
ORIGINAL ARTICLE

Optimizations of friction stir welding of aluminum alloy
by using genetically optimized neural network

Ibrahim N. Tansel & Mustafa Demetgul &
Hasan Okuyucu & Ahmet Yapici

Received: 20 November 2008 /Accepted: 9 August 2009 /Published online: 26 August 2009
# The Author(s) 2009. This article is published with open access at Springerlink.com

Abstract Genetically optimized neural network systems
(GONNS) was developed to simulate the intelligent
decision-making capability of human beings. After they
are trained with experimental data or observations, GONNS
use one or more artificial neural networks (ANN) to
represent complex systems. The optimization is performed
by one or more genetic algorithms (GA). In this study, the
GONNS was used to estimate the optimal operating
condition of the friction stir welding (FSW) process. Five
separate ANNs represented the relationship between two
identical input parameters and each one of the considered
characteristics of the welding zone. GA searched for the
optimized parameters to make one of the parameters
maximum or minimum, while the other four are kept

within the desired range. The GONNS was found as an
excellent optimization tool for FSW.
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1 Introduction

Friction stir welding (FSW) bonds metal plates with the heat
created by friction of a rotating tool to the surfaces. FSWmay
be used to bond aluminum, copper, and titanium alloys as well
as the steel plates [1–10]. During the welding process, FSW
does not require protective gas for shielding or electrodes to
create an arc. Compare to other welding processes, FSW is a
safer and a more economical method. There is no eye or
excessive heat protection requirement from strong electric
arc, powerful ventilation is not needed to remove toxic
gasses, and costly safety measures are not need against fire
hazard of melted metals violently coming out of the bonded
area [11–19]. All these advantages encouraged aerospace,
marine, and food processing industries to employ FSW in
the manufacturing operations. In this study, feasibility of
using a computer program with human-like learning and
optimization capability was evaluated for selection of the
optimal operating conditions to obtain the desired mechan-
ical and metallurgical characteristics at the welded areas.

Instead of developing analytical or empirical models,
use of artificial neural networks (ANN) were proposed as
a third option a long time ago and have been used for
many applications from speech recognition to classifica-
tion of military targets [20–27]. Among the different ANN
algorithms, backpropagation (BP) type ANN [20] is the most
commonly used. Genetic algorithm (GA) [28–34] was
developed by mimicking the natural evaluation process.
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Although the GA is slow, many researchers prefer this
approach since it can optimize large number of parameters;
it may effectively use multiple processers, and convergence
probability to local minimums is very low. Tansel et al. [32,
34] introduced the genetically optimized neural network
system (GONNS) by using ANN and GA together. GONNS
model the system by using ANNs from the experimental
data or observations. The optimal operating conditions are
estimated by using the GA. The main advantage of the
GONNS is ease of adaptation to any application as long as
the ANNs can represent the system.

In the following sections, the theoretical background will
be outlined very briefly. The proposed method, experimen-
tal data collection, and the results will also be presented in
the following sections.

2 Theoretical background

The ANN, GA, and GONNS are very briefly reviewed in
this section since the readers can find detailed information in
literature and may use the toolboxes of commercial software.

ANNs may be classified as supervised or unsupervised
depending on the learning process [20–27]. The best known
ANN algorithm is BP [20–23]. Neurons are generally
located on three layers. The number of the neurons at the
first and the last layer are equal to the inputs and outputs of
the ANN. The user determines the number of neurons at the
intermediate layer (hidden layer) with trial and error. In
most of the BP applications, each neuron is connected to all
the neurons of the following layer. Each neuron has a
weight and nonlinear component to let it make the yes/no
decisions. The supervised neural networks such as BP [20]
require training before it is used for mapping or classifica-
tion purposes. During the training, BP calculates the
weights of the ANN to represent the relationship between
the inputs and outputs. Unsupervised neural networks may
start classifying the inputs without a separate training
session; however, they may not be used for mapping
purposes. BP is a perfect fit for modeling applications as
long as there are no excessive amounts of abrupt changes in
the characteristics of the input–output relationship of the
system. User selects the number of the input and output
nodes by considering the system. The number of the hidden
nodes is selected either by experience or the best one is
chosen after several models are fitted by considering the
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Fig. 1 Genetically optimized neural network system

Fig. 2 Five artificial neural networks for representation of the friction
stir welding operation

Fig. 3 Genetically optimized neural network structure

Table 1 Genetically optimized neural network training ranges

Speed (rpm) 500–1,500

Weld speed (mm/min) 6.25–20

Tensile strength (MPa) 75–115

Yield strength (MPa) 45–90

Elongation (%) 3–12

Hard (weld metal) 21–29

Hard (weld metal) 23–29
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estimation accuracy and benefits of small network size. The
learning rate and momentum may be gradually reduced to
estimate the parameters of the ANN as accurately as
possible without converging to local minimums. The
training of the BP is a very tedious process, but even with
very limited data, we obtained reasonable models for
estimation of the system output [26].

GA was developed by considering the biological
evolution process [28–34]. The algorithm represents all
the parameters and switches with single binary string called
chromosome. The size of the chromosome depends on the
number of parameters, desired resolution, and switches. GA
creates a population with the same size chromosomes and
tries to perfect it by using the natural selection and survival
of the fittest principles [28–34]. The user determines the
population size, the number of children for each set of
parents, and the probability of mutation by considering the
characteristics of the problem. The GA creates the
chromosomes randomly for the first generation in most of
the applications. The chromosomes are perfected with the
following steps: (1) selection of the mating parents, (2)
selection of the hereditary chromosomes from the parents,
(3) gene crossover, (4) gene mutation, and (5) creation of
the next generation.

The GONNS use the BP type ANNs to model the
relationship between the inputs and the outputs of the
considered system. Generally, we select to have one output
when we use the BP method to represent the system as part
of the GONNS. Separate ANNs are used for estimation of
each output. After the training of the ANNs, GA uses them
to find optimal solutions. Our GONNS program was
developed to try to minimize or maximize one of the
outputs, while the other outputs are kept at the desired
ranges. GONNS may be operated either in the single or in
the multiple cluster modes. Each cluster has multiple ANNs
and one GA. Depending on the problem, GONNS may be
used in single or multi-cluster modes. Single cluster mode
was used in this study. If we wanted to compare the
performances of different materials, separate clusters would
be used for each material. The block diagram of the single
cluster model is presented in Fig. 1.

3 Proposed procedure

GONNS was proposed for modeling and optimization of
the FSW. One GA was used for searching the optimal tool
rotation speed and feed rate by using five ANNs represent-

ing the FSW operation. In the previous study [4], single
neural network with two inputs and five outputs was used
to obtain a compact representation. Five separate neural
networks with two identical inputs (tool rotation speed and
feed rate) estimated the mechanical and metallurgical
properties of the welding process. Generally, assignment
of each output to separate ANN improves the accuracy of
the models, which allow for using less number of hidden
nodes, and reduce computational problems encountered at
large networks. The ANN-based model of the stir welding
process is presented in Fig. 2.

One GA was used for searching the optimal tool rotation
speed and feed rate by using the five ANNs, which
represent the stir welding operation. During the search,
one of the five outputs was maximized or minimized, while
the other four parameters were kept within the desired
range. The block diagram of the GONNS for this problem
is presented in Fig. 3. The full ranges of the input and the
output parameters used in this study are listed in Table 1.
User may use the full range or may ask the GONNS to keep
the parameters within any boundaries as long as they are in
the defined ranges of the parameters in Table 1.

4 Experimental work

Experimental data was collected during the stir welding of
two hot rolled aluminum plates (Al 1080) with the
dimensions of 5×50×150 mm. The diameter of the rotating
tool was 20 mm. The chemical composition of the plates is
presented in Table 2. During the welding process, the plates
were clamped to a vice. The diameter of the rotational tools
was 20 mm. The plunge depth was selected as 4 mm. A
simplified diagram of the stir welding process is presented
in Fig. 4. The tool speeds were selected as 500, 800, 1,000,
1,250, and 1,500 rpm in the tests. Plates were moved at
6.25, 10, 16, and 20 mm/min feed rates (welding speed).
The friction force was kept constant at 210 N.

Al Zn Cu Ti Cr Mg Fe Ni Mn Si

0.0029 0.0039 0.013 0.0062 0.006 0.15 0.0034 0.0059 0.00115

Table 2 The chemical compo-
sition of aluminum alloy
(Al1080) in weight percent [4]

Al plate 1 

Tool rotation direction 

Al plate 2 Welding direction Rotating tool 

Fig. 4 The simplified diagram of the stir welding process
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Friction stir welded samples were cut with a diamond
wheel saw. The welding zones of the test samples were
characterized by mechanical tests and metallographic
examinations [4]. Tensile and hardness tests were per-
formed to measure the mechanical properties. The infor-
mation related to the elongation was obtained from the
tensile tests. Microstructure was also studied. The experi-
mental conditions and the measured characteristics of the
welded plates are presented in Table 3.

5 Results

In the experiments, the fracture occurred within the weld
material as expected. The cross-section stirrer type design
sweeps large amount of metal from the plasticized material
and creates an inhomogeneous weld zone. Typically, the
ultimate tensile strength of the weld zone is about 50% of
the base metal. The fracture is expected to take place at this
weak weld zone.

Five BP type ANNs were trained to represent the FSW
operation. Each ANNs had six neurons in the single hidden
layer. The training of the ANNs was discontinued when the
BP reached to eight million iterations. The errors of all the
networks were below 0.5% at that time. The estimations of
the ANNs were compared with the actual test results by

using 3-D graphs in Fig. 5. Both the 3-D plots and very
small average estimation error indicated that ANNs
represented the welding process adequately and may be
used for searching the optimal operating conditions.

The GA searched the optimal solution according to the
user’s preferences by using the five ANNs. The user
interface of the GONNS for inputting the preferences of
the user is presented in Figs. 6 and 7. The user defined the
desired search region for two input parameters and the
resolution in Fig. 6. After the parameter to be minimized
or maximized was selected, the ranges of all the other
parameters were defined in Fig. 7. The GONNS reported
the optimization results with the windows presented in
Figs. 8 and 9. The displayed outputs were obtained for the
same system. However, the test range was allowed for the
elongation in the first optimization (Fig. 8). The GA made
4,170 iterations, and optimal tool rotation speed and the
feed rates were selected as 500 rpm and 6.25 mm/min,
respectively. The range of the elongation was reduced
from 3–12% to 10–12% in the second run (Fig. 9). After
1,160 iterations, GONNS changed the optimal operating
conditions to 1,406 rpm and 19.9 mm/min to keep the
elongation at the given range. In the maximized parameter,
the tensile strength estimation was reduced from 112 to
80 MPa when the acceptable elongation range was
narrowed.

Table 3 Stir welding experimental results [4]

Tool
rpm

Weld speed
mm/min)

Tensile strength
(MPa)

Yield strength
(MPa)

Elongation
(%)

Hardness (HV;
weld metal)

Hardness (HV;
HAZ)

500 6.25 112 86 3.04 27.2 27.6

500 10 104 80 3.34 27.5 28

500 16 103 78 3.71 28 28.3

500 20 102 76 4.78 28.2 28.5

800 6.25 102 77 5.22 26.8 26.55

800 10 101 75 5.44 27 26.6

800 16 92 66 5.52 27.6 27

800 20 91 65 5.63 27.8 27.6

1,000 6.25 99 75 5.65 26.4 26

1,000 10 91 66 6.36 26.8 24.8

1,000 16 89 63 6.94 27 26.7

1,000 20 88 60 7.63 27.2 27.2

1,250 6.25 88 60 7 24 24.1

1,250 10 87 57 7.02 24.8 24.8

1,250 16 86 56 7.36 25.7 25.3

1,250 20 84 53 8.36 26.1 25.9

1,500 6.25 80 58 7.45 21.4 23.4

1,500 10 79 86 10.17 22 23.7

1,500 16 77 52 10.39 22.9 24.8

1,500 20 76 47 11.26 23.8 25.2
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Fig. 5 Comparison of the estimations of the artificial neural network with the characterization results. a Tensile strength (MPa). b Yield strength
(MPa). c Elongation (percent). d Hardness of HAZ (HV). e Hardness of welded metal (HV)

Int J Adv Manuf Technol (2010) 48:95–101 99



6 Conclusion

Representations of the characteristics of FSW operation by
using ANNs and selection of the optimal tool rotation speed
and feed rate (weld speed) by using the GA were proposed.
The in-house developed GONNS package was used for
modeling and optimization. The package first trained the
ANNs with experimental data. Later, the GA estimated the
optimal parameters.

The performance of the GONNS was found to be a
viable option for modeling the stir welding process and
searching for the optimal solutions. One ANN was
assigned to each one of the considered five performance
parameters of the welding zone: tensile strength, yield

strength, elongation (percent), hardness of weld metal,
and hardness of heat-affected zone. The inputs of the
five ANNs were the same (tool rotation and welding
feed rate). The estimation errors of the ANNs were
better than average 0.5%. GA estimated the optimal
FSW conditions to minimize or maximize one of the
stir welding characteristics, while the others were kept
at the desired ranges.

The GONNS may model many systems if experimental
data or a series of observations are available. The ANN-GA
combination of the GONNS performed as expected in this
application and is recommended for others.

Fig. 6 The user interface of the genetically optimized neural network
system to determine the search region and resolution

Fig. 7 The user interface of the genetically optimized neural network
system for selection of the parameter to be minimized or maximized
and the acceptable range of the parameters

Fig. 8 The optimization result when all the output parameters were
allowed to stay in their full range presented

Fig. 9 The optimization result when the acceptable elongation range
was reduced to 10% to 12%
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