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Abstract Automated inspection of surface mount PCB
boards is a requirement to assure quality and to reduce
manufacturing scrap costs and rework. This paper investigates
methodologies for locating and identifying multiple objects in
images used for surface mount device inspection. One of the
main challenges for surface mount device inspection is
component placement inspection. Component placement
errors such as missing, misaligned or incorrectly rotated
components are a major cause of defects and need to be
detected before and after the solder reflow process. This paper
focuses on automated object-recognition techniques for
locating multiple objects using grey-model fitting for produc-
ing a generalised template for a set of components. The work
uses the normalised cross correlation (NCC) template-match-
ing approach and examines a method for constraining the
search space to reduce computational calculations. The search
for template positions has been performed exhaustively and by
using a genetic algorithm. Experimental results using a typical
PCB image are reported.

Keywords PCBmanufacture . Component inspection .

Template matching . Genetic algorithm

1 Introduction

Vision systems can be used to detect defects on surface mount
device (SMD) printed circuit boards (PCBs) and many
different inspection approaches have been developed (see for

example [9, 12 and 8]). Surface mount techniques allow high
component density boards to be manufactured at a high
speed using automated equipment. Inspection is used to
check for a range of possible errors that can occur during the
manufacturing process.

The main manufacturing steps in the production of
single-sided surface mount technology boards are shown in
Fig. 1. The process steps involve applying solder paste to
printed circuit board pads, placing surface mount devices
on the board at correct positions and placing the board in an
oven to solder components to pads (reflow soldering).
Double-sided boards requiring the insertion of through-hole
components undergo a more complex assembly process.
Adhesive is used to hold the SMDs on the second side and
wave soldering is used to solder through components.

Component placement can be achievedwith pick-and-place
automation where a vacuum nozzle is used for picking up
SMD components from a tape feed and positioning these on
the board. Vacuum blow off can lead to problems such as
components not being placed (too low blow-off) and compo-
nents being blown out of position (too high blow off) while
poor X-Y mechanical alignment can result in position offset
problems. Resulting component placement errors include:

(i) Missing components
(ii) Misaligned components
(iii) Rotated components

The solder reflow process can also cause components to
be lifted and flipped due to unequal solder conditions and
outgassing. Consequently, both inline and post inspection is
used in the manufacture of SMD boards as shown in Fig. 1.

This paper explores automated object-recognition tech-
niques for locating multiple objects (e.g. surface mount
resistors) in an image to identify their position and rotation
on the PCB board. This enables a component position
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quality check to be performed. The method developed is based
on a template-matching and genetic algorithm search where a
generalised grey-model template is used for multiple target
recognition. Section 2 of the paper discusses the template-
matching method and its use in object recognition. Section 3
discusses how a generalised template can be created for a set
of components and generates the maximum likelihood search
space to verify its use. Section 4 describes how the image
search space can be constrained to reduce the number of
calculations performed. In Section 5 a genetic algorithm
solution for searching multiple objects in a source image is
presented. Section 6 discusses the application of approaches
developed and results obtained. Finally conclusions are drawn.

2 Template matching

Template matching is a method for identifying features in a
source image that match a smaller sub-image called the
template image [13]. It is commonly used in object-
recognition applications. The basic template-matching
algorithm involves sliding the template image over the
source image and at each position calculating a grey-scale
correlation measure using pixel intensities to estimate the
degree of similarity between the template and source image
region. Typically, the normalised cross correlation (NCC) is
used in template-matching algorithms and is given by:
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where

f x; yð Þ is the matrix of grey-level pixel intensities in the
source image

fu; v is the average grey-level intensity value of the
source image in the region coincident with the template
image

t is the matrix of grey-level pixel intensities in the
template image

t is the average grey-level intensity value of the template
image

The value of c(u, v) ranges from −1 to 1 and is in-
dependent of scale changes of the source and template
images. The maximum value of c(u, v) indicates a position
where the template best matches the source image. To
extend normalised cross correlation to detect patterns that
are rotated requires a new template-matching search for
each angle, increasing the computational cost. The standard
grey-level template-matching approach uses a single tem-
plate to search for an individual component. The problem
of locating and identifying similar components that exhibit
variations of grey-level appearance requires a template-
modelling approach [2].

3 Grey-model template

Figure 2 is a PCB source image showing a 7475 IC (a pin
through hole (PTH) component) and six surface mount
resistors. The quality requirement is to recognise and locate
the six components located beneath the 7475 IC, which are
either 5110 or 1001 surface mount resistors. Note that one
of the 5110 resistors is rotated by 180° relative to the
others. Each component has a fixed size and shape but has
a different grey-level appearance due to differences in
printing on the components and other differences related to
markings of the component supplier etc. Non-uniform
illumination can cause shadows that appear as shaded areas
in the source image.

Apply solder paste to pads 

SMD placement 

Preheat/reflow 

Clean 

Component placement 

inspection 

PCB board 

Fig. 1 Manufacture of SMD boards

Fig. 2 PCB surface mount component image
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The approach developed involves creating a grey-model
template using a set of template images for each of the
components to be located and recognised. This has been
done by linearly combining a series of template images to
average the statistical variation of grey-level intensity
values that exists between each of the individual component
images. The method extracts the same size of template
images for each of the six components in the source image
and computes the mean of corresponding pixel values in
each of the template images. Figure 3 shows the generalised
grey-model template image that has been created using six
component template images of the same size extracted from
Fig. 2.

The generalised template be can used to produce the
maximum likelihood image of the search space as shown in
Fig. 4. The maximum likelihood χ can be calculated using

# ¼ f � t½ �TS�1 f � t½ � ð2Þ

where S−1 is the inverse of the covariance matrix calcu-
lated using the matrix of pixel intensities in the source
image region coincident with the template matrix and the
matrix of template pixel intensities. In this equation, [f−t]
transposed is a 1×n matrix, and when multiplied by S−1

(which is an nxn matrix) produces a 1×n matrix. A scalar
result is obtained when this 1×n matrix is multiplied with
[f−t] which is an nx1 matrix. The normalised value of χ
ranges from 0 to 1. When χ tends to zero, there is a high
likelihood that the template matches the corresponding
source image region.

The maximum likelihood image has been produced by
sliding the generalised template image shown in Fig. 3
over the source image (Fig. 2) and at each position
calculating the covariance and subsequently the maximum
likelihood using Eq. (2). The maximum likelihood search
space image is obtained for a rotation angle of the
template relative to the source image axis of zero degrees.
Figure 4 shows a number of black regions where the
maximum likelihood is near zero indicating a good
likelihood of a match at positions in the image which
correspond to components which are required to be
located. Six dark regions corresponding to the surface
mount resistor positions are shown indicating that the
calculated generalised template is a good model for
finding multiple objects in an image

4 Constraining the search space

A template search is required for locating and identifying
multiple components in the source image. In the standard
approach, the template would be located on every pixel in
the source image to allow a similarity measure to be
calculated using normalised cross correlation. Although
normalised cross correlation is a good technique for
detecting patterns in an image, it is based on summation
and multiplication operations, which make it computation-
ally time-consuming when searching a whole image. If
ideal component centre positions on the PCB are known in
advance (target points), then local searches can be
performed around these positions by constraining the
search to a local region centred on the target point. Using
a small search area around the target points will lead to a
faster search but will be more susceptible to errors (not
finding objects) if the components are misplaced.

A misplaced component could be located at any position
on the board (source image). If a pick-and-place removal
machine is to be used to locate and remove it, then a search
of the whole image would be required. Edge filtering of the
source image can be used to constrain the search to edge
positions and so reduce the search space. By only searching
the image at edge locations reduces the number of NCC
calculations that are needed to be performed. It is important
that both strong and weak edges are detected so that
templates can be accurately located. It was found that the
Canny edge algorithm is successful at detecting weak edges
compared to other edge filters such as Sobel [14]. The
Canny filter was developed to improve upon other methods
of edge detection [4]. The Canny method finds edges by
first smoothing the image with a Gaussian filter, then
performing a gradient calculation, thinning multi-pixel wide
ridges down to a single pixel width (non-maximum
suppression), applying low and high edge strength thresh-
olds and finally accepting all edges over the low threshold

Fig. 4 Maximum likelihood image

Fig. 3 Generalised template
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that are connected to edges over the high threshold. Figure 5
shows the source image that has been Canny edge filtered.

A vector of all edge positions can be extracted from the
source image and plotted against the NCC coefficient
calculated at each edge point using the generalised grey-
model template. This is shown in Fig. 6 and represents the
constrained search space. It has six peaks corresponding to
the six resistors used to generate the grey-level template
model. To use the Canny edge locations for locating
templates requires coding the search algorithm such that
the top left-hand corner of the template image is used as the
reference point when performing the similarity calculation.

Edge detection also has the advantage that it is robust to
changes in lighting conditions and contrast. Histogram
equalisation can be used as a pre-processing step prior to
edge detection to improve the dynamic range, contrast and
as well as to maximise entropy (increase information) of the
source image in situations where non-uniform illumination
is used. To standardise images taken under different
lighting conditions, histogram equalisation can be applied
to the RGB components of the source image which are then
subsequently recombined (see [6]). It is important to note
that because our method is based on using a generalised
grey-model template image that is produced by extracting
same size sub-images, any histogram equalisation operation
needs to be applied prior to creating the generalised
template.

5 Search methods

The search for template matches can be performed
exhaustively or by using a heuristic such as a genetic
algorithm. A constrained exhaustive search performs a
similarity calculation at every edge position found in the

source image to find the best template matches. The
criterion by which the search terminates is determined by
the calculated NCC value. It has been found and validated
empirically that an NCC value of 0.65 is a good termination
criteria for stopping the search with a template match found.

5.1 Genetic algorithm search

A genetic algorithm is a population-based probabilistic
search algorithm. It uses operators modelled on the
mechanics of natural selection and biological genetics [7,
10, and 11]. A genetic algorithm starts with the creation of
a random population of solutions and a cost or fitness value
(e.g. an NCC value) is calculated for each member. Using
the fitness values as a guide, a subset of the population is
selected as the parents. These parents are then combined to
produce a new set of solutions called the offspring. This
new set is used to replace a number of members of the
original population and new cost values are calculated for
the offspring. This process of choosing and using the fittest
values to produce new populations is then repeated. As the
population evolves, natural progression should yield better
approximations to an optimal solution. A mutation operator
is used to create new solutions by randomly altering a
single solution string.

The genetic algorithm searches the constrained space (edge
pixels) shown in Fig. 5. It is implemented using a population
of indices-determining edge position (x, y) coordinates and a
separate population of indices determining angle. The
resistor objects can be present in the image at different
angles of rotation. Consequently, an angle variable is defined
that represents the angle of the template with respect to the
source image axis. The resistors are usually placed at either
0, 90, 180 or 270° of rotation and so the angle vector isFig. 5 Canny edges

Fig. 6 Normalised cross correlation coefficient verse Canny edge
pixel number
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restricted to these four values. The disadvantage of using just
four angles is that the actual angle of rotation is sometimes
not determined. The advantage of using four angles is that
the computational overhead is kept low.

Each parent (i.e. edge position and angle indices) is
assigned a fitness value by calculating the NCC value at the
corresponding edge position (x, y) coordinates and angle.
Roulette-wheel selection is used for choosing parents
(index values), which are recombined using linear recom-
bination to produce new offspring. Two parent solutions are
linearly combined to produce two new offspring using the
following equations.

offspring1 ¼ aðparent1Þ þ ð1� aÞðparent2Þ
offspring2 ¼ ð1� aÞðparent1Þ þ aðparent2Þ ð3Þ

where a is a random weighting with values between 0
and 1. An extent value can be used to extend the range of
the offspring value produced if required.

A genetic algorithm is good at targeting a single solution
[3] and so a mechanism is required to allow the GA to find
another target once a template match has been found. The
approach developed involves changing the source image
once a template match has been made. When a position in
the source image is found where the NCC value is greater
than 0.65 (a good template match is found), the region in
the source image coincident with the template is replaced
with an inverse template image so that future potential
solutions in this region will generate poor correlation
values. This approach effectively blocks out a region once
a template match has been made. The algorithm terminates
when all components have been found. This allows the
search time performance to be directly compared to the
exhaustive search.

The procedure for testing PCBs using genetic algorithms
is presented in Fig. 7 and was implemented using Matlab.
Firstly, the generalised template has been generated and the
number of the objects to be found is set offline. Then, the
image of the PCB under inspection is taken and the al-
gorithm for finding objects and their positions and rotation
angles is applied. If the positions and rotation angles are
equal to their expected values (within noise limits), then the
PCB under test passes the quality check.

6 Application and results

This section tests and compares the coding techniques
developed for multiple object recognition using a general-
ised template. The results are shown in Table 1 and were
obtained using Mobile AMD Athlon XP2500+ 1.06 GHz
with 448 MB RAM.

An investigation was performed to compare the normal-
ised cross correlation and the maximum likelihood tem-
plate-matching methods using an exhaustive search of the
unconstrained source image. The algorithm was tasked to
locate the six 5110 and 1001 surface mount resistors in
Fig. 2 using the generalised template shown in Fig. 3. The
results show that the normalised cross correlation template-
matching method is over four times faster than the
maximum likelihood approach. With the maximum likeli-
hood approach, minimum points are found sequentially, and
once a minimum point is found it is assigned a 10×10 pixel
area of white pixels to prevent multiple false solutions
around that point. It was found that calculating the
covariance matrix is very time-consuming and causes poor
time performance compared to the NCC approach. A local
search around each of the known component target points

Yes

Find Edges - Canny 

Setup GA Parameters 

Generate Roulette Vector 

Generate initial population 
Index to x y and rotation 

vectors 

Image Read 

Store x, y, rotation angle 
and  

change the image using 
 Worst Case Template 

Off-line Pre-processing 

Find Generalised Template 

Find Number of Objects

All objects found or 
time limit reached? 

Yes

Calculate Fitness Value - NCC

NCC>0.65 

Choose Parents 

End

No

Generate Offspring 

Mutate 

Start On-line procedure 

No

Fig. 7 Genetic algorithm template image search flowchart
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was then performed within a predetermined rectangular
region. A box containing ±25 pixels from the target
position was used in the experimental trials as this provides
a reasonable local search area for component misalignment.
Restricting the search to local areas around known target
points improves the search time considerably.

A local search around known target points will fail if the
components are misplaced or blown out of position due to
outgassing in the reflow process. In this case, a search
covering the whole of the source image is needed to find
the misplaced object. A previously discussed a Canny edge
constrained search (Fig. 5) can be used to reduce the
number of search points to be tested. Results were obtained
for an exhaustive and genetic algorithm search of the
Canny edges. Searching only the Canny edge point
improves the exhaustive search time performance by more
than a factor of three. It was found that the GA search for
template positions is about six times faster than an
exhaustive search of Canny edges. The GA search time is
a mean of 100 runs performed on the same test data. The
mean value of 39.5 s has a standard deviation of 33.1 s and
was obtained using a population size that was set to 160, a
recombination percentage of 75% and the mutation per-
centage to 35%. Genetic algorithms are non-deterministic
algorithms and so the mean value is the important measure
and relevant to a mass production situation where a large
number of boards are being inspected. The GA mean value
is better than values obtained for the other approaches.

In order to find an optimal parameter set for the genetic
algorithm that minimises the execution time, an experi-
mental statistical analysis has been performed. Initial trials
were undertaken to determine the ranges of the controllable
parameters, namely population size, recombination percent-
age, linear recombination extent and mutation percentage.
Two sets of trial experiments were then performed for two
consecutive ranges of values. The first set of experiments
used population values 160, 200 and 240, recombination
percentage values 75, 85 and 95%, mutation percentage
values 15, 25 and 35% and linear recombination extents of
0, 0.1 and 0.2. The second set of experiments used

population values of 80, 120 and 160; recombination
percentage values 55, 65 and 75%, mutation percentage
values of 25, 35 and 45% and linear recombination extents
of 0, 0.1 and 0.2. In both experimental trials, the middle
values represent nominal values and trials were carried out
using full factorial design for the four parameters [1]. Each
trial run was repeated ten times so that an experiment
produced an output matrix of 17×10 values of the observed
output parameter, namely algorithm execution time. Here,
17 is the number of runs with different parameters (16 runs
for full factorial design of four parameters plus one for
nominal values). Variations due to a random seed were
blocked to ensure that changes in algorithm execution time
are caused by parameter changes and not noise [5]. The
best parameter set in each experiment was found by
calculating the mean time and standard deviation for the
ten runs in each of the experimental trials.

The best parameters from the first set of experimental
trials were found to be a population size of 160, a
recombination percentage of 75%, a mutation percentage
of 35% and a linear recombination extent of 0. The best
parameters from the second set of experimental trials were
found to be a population size of 160, a recombination
percentage of 75%, a mutation percentage of 45% and a
linear recombination extent of 0. The same best values for
population size, recombination percentage and recombina-
tion extent were obtained from both trials. The only
ambiguity was the value to use for mutation percentage
and further trials were done to decide on its value. These
revealed that a mutation rate of 35% gives the best
algorithm execution time with all other parameters set to
their optimal values. In summary, the best parameter set
was found to be a population size of 160, recombination
percentage of 75% and mutation percentage of 35% and
these values were used in the comparative tests shown in
Table 1.

Figure 8 plots, in a typical run, the difference between
the total number of objects to be located and the current
number found against iterations. In Fig. 8, N is defined as:

N ¼ NTOTAL � NFOUND

NTOTAL
ð4Þ

where
NTOTAL=Total number of objects to be located
NFOUND=Current number of objects found

Figure 8 shows a series of steps reducing to a value of
zero when the total number of objects to be located equals
the number of objects found. A new object (surface mount
resistor) is detected on each step. The genetic algorithm
terminates when all required objects have been found and
returns the (x, y) positions found for each component
together with its angle of rotation, which is restricted to
four angles (0, 90, 180 and 270°). A quality check can be

Table 1 Results

Method Run time (s)

Maximum likelihood unconstrained exhaustive 3,303
NCC unconstrained exhaustive 747.2
NCC Canny edge constrained exhaustive search 230.8
NCC local search on component target points 47.5a

NCC Canny edge constrained GA search 39.5b

aRectangle of ±25 pixels from the target position
bMean of 100 runs with standard deviation of 33.1
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made using the values returned by the algorithm. The
algorithm will not generate a correlation value greater than
0.65 for a component that is rotated with respect to the four
angle positions allowed and so will not be recognised.
Consequently, a component rotated out of position will not
be recognised so that the total number of objects detected
can be used as a quality check. Figure 9 shows the source
image with all six components located using the genetic
algorithm multiple object recognition method.

The key factor regarding the scalability of the approach
is the construction of the generalised template. In this work,
the generalised template is constructed from six component
templates of the same size extracted from the source image
of the same object with variations in labelling character-
istics. Consequently, the approach is limited to searching up
to six objects. Figure 10 plots the mean search time against
the number of objects being searched in the image for the
NCC Canny edge GA method. Results for both indepen-
dent and simultaneous searches are shown. A simultaneous
search is one which searches for all objects at the same
time, while the independent approach searches for one
object at a time. The results show that the GA simultaneous
search approach produces better mean time values as the
object number increases and, consequently, is a better
approach for multi-object recognition.

The NCC local area search around component target
points works reasonably well but assumes that target points
are known in advance and that the source image is aligned
to these target points. The advantage of the GA approach is
that because it is a global search on edges it is not dependent
on camera alignment. This is an important point as in a
production environment it is not always possible to
guarantee camera alignment. In both cases, if six resistors
are located, the PCB passes the QA inspection criteria.

7 Conclusions

This research developed methods for multiple-object
recognition and applied these to the problem of finding
the positions and angles of surface mount resistors located
on a PCB board to enable a quality control check to be
performed. The basic approach is based on creating a
generalised grey-model template for a set of components.
The search can be constrained to local regions around
known target points for the components or, if the whole
source image is to be searched for a misplaced component,
then the search can be constrained to Canny edge positions.

If the component target points are known in advance,
then it is practical to exhaustively search sequentially small
areas around each of the target points to find a template
match. If the whole image is to be searched, then

Fig. 8 Objects located versus iterations

Fig. 9 Source image with six components recognised and located
using a genetic algorithm

Fig. 10 Scalability results for the genetic algorithm approach
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constraining the search space to Canny edges improves the
exhaustive search time performance by a factor of three
compared to searching the raw image.

To enable the genetic algorithm to recognise multiple
targets, a method was devised to refocus the population
search once a template match has been made. This involves
replacing regions in the source image coincident with a
successful template match with an inverse template image
to prevent finding another solution in that region. The
genetic algorithm terminates when all requested compo-
nents have been found (in every test the GA finds all
components) and has a search time performance that is
about six times faster than an exhaustive search of the same
constrained search space and is faster than a series of local
exhaustive searches around known target points. Because
the genetic algorithm approach searches on edges in the
whole image, it does not depend on image alignment
(which is necessary when comparing two images for
defects). The methods developed in this work have many
other potential applications including robotic vision sys-
tems and satellite surveillance.
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