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Artificial neural network a tool for predicting failure
strength of composite tensile coupons using acoustic
emission technique
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Abstract A series of 18 tensile coupons were monitored
with an acoustic emission (AE) system, while loading
them up to failure. AE signals emitted due to different
failure modes in tensile coupons were recorded. Ampli-
tude, duration, energy, counts, etc., are the effective
parameters to classify the different failure modes in
composites, viz., matrix crazing, fiber cut, and delamina-
tion, with several subcategories such as matrix splitting,
fiber/matrix debonding, fiber pullout, etc. Back propaga-
tion neural network was generated to predict the failure
load of tensile specimens. Three different networks were
developed with the amplitude distribution data of AE
collected up to 30%, 40%, and 50% of the failure loads,
respectively. Amplitude frequencies of 12 specimens in
the training set and the corresponding failure loads were
used to train the network. Only amplitude frequencies of
six remaining specimens were given as input to get the

output failure load from the trained network. The results
of three independent networks were compared, and we
found that the network trained with more data was having
better prediction performance.
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1 Introduction

Fiber reinforced plastics (FRP) have been widely used in
the aviation industry due to their advantages, like high
strength-to-weight ratio, good corrosive resistance, and
fast on-site installation. These weight savings in turn
contribute to greater payload capability. With the in-
creased use of composites, continuing research in assess-
ment and quality control of composites must be an
ongoing process. The major types of damage mechanism
of FRP are matrix crazing, fiber breakage, and delamina-
tion [1]. As far as the structural integrity is concerned, there
is a question of whether or not the proof loading lowers the
actual failure load of composite hardware. For metals,
assuming the absence of macroscopic flaws, as long as the
stress is kept below the proportional limit or yield point,
there is little in the way of plastic deformation and,
therefore, no noticeable degradation in the structural
integrity. This, however, does not hold true for fiber/matrix
composites because fibers are the primary load-bearing
constituents in composites; the structural integrity begins to
degrade as soon as the fibers begin to break. The only way
to avoid such an unintentional structural degradation is to
reduce the proof test load [2, 3].

AE technique is a fast-developing nondestructive testing
tool ideally suited for the integrity evaluation of composite
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hardware during proof load testing. AE is defined as “the
class of phenomena where by transient elastic waves are
generated by the rapid release of energy from localized
sources with in a material, or the transient waves so
generated” [4]. AE signals, once generated, will be detected
by the AE sensors, which are attached to the material, and
sent to the AE data acquisition system for recording and
processing. A typical AE signal, Fig. 1, is a complex,
damped, sinusoidal voltage vs time plot. Some of the
characteristics, such as amplitude, duration, energy, events,
and counts, are the key parameters for material character-
ization and structural integrity evaluation [1, 5]. Very long
back itself amplitude distribution has been utilized for
analyzing the failure mechanism in composite materials [6].
Predicting ultimate failure load of composite specimens
using AE data was proved earlier by Walker and Hill [7].

Artificial neural network (ANN) is an information
processing system that has certain characteristics similar
to biological neural networks. A neural network consists of

a large number of simple processing elements called
neurons or nodes. Each of these neurons is connected to
other neurons by communication links, each with associat-
ed weightage. The weightage represent information that is
used by the network to solve a problem. A hidden layer
neuron has many input paths and combines values of the
input paths by a simple summation. The summed input is
then modified by a transfer function and passed directly to
the output path of the processing element, as shown in
Fig. 2. The output path of the processing element can then
be connected to input paths of other nodes through connection
weightings. Since each connection has a corresponding
weighting, these weightings prior to being summed modify
the signals on the input lines to a process element. The
processing elements are usually organized into groups called
layers. Typically, a network consists of an input layer, where
data are presented to the network; one or more hidden layers
for processing; and one output layer for get the results from the
network [8]. It has been demonstrated that AE data could be
used along with neural network for predicting ultimate
strength of graphite epoxy tensile specimens and weld
strength of aluminum–lithium specimens by researchers
Walker and Hill [9, 10], respectively.

2 Apparatus and procedure

Eighteen AE data sets were generated by loading ASTM D-
3039 carbon/epoxy unidirectional tensile specimens at a
rate of 5 KN/min to failure. INSTRON 5582 type 100 KN
capacity UTM was used to do the tensile test. While
loading, AE activity was monitored with a Physical
Acoustic Corporation (PAC) DiSP AE system. A pair of
R15 sensors (150 KHz, resonant) and preamplifiers with
40 dB gain were used. AE transducers were mounted in
position using adhesive tapes 30 mm apart from aluminum

Fig. 1 Typical AE signal and characteristics
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Fig. 2 Artificial neuron model
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tabs. In order to acquire emissions from complete volume,
the sensors were mounted on alternate sides of the
specimen, as shown in Fig. 3. AE signal transmission
between specimen and sensor was ensured through appro-
priate couplant (silicone vacuum grease). A threshold
setting of 35 dB was adopted for the test after estimating
background noise. Hsu-Nielson 0.5 mm dia, 2H pencil
break was conducted before each test for ensuring proper
working of AE channels. The exact material specification
of each sample was same, except that they were produced
in different curing conditions to widen the failure load band
width. Only portions of AE amplitude frequency data
collected up to 30%, 40%, and 50% of theoretical failure
load of 12 specimens were supplied as input to the
individual BP ANN models. Amplitude frequency data of
six remaining specimens were used as the test phase for the
ultimate strength prediction. Walker has taken only the
matrix crazing signals (23 to 45 dB) for his weibull analysis
and neural network prediction at 25% level [9]. This
research has contemplated that accurate prediction could be
possible with high-amplitude hits recorded during loading
because a significant number of fiber breakage and matrix
splitting events, which produce high-amplitude signals, are
adversely affecting the failure load of the specimen.

3 Failure mechanisms analysis

As mentioned previously, the three primary failure modes
for most composites are matrix crazing, fiber breakage, and

delamination. Unlike in pressure vessels and flexural tests,
considerable delamination was not expected in unidirec-
tional tensile test, but matrix splitting can occur. Each of
these failure modes has specific magnitudes for various AE
characteristics, which makes AE useful in identifying these
failure mechanisms. A typical matrix crazing signal is of
long duration with low amplitude and low energy. Matrix
crazing occurs throughout the testing cycle and is usually
the least damaging of the mechanisms [11]. Matrix splitting
occurs when matrix cracking occurs along the fibers. This
mechanism can bring down the failure load as much as the
fiber failure [12]. Duration of this failure is long; energy
and amplitude are also lesser than fiber breakage. Another
failure mode, fiber breakage, is typically the most damag-
ing mechanism since the fibers are the main load-bearing
constituents of the structure. Fiber breaks have the highest
amplitudes and energy in the three primary failure
mechanisms. These are all consolidated in Table 1.

Fig. 3 Specimen with sensors

Table 1 Characteristics of failure modes

AE parameter Failure modes

Matrix
crazing

Matrix
splitting

Fiber breakage

Amplitude Low Medium High
Duration Long Long Short
Energy Less More More

Table 2 AE hits from specimens and its failure loads

Specimen
Numbers

Number of
AE hits up
to 30% load

Number of
AE hits up
to 40% load

Number of
AE hits up
to 50% load

Actual
Failure
load (kN)

1 117 386 712 10.948
2 173 307 672 11.244
3 257 361 715 11.296
4 134 246 407 10.744
5 151 295 659 11.751
6 139 294 624 10.982
7 128 313 549 11.781
8 138 260 366 11.262
9 82 142 721 10.493
10 385 478 652 11.762
11 146 261 676 12.959
12 179 352 1,083 11.439
13 171 437 625 12.111
14 231 340 625 11.439
15 184 275 544 10.032
16 180 353 742 10.438
17 133 221 531 11.821
18 203 340 694 11.748
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Although all the characteristics are useful in providing
information on AE, the research herein used only amplitude
(in the form of frequency in each dB from 35 to 100) for
failure load prediction. Here, event frequencies at 1-dB
intervals are provided as input for the neural network. Hubele
and Hwarng showed that the three-layer back propagation
neural network could closely approximate the results obtained
from statistical analysis [13]. Neural network approximations
also take into account any nonlinearities present, and
according to the Kolmogorov theorem, a three-layer neural
network should be able to map any continuous function
exactly [14]. Statistical methods are also capable of predict-
ing the failure strength of specimens [15]; however, neural
network prediction accuracy was found to be better.

4 Results and discussions

AE data were collected during loading until failure of each
specimen. Table 2 illustrates AE hits recorded while testing of
each specimen at different loading levels. Data acquired till
failure are used for posttest analysis. After analysis, three
parameters chosen for further studies are amplitude, duration,
and energy. Multiple linear regression analysis performed by
Fatzinger and Hill [16] using percentage of hits associated
with each failure mechanisms has provided a failure load (I-
beams) prediction error of 36%, but an optimized ANN with
amplitude frequency provided only 9.5% error. From this
research work, it was concluded that amplitude frequency
along with ANN proved to be better than all other AE
parameters. Hence, here, the same approach was also adopted.

Eighteen tensile coupons were grouped into two sets
called training and testing sets. The training set contains 12
specimens inclusive of best and worst failure loads
recorded; the six remaining specimens were in the test set.
As first, AE hits recording up to 30% of load were taken for
failure load prediction. Amplitude frequency at each dB
interval (35 to 100 dB) was given as the input vector. A
network was constructed with 66 input neurons and only
one output (failure load) neuron. The network was trained

with different combinations of middle-layer neurons to get
the targeted output. The better error convergence was
obtained at the network architecture 66-37-1. Transfer
function used was hyperbolic tangent and 0.01 and 0.9
are the learning coefficient and momentum, respectively.
Then, the network was given, only the amplitude frequency
of testing set specimens and their failure loads were
predicted by the network as given in Table 3.

We developed a new network with 40% of AE data
consisting of the same number of neurons in the input layer
and only one neuron in the output layer. The network was
optimized with the structure 66-22-1. Transfer function,
learning coefficient, and momentum were the same as those
used in the previous network. The convergence threshold of
7×10−8 was attained at the 22nd epoch size. Prediction
results of six specimens in the test set are given in Table 4.

The third network constructed with 50% of AE data was
optimized at the architecture 66-45-1, as shown in Fig. 4.
Network parameters like learning rate, momentum, bias,
transfer function, learning rule, etc., were the same as those
followed in the previous two networks. The target threshold
7×10−8 was met at the 28th epoch, as shown in Fig. 5.
Output results of the network are given in Table 5.

Prediction results of three networks were compared with
the actual failure loads, and they were plotted in Fig. 6.
This comparison spelled out that the increase in accuracy of
the neural network depends on the increase of data quantity.
However, an increase in the load of composite hardware
above a particular limit will adversely affect the structural
integrity, as discussed in the introduction of this manuscript.
Therefore, the failure load prediction was restricted with a
maximum of 50% loading level. The maximum error
tolerance of 1.22% obtained at 50% loading level was found
sufficiently nearer to the actual failure load of the specimen.

5 Conclusion

This paper demonstrates the capability of a back-propagation
neural network to predict the ultimate strength of carbon/

Table 4 Test results with 40% load

Specimen
No.

Actual failure loads
(KN)

Predicted failure
loads (KN)

% Error

12 11.439 12.825 12.11
13 12.111 11.956 −1.27
14 11.437 11.024 −3.62
16 10.438 11.259 7.86
17 11.821 12.775 8.07
18 11.748 10.323 −12.04

Table 3 Test results with 30% load

Specimen
No.

Actual failure
loads (KN)

Predicted failure
loads (KN)

% Error

12 11.439 14.265 24.7
13 12.111 11.057 −8.7
14 11.437 10.829 −5.33
16 10.438 11.999 14.95
17 11.821 13.898 17.57
18 11.748 10.021 −14.70
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epoxy tensile specimens. An increase in performance of
the network with a higher quantity of AE data was proved
very clearly by the comparison done between the results
of three independent networks developed. In order to
avoid the structural integrity degradation during proof
testing, the failure loads of tensile coupons were predicted
with 50% and the lover level itself. So that it may be
possible to proof test the composite hardware, more
sophisticated methods than those that are currently being
tested need to be developed (70% to 80% of failure load),
and their failure loads could be predicted.
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Fig. 6 Results plot with actual failure loads

Table 5 Test results with 50% load

Specimen
No.

Actual failure
loads (KN)

Predicted failure
loads (KN)

% Error

12 11.439 11.57 1.14
13 12.111 12.052 −0.49
14 11.437 11.299 −1.22
16 10.438 10.479 0.39
17 11.821 11.873 0.44
18 11.748 11.628 −1.02
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