In addition, the current research stays at a very rough
stage by only introducing case-based conversion from
PLC’s description language to VHDL. Also, most methods
aim at obtaining the hardware description languages (HDL)
or the register transistor level (RTL) architecture of FPGA
from the original system requirement. As the majority of
PLC programs in the manufacturing system are written by
ladder diagram, it is essential to make use of the existing ladder
diagram of current PLC system to conduct new PLC design.

It is in a different way to implement PLC ladder diagram
between inside microprocessor and inside FPGA. In
microprocessor, the PLC instruction is sequentially execut-
ed line by line. Otherwise, in FPGA, all of probabilities of
the PLC instructions have been considered and designed
with circuit, which can be activated by sensitive signals. In
order to implement PLC ladder diagram inside FPGA, the
sequential operations in the original ladder diagram should
be kept. At the same time, the capability of parallel
execution can be used to get more efficient performance.
This paper will discuss how to implement the PLC ladder
diagram in the sequential execution way and the parallel
execution way inside FPGA. Programming language for
FPGA is VHDL.

The left portion of this paper is organized as follows.
Section 2 briefly introduces the FPGA-based PLC design,
the research feasibility, and overall approach. Section 3
explains how to optimize the original ladder diagram with
the sequential structure and parallel structure. The method
to convert the optimized ladder diagram into VHDL is
discussed in Section 4. A case study is shown to verify the
proposed approach in Section 5. Finally, Section 6 con-
cludes the paper with a brief description of the ongoing
work and future research.

2 FPGA-based PLC design

FPGA technology has great advantages to conduct new
PLC design by comparison with the traditional software-
based PLC solution. FPGA-based PLC scheme can im-
prove PLC performance, reduce manufacturing cost, and
enforce flexibility of the logic control of the manufacturing
system. In order to approach these goals, the essential point
is to convert the PLC program into gate-level digital circuit
expressions so that the same control logic of PLC
represented in its program can be exactly reflected in the
FPGA-based solution. Since the internal structure of FPGA
is reconfigurable with input/output block and configurable
logic block, the required circuit can be built as long as a
ladder diagram is converted into RTL architecture and
downloaded to the FPGA chip. Such an implementation
will perform the same functions as the original PLC ladder
diagram, but not in the traditional sequential cyclic scan
manner. The new solution can respond to the input signals
with parallel execution at hardware processing speed,
which dramatically improve the PLC speed. Moreover, it
can be reconfigured any times as a new PLC program is
converted and downloaded.

As for the RTL architecture of FPGA implementation, it
is a low-level description of internal logic circuit of FPGA.
Several commercial software tools are available for FPGA
development. The typical one is Xilinx ISE, which can
establish RTL architecture by synthesizing a high-level
program such as VHDL. Figure 1 shows the approach to
implement a FPGA-based PLC from the ladder diagram.
There are two steps to construct FPGA-based PLC: (a)
convert ladder diagram into VHDL program with sequential
and parallel design and (b) synthesize the VHDL design
and implement it to FPGA device. With the special
reconfigurable structure of the FPGA device, RTL archi-
tecture can be configured inside FPGA, which can execute
the functions of the original ladder diagram inside FPGA
with more efficiency and many other advantages such as
capability of reconfiguration, low cost, etc.

Usually, in the traditional PLC system, there are three
obvious characteristics: (a) The PLC system is based on the
microprocessor, which works as the central processing unit
(CPU) to sequentially process the instructions which
comprised the PLC program; (b) The PLC program mostly
works as the software and is compiled as object code,
which is executed by the microprocessor; and (c) The PLC
works with a cyclic scan. During one period, the micro-
processor finishes once scanning of the whole PLC
program. In this kind of working way due to the limit of
microprocessor, all of these operations are exactly executed
in a sequential way inside the CPU. In fact, PLC system is a
discrete event control system; some events must occur after
other events while some events can occur in parallel. If the

616 Int J Adv Manuf Technol (2010) 49:615–626

system is designed not only with the sequential structure as
the traditional PLC program but also with parallel structure,
it must be operated efficiently, and the performance can be
dramatically improved.

With the programmable hardware design technology
such as PLD, FPGA, and complex programmable logic
device, it becomes possible to design the discrete event
control system based the hardware platform. FPGA-based
PLC has been generally discussed by many previous
researchers [2–13]. From practical view point, it is a very
valuable solution to implement FPGA-based PLC by
converting ladder diagram, which is the most popular
programming language, to VHDL program, which is also
the most popular hardware description language for FPGA
design. The ladder diagram is organized in a sequential
way, while the FPGA design can be organized in both the
sequential and parallel way. In order to efficiently imple-
ment the original ladder diagram inside FPGA, it is
necessary to analyze the ladder diagram and reorganize it
with both the sequential and parallel structure. Therefore,
how to convert a sequential ladder diagram into VHDL
program with sequential and parallel design is the key of
this research.

3 Optimization of ladder diagram program
with sequential and parallel structure

In this paper, the condensed simultaneity graph (CSG)
theory [14, 15] is used to realize the reorganization of the
ladder diagram in both sequential and parallel way.

3.1 The condensed simultaneity graph theory

As a discrete event control system, the output of every rung
in the ladder diagram can be described as a state variable,
which is related to the status of one event switch having
two possible values, “0” or “1.” In ladder diagram, if the
rung output depends upon the output of a previous rung or
rungs, it is called dependent state. On the other hand, if the
rung output is independent from the outputs of other rung
or rungs and can occur at the same time with others in the
ladder diagram, it is called independent state. Based on the
CSG theory, two kinds of graph, the simultaneity graph and
the dependency graph, can be used to describe those
independent states and dependent states.

Here, a simple example of ladder diagram is shown as
follows (Fig. 2), which will be used to explain the

LD

VHDL

RTL

FPGA

IOB

CLB

Fig. 1 Implementation of
FPGA-based PLC from ladder
diagram

Int J Adv Manuf Technol (2010) 49:615–626 617

condensed simultaneity graph theory. The system has eight
state variables: v1, m, h, tl, v4, v2, al, and v3 and six
inputs: start, ls1, ls2, ls3, ts, and as.

3.1.1 The condensed simultaneity graph

In order to describe the independent states and the
dependent states in the graph, two elements used are as
follows: a node is used to represent one state, which is on
behalf of one output of rung in the ladder diagram; an
undirected or directed line is used to indicate that the
relationship of the two states on the both ends of the line is
independent or dependent.

(1) The simultaneity graph (SG)

The first graph is the simultaneity graph (Fig. 3a). This
graph uses undirected line to connect two states, which is
contained if these two states can be on concurrently. This
graph has a node for each rung output and an edge
connecting the nodes corresponding to rung outputs that
can be true simultaneously at the completion of one ladder
diagram scan. The SG contains the sequential information
of the process statements in VHDL program. The depen-

dency information is very important to keep the necessary
sequential operations in the original ladder diagram.

If the graph is simple and there are not many states and
edges, the adjacent matrix data structure is used to store the
graph, which is easier to be processed. Or else, in order to
save memory, adjacent list date structure is a better way to
store the graph, which is a general method. Adjacent list is
taken to describe the SG graph in this paper.

(2) The dependency graph (DG)

The second graph is the dependency graph (Fig. 3b).
This graph uses directed line to connect two states if one
state depends on the output of previous rung or rungs at the
completion of one ladder diagram scan. The DG has a node
for each state variable in the ladder diagram. Since the DG
is a directed graph, each edge is represented by a directed
pair<u; v>; u is the tail and v the head of the edge and the
edge<u; v>implies that rung v depends on the output of
rung u. The DG contains the concurrency information of
the process statements in the VHDL model. The concur-
rency information is very important to implement concur-
rent operations inside FPGA for high efficient performance.

(3) The condensed simultaneity graph (DSG)

In order to integrate all of the concurrency information
and the dependency information into one graph, the
condensed simultaneity graph is introduced (Fig. 3c); an
undirected graph and created by condensing the nodes of
the simultaneity graph that are connected in the dependency
graph into one node. The node interconnections are the
same as in the original simultaneity graph. In this graph,
more than one rung output can be associated with a node,
and it contains information on the dependency in the SG
and the concurrency in the DG.

(4) Implementation of the condensed simultaneity graph

According to the theory described in from (a) to (c), the
CSG of the example can be built. The steps are as follows:

Step 1: Input the ladder diagram with instruction list expres-
sion, get through all of the rungs, count the rungs,
and construct the list arrays for SG, DG, and CSG;

Step 2: Make SG according to (1) Fig. 3a;
Step 3: Make DG according to (2) Fig. 3b; and
Step 4: Build the CSG according to (3) and finally, get a

completed list array to store this graph Fig. 3c.

3.1.2 Decomposition of the condensed simultaneity graph

The CSG includes the complete information on the
dependency and the concurrency of the original ladder
diagram. According to this information, the model of the
ladder diagram with sequential structure and parallel

Fig. 2 An example of ladder diagram

618 Int J Adv Manuf Technol (2010) 49:615–626

structure can be constructed, which is implemented by
decomposition of the CSG.

Once the CSG is obtained, the decomposition of the
CSG is an essential step for classifying the components of
ladder diagram into sequential structure or parallel struc-
ture. The CSG is decomposed into subgraphs via two kinds
of decompositions: the connected component decomposi-
tion (CCD) and the full connectivity decomposition (FCD).

(1) Connected component decomposition

Any condensed simultaneity graph G can be partitioned
into its connected components. Given a graph G=(N, E),
where N and E are sets of nodes and edges, the CCD of
graph G produces a collection of subgraphs {G1; G2; …
Gi…}, such that each subgraph Gi=(Ni, Ei), and no node in
Gi is connected to a node in another Gj, where i and j are
used to represent the different subgraphs. Performing the
CCD on the CSG produces one or more subgraphs to which
new sequential structures are assigned. These newly created
structures are produced in a sequential order. Since two
structures cannot be activated concurrently, they are
sequenced according to the order of state variables that
appeared in the ladder diagram.

(2) Full connectivity decomposition

A connected graph can be partitioned into a collection of
subgraphs via FCD. The FCD of graph G is denoted by

FCD (G) and FCD (G) produces a collection of subgraphs
{G1; G2; …Gi…}, then every node in Gi is connected to
every node in another Gj, where i and j are used to represent
the different subgraphs. After accomplishing FCD, the
interconnecting edges are removed since all the components
in these two subgraphs are connected to each other.
Accordingly, components in these two subgraphs can be
activated in a parallel way and belong to the parallel structure.

(3) Implementation of CCD and FCD

In order to process the CCD and FCD, data structure is
constructed to store the state nodes in the CSG.

struct SStateNodeInfo

{

int nID;

String strName;

int nFirstChildID;

int nLeftSiblingID;

int nRightSiblingID;

int nAncestorID;

bool bCollection;

int nLevel;

String strBoolEquation;

List *plistLinkToState;

SStateNodeInfo *pNext};

m

h

v2 v4

v3

al

tl v1

m

h

v2 v4

v3

al

tl v1

m

h
v423

al

tl v1

v1 m /
m v1 h tl v4 v2 al v3 /
h m v4 v2 al /
tl m v4 v2 al v3 /
v4 m h tl al /
v2 m h tl /
al m h tl v4 v3 /
v3

the simultaneity graph

the dependency graph

the condensed simultaneity graph

 m tl al /

v1 /
m /
h /
tl /

v4 /
v2 v4 /
al /
v3 v4 /

v1 m /
m v1 h tl v423 al /
h m v423 al /
tl m v423 al /
al m h tl v423 /

v423 m h tl al /

a

b

c

→
→
→
→
→
→
→
→

→
→
→
→
→
→
→
→

→
→
→
→
→
→

Fig. 3 The ladder diagram of
the example is represented by
condensed simultaneity graph
theory. a The simultaneity
graph. b The dependency graph.
c The condensed simultaneity
graph

Int J Adv Manuf Technol (2010) 49:615–626 619

Table 1 lists the property specification of this state node
structure.

The structure of every state node should be established,
and a structure list is constructed to manage all of these
structures.

In addition, a default structure is constructed for the
original CSG as the head of the structure list:

SStateNodeInfo DefaultStructure {0; NULL; 0; 0; 0; 0;
false; 0; NULL; *plistLinkToFirstState; *pNext};

When implementing CCD or FCD, the sequential and
concurrent information of every state can be changed by
updating the corresponding properties in the structure.

The working flow to decompose the CSG is as follows:

(1) Read the CSG model by adjacent list. Update the
property of listLinkToState in the structure.

(2) Go through the state nodes, check the property of
listLinkToState, and select either CCD or FCD is
needed.

(3) If CCD is needed, update the structure of this state node
with sequential information. Or else, update the struc-
ture of this state node with concurrent information.

(4) Repeat Step 2, until the properties of all structures
have been updated.

After decomposition, a structure list will be generated
with the entire sequential and concurrent information. One
structure list for an example of ladder diagram will be
shown in the next section.

3.2 Apply CSG theory to optimize the ladder diagram

According to the CSG theory mentioned, it is possible to
optimize the organization of the ladder diagram with
sequential structure and parallel structure. This section
applies the CSG to the ladder diagram shown in Fig. 2 to

discuss the optimization. The whole working flow is shown
in the Fig. 4.

Step 1: Create the CSG using the definition in the
Section 3.1.1 (Fig. 4a).

Step 2: Apply FCD to node “m,” the whole graph is
divided into two parallel subgraphs as shown in
Fig. 4b, {m} and {(v4, v2, v3), vl, h, tl, al}

Step 3: Apply CCD to node “v1.” According to the
Section 3.1.2 Part (2), the {v1} can be separated
from the original graph of {(v4, v2, v3), v1, al, tl, h}
as shown in Fig. 4c.

Two subgraphs are divided from the upper level graph.
These two subgraphs are sequential. After CCD, they keep
the original sequence as executed in the ladder diagram.

Step 4: Repeat Step 2 and apply FCD to node “al” and “v4,
v2, v3.” The subgraph {{v4, v2, v3}, al, tl, h} can be
partitioned into three subgraphs: {al}, {(v4, v2, v3)},
and {tl, h}. The result of FCD to node “al” and “v4,
v2, v3” is shown in Fig. 4c.

These three subgraphs are in parallel level and can be
activated at the same time, so they are assigned to three
parallel structures.

Step 5: Repeat Step 3 and apply CCD to node “tl” and
“h.” Subgraph {tl, h} is partitioned into two
subgraphs, {tl} and {h}. These two subgraphs are
sequential and keep the original sequence as
executed in the ladder diagram. The result is
shown in Fig. 4d.

Step 6: Since there are no nodes in CSG that can be
decomposed, the connected nodes in DG are
finally considered. It has been mentioned that DG
shows information of rungs depending on the

Table 1 Property specification of state

Property name Type Description

nID integer Unique identifier assigned to this state node to distinguish it from others

strName String Label for this state

nFirstChildID integer ID for the first child of this state node

nLeftSiblingID integer ID for the left sibling of this state node

nRightSiblingID integer ID for the right sibling of this state node

nAncestorID integer ID for the parent of this state node

bCollection bool If this state node is a condensed node, it’s true, else, it’s false

nLevel integer Considering the parallel structure, the order number to execute this state

strBoolEquation String Boolean equation to assign this state variable

*plistLinkToState list List of the state connected to this state node in CSG, also the adjacent list
of the state node to describe CSG.

*pNext SStateNodeInfo Pointer to the next structure

620 Int J Adv Manuf Technol (2010) 49:615–626

outputs of previous rungs during one scan of the
ladder diagram. In this step, all of the states that
are still not assigned will be lined up in the
sequential way. The result is shown in Fig. 4e.

After the last step, a complete model with sequential and
parallel structure describing the original ladder diagram has
been established. The information on dependency and
concurrency is shown in Table 2. This model can perform

m

h
v423

al

tl v1

m

h v423

al

tl v1

al v423 h
tl

v1

h

tl

v4

v2

v3

v1 m /
m v1 h tl v423 al /
h m v423 al /
tl m v423 al /
al m h tl v423 /

v423

FCD to the node of m

The original CSG of the Ladder Diagram

CCD to the node of v1 and FCD to get three sub-graphs

Decomposition of
nodes of h,tl

Decomposition of
nodes of v423I

The final state order of the Ladder Diagram

 m h tl al /

v1 /

m /

h v423 al /

tl v423 al /

al h tl v423 /

v423 h tl al /

 v1 /

m /
h /

tl /

al /

v423 /

Order to
activate node

Node status with
dependency and

concurrency

1 m v1

2 al v4 h
3 v2 tl
4 v3

a

b

c

d e

→
→
→
→
→
→

→

→

→

→

→

→

→
→
→
→
→
→

Fig. 4 a The original CSG of
the ladder diagram. b FCD to
the node of m. c CCD to the
node of v1 and FCD to get three
subgraphs. d Decomposition of
nodes of h, tl. e Decomposition
of nodes of v423l

Table 2 Information on dependency and concurrency

{{0; null; 0; 0; 0; 0; false; 0; null; null; *pNext};

{1; “m”; 0; 0; 2; 0; false; 1; “(ls2 # m) & ls1”; null; *pNext};

{2; “v1”; 3; 1; 0; 0; false; 1; “(start # v1) & (! ls2) & (! v3)”; null; *pNext};

{3; “al”; 0; 0; 4; 2; false; 2; “ls2 & as”; null; *pNext};

{4; “v4”; 6; 3; 5; 2; false; 2; “(ls3 # v4) & ls2”; null; *pNext};

{5; “h”; 7; 4; 0; 2; false; 2; “ls2 & (! ts)
& (!v3)”;

null; *pNext};

{6; “v2”; 8; 0; 0; 4; false; 3; “ls2 & (! as) & (! v3) & (! v4)”; null; *pNext};

{7; “tl”; 0; 0; 0; 5; false; 3; “ls2 & ts”; null; *pNext};

{8; “v3”; 0; 0; 0; 6; false; 4; “(ls2 & ts & as # v3) & ls1 & (! v4)”; null; *pNext}};

Int J Adv Manuf Technol (2010) 49:615–626 621

the same function as the ladder diagram, not only in the
sequential way but also in the parallel way. The structure
list to represent the state nodes is also shown.

In order to implement FPGA-based PLC with high
efficient performance, the model of ladder diagram with
the sequential and concurrent information needs to be
realized inside FPGA. The VHDL is one of the most
popular developing languages for FPGA. So, the next
step is to convert this model to VHDL program and
implement corresponding sequential and parallel structure
in VHDL.

4 Implementation of sequential and parallel operations
in FPGA

In Section 3, the original ladder diagram has been analyzed
and established a ladder diagram model with sequential and
parallel structure. This section explains how to implement
this ladder diagram model inside FPGA by converting
ladder diagram to VHDL program.

4.1 Implementation of the Conversion from ladder diagram
to VHDL program

Usually, while PLC is working, ladder diagram is executed
rung by rung from the top to the bottom. However, the
FPGA design works in a parallel way once the FPGA
device has been configured with the downloaded design.
Thus, working principle is very different between the ladder
diagram and VHDL program. For some components in
ladder diagram, such as normal open and normal close,
there are corresponding components in VHDL such as
NOT, AND, and OR gates to match each other. For other
components such as self-hold and interlock, there is no
corresponding component. Therefore, a bridge is needed to
eliminate this gap between these two programs. Several
researchers used the modeling method like FSM or Petri net
as the bridge [5–10, 15]. Actually, a complicated ladder
diagram probably consists of thousands of states so that it
may easily cause the FSM or Petri net model extreme
complex and hard to handle.

In this research, the Boolean equations are chosen as the
bridge to connect ladder diagram to VHDL. Boolean
algebra is a system of mathematics often used to manipulate

logic operation. It’s very appropriate to describe logic circuit.
As a logic description, Boolean expression almost has the
same form as that in VHDL, so it is much easier to convert
ladder diagram to Boolean expression than to other models.

Table 3 lists the operator often used in Boolean
expression.

To the ladder diagram in Fig. 2, the equivalent Boolean
equations are shown in Table 4.

5 Implementation of the sequential operations in VHDL

The sequential operation is critical to assure the correct
performance. In the application system of the PLC, some
actions must be done after the others, else, it will result
serious damage or even the danger to life. This can be
controlled over by activating the rungs of the ladder
diagram in the correct order. Similarly, because VHDL
program works based on process statements, if put, the
operation of every dependent rung of the ladder diagram
into process statements in VHDL, the sequential operation
can be realized by using sensitive signals to sequentially
activate different process statements

In order to implement the same sequential operations as
the original ladder diagram program, two steps are
proposed in this paper: (a) generate sequential sensitive
signals, which are used to activate different process states in
order and (b) put the operation of every rung into the
process statement in VHDL. These two steps can be
implemented in VHDL with two types of process state-
ments. The one is the finite state machine process
statement. The other is the regular process statement.

In the first step, finite state machine is proposed to
generate the sensitive signals. PLC is a discrete event
system. Finite state machine is often used to model the
discrete event system. So, it is appropriate to control the
sequential operation in PLC. In VHDL program, process
statements are running in a parallel way. With the sensitive
signals generated by finite state machine, process state-
ments can be activated in a sequential way. Finite state

Table 3 The operator used in Boolean expression

! & # $

NOT AND OR XOR

Table 4 Boolean equations for the example in Fig. 2

v1 :=(start # v1) & (! ls2) & (! v3)

m :=(ls2 # m) & ls1

h :=ls2 & (! ts) & (!v3)

tl :=ls2 & ts

v4 :=(ls3 # v4) & ls2

v2 :=ls2 & (! as) & (! v3) & (! v4)

al :=ls2 & as

v3 :=(ls2 & ts & as # v3) & ls1 & (! v4)

622 Int J Adv Manuf Technol (2010) 49:615–626

machine can be implemented in VHDL as follows (Here,
the limit of state status is taken as 8):

This is a process statement for finite state machine.
Clock signal and reset signal are the sensitive signals for
this process. The signal, current_process, is the sensitive
signal which will be used to sequentially activate all of the
regular process statements. The variable, step_increment, is
used to adjust the order increment of regular process
statements to be activated. Usually, it is assigned by “1,” so
the regular process statements will be activated one by one. If
one of the regular process statements will execute a jump
instruction, it will be assigned by a proper value, so the correct
regular process statement will be activated in the next clock.

In the second step, the Boolean equations such as those
in Table 4 are mapped into regular process statements one
by one. Here is an example as follows:

Where, Regular_00 and Regular_10 mean the label of
the regular process statement. One label is corresponding
one rung in the ladder diagram program. The signal,
current_process, is just the sensitive signal generated by
the finite state machine process. In VHDL program, process
statements are running in a parallel way. When the sensitive
signal is changed, all of the regular process statements will
be activated at the same time; but according to the value of
the sensitive signal, only the proper regular process state-
ments can be executed at this moment.

With the finite state machine process statement period-
ically changing the sensitive signal, the sequential cyclic
scan in the original ladder diagram can be realized in
VHDL program.

5.1 Implement the parallel operations in FPGA

Similarly, the parallel operation is critical to assure high-
efficient performance. In the practical application of the
control system, some actions can be done at the same time.
In the traditional PLC, these actions are executed one by
one because of the limit of the microprocessor. However,
inside FPGA, they can be implemented by the concurrent
sensitive signals. If put, the operations of every independent
rung in the ladder diagram program into process statements
in VHDL, the parallel operation can be realized by using
sensitive signals to activate different process statements at
the same time.

The independent rungs are mapped into the regular
process statements shown in the following example. Both
of these regular process statements will be activated by the
sensitive signals, which are generated by the finite state

Int J Adv Manuf Technol (2010) 49:615–626 623

machine process. But it is different with the sequential
operations that the regular process statements will be
executed at the same time because of the concurrent
sensitive signal.

When the sensitive signal, current_ process, is assigned
by “000,” both of these regular process statements are
activated and executed at this moment. Accordingly, it
means two rungs related to these two process statements
in the ladder diagram program are executed at the same
time.

6 Case study

To the original ladder diagram program in Fig. 2, there are
eight rungs. If this program is executed in sequential way as
executed in microprocessor, eight instruction cycles are
needed. In FPGA, it only needs four-clock cycles with both
sequential operation and parallel operation. The perfor-
mance becomes more efficient. At the same time, it keeps
the same function as the original ladder diagram program.

A converter has been developed to convert the ladder
diagram model with information on dependency and
concurrency to VHDL program. Once the VHDL program
has been generated with the software tools such as the ISE
Foundation from Xilinx and the ModelSIM from Mentor
Graphics, the converted VHDL program can be debugged
and simulated.

In fact, the example of the ladder diagram mentioned
in Fig. 2 is the control system for a well-known neu-
tralization system in Fig. 5. The control rules are as follows
[14, 15]:

(1) Initially, all the valves are closed, the mixer and heater
are off, and the reaction tank is empty. When the start
button is pressed, open valve v1 until level sensor ls2
is activated. This fills the tank with the solution to be
neutralized.

(2) The following three processes proceed concurrently.

(a) When the solution level rises above level sensor
ls2, start mixer m. When the level drops below ls1,
stop the mixer.

v1From Reservoir

v2

h

ts

as

ls3

ls2

ls1

v4 v3

Neutralizer

To Reservoir To Next Tank

tl

al

START button

Temp indicator light

pH indicator light

(m)

Fig. 5 Chemical vat neutraliza-
tion system

624 Int J Adv Manuf Technol (2010) 49:615–626

(b) Whenever the temperature of the solution is below
a preset point, energize heater h.

(c) Whenever the pH of the solution is unbalanced,
open valve v2 to add the neutralizer.

(3) If the tank becomes full, as indicated by the activation
of level sensor ls3, close v2 to stop the in flow of the
neutralizer. Next, open valve v4 to reduce the level of
the solution to the point indicated by ls2. Then close
v4 and proceed with step (c).

(4) When both the temperature and pH of the solution are
correct, de-energize the heater and close v2. Then
open valve v3 to drain the tank. When the tank is
empty, as indicated by the deactivation of ls1, close v3
and proceed with step (1).

(5) Two indicator lights, tl and a1, are regulated. Light tl
should turn on whenever the solution level is above
ls2 and the temperature has reached the preset value.
The same rule is used to light al and pH.

With the ModelSIM, the VHDL program can be simu-
lated and the result is shown in Fig. 6.

From the Fig. 6, the following results can be verified:
In the first four-clock cycle, when the start button is

pressed, if both ls1 and ls2 are on, the mixer and the heater
will turn on, v2 will be opened to add the neutralizer.

In the second four-clock cycle, if ls3 is on, the solution
reaches level 3. v4 will be opened and v2 will be closed. It
means open the valve 4 for reducing the level of the
solution and at the same time close the valve to stop adding
the neutralizer.

In the third four-clock cycle, if the level of the solution
goes down under level2, ls2 and ls3 are off, valve v1 will
be reopened to add solution. Before the level of solution

reaches level 2, the heater turns off. And the valve 4 should
be closed.

In the fourth four-clock cycle, if the level of the solution
return back to level 2, close the valve 1, turn on the heater,
open the valve 2 for neutralizing.

In the fifth four-clock cycle, once the temperature and
pH are satisfied (ts and as turn to high), tl and al turn on.
The valve 2 is closed and the heater is off. Open the valve 3
to drain the tank.

The results of simulation verify that the converted
VHDL program can perform the same function as the
ladder diagram does. Synthesize this VHDL program and
download it to the FPGA, the control system will be
implemented inside FPGA.

7 Conclusions

In order to overcome the performance limitation of the
traditional microprocessor-based PLC and dramatically
improve the PLC performance, in this paper, FPGA-based
PLC is proposed. With FPGA device, it is possible to
implement the ladder diagram in programmable hardware
solution. In order to efficiently implement the ladder
diagram inside FPGA, CSG optimization method is
introduced to reorganize ladder diagram with sequential
and parallel structure. Two important components in VHDL
design, finite state machine scheme and sensitive signal,
make sure to implement the original ladder diagram in
VHDL design not only in a sequential way but also in a
parallel way.

The authors developed the software to convert the ladder
diagram to VHDL design. Using this converter, a case

Fig. 6 The logic sequence of
the example implemented inside
FPGA

Int J Adv Manuf Technol (2010) 49:615–626 625

study was made to verify that the proposed approach to
implement FPGA-based PLC is feasible, and the PLC
performance is improved dramatically. Furthermore, as a
programmable hardware solution, FPGA device is recon-
figurable, which make it easier for the application system to
be modified and maintained. The design method is more
flexible.

Acknowledgment The authors wish to express their sincere appre-
ciation for the generous support from Mori Seiki Co. Ltd., which
made this work possible.

Open Access This article is distributed under the terms of the
Creative Commons Attribution Noncommercial License which per-
mits any noncommercial use, distribution, and reproduction in any
medium, provided the original author(s) and source are credited.

References

1. Auslander DM, Pawlowski C, Ridgely J (1998) Reconciling
Programmable Logic Controllers with Mechatronics Control
Software, Proceedings of the 1998 IEEE international Conference
on Control Applications, pp 415–420

2. Ikeshita M, Takeda Y, Murakoshi H, Funakubo N, Miyazawa I
(1999) Application of FPGA to high-speed programmable
controller - development of the conversion program from SFC to
Verilog IEEE Symposium on Emerging Technologies and Factory
Automation, IEEE, Piscataway, NJ, USA, ETFA.v2:1386–1390

3. Miyazawa I, Nagao T, Fukagawa M, Itoh Y, Mizuya T, Sekiguchi
T (1999) Implementation of ladder diagram for programmable
controller using FPGA. IEEE Symposium on Emerging Technol-
ogies and Factory Automation, IEEE, Piscataway, NJ, USA,
ETFA. v2:1381–1385

4. Chen J, Patyra MJ (1994) VHDL modeling of a multivariable
fuzzy logic controller hardware system IEEE International

Conference on Fuzzy Systems. IEEE, Piscataway, NJ, USA,
v1:129–132

5. Abdel-Hamid AT, Zaki M, Tahar S (2004) A tool converting finite
state machine to VHDL, Canadian Conference on Electrical and
Computer Engineering Canadian Conference on Electrical and
Computer Engineering; Technology Driving Innovation, 4:1907–
1910

6. Kuusilinna K, Lahtinen V, Hamalainen T, Saarinen J (2001) Finite
state machine encoding for VHDL synthesis. Comput Digi Tech
148:23–30

7. Adamski M, Monteiro JL (2000) From interpreted Petri net
specification to reprogrammable logic controller design. IEEE
International Symposium on Industrial Electronics 1:13–19

8. Adamski M (1998) SFC, Petri nets and application specific logic
controllers, Proceedings of the IEEE International Conference on
Systems, Man and Cybernetics. IEEE, Piscataway, NJ, USA,
1:728–733

9. Uzam M, Jones AH (1998) Discrete event control system design
using automation Petri nets and their ladder diagram implemen-
tation. Int J Adv Manuf Technol 14(n10):716–728

10. Lee JS, Hsu PL (2005) An improved evaluation of ladder logic
diagrams and Petri nets for the sequence controller design in man-
ufacturing systems. Int J Adv Manuf Technol 24(n3–4):279–287

11. Welch JT (1992) Translating unrestricted relay ladder logic into
Boolean form. Computers in Industry 20:45–61

12. Shanta S, Dipali S (2005) A new generation of PLC—an FPGA
based PLC. Proceedings of the SICE Annual Conference, SICE
2005 Annual Conference in Okayama—Proceedings. pp 2367–2370

13. Yadong L, Kazuo Y, Makoto F, Masahiko M (2005) Model-driven
programmable logic controller design and FPGA-based hardware
implementation. Proceedings of the ASME International Design
Engineering Technical Conferences and Computers and Informa-
tion in Engineering Conference—DETC2005, 4:81–88

14. Falcione A, Krogh BH (1992) Design recovery for relay ladder
logic, the first IEEE conference on control applications. Dayton,
OH, pp 90–98

15. Lee JI, Chun SW, Kang J (2002) Virtual prototyping of PLC-
based embedded system using object model of target and behavior
model by converting RLL-to-state chart directly. J Systems Archit
48:17–35

626 Int J Adv Manuf Technol (2010) 49:615–626

	A...
	Abstract
	Introduction
	FPGA-based PLC design
	Optimization of ladder diagram program with sequential and parallel structure
	The condensed simultaneity graph theory
	The condensed simultaneity graph
	Decomposition of the condensed simultaneity graph

	Apply CSG theory to optimize the ladder diagram

	Implementation of sequential and parallel operations in FPGA
	Implementation of the Conversion from ladder diagram to VHDL program

	Implementation of the sequential operations in VHDL
	Implement the parallel operations in FPGA

	Case study
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

