
Vol.:(0123456789)

The Annals of Regional Science (2022) 68:181–206
https://doi.org/10.1007/s00168-021-01073-y

1 3

ORIGINAL PAPER

Do population density, socio‑economic ranking and Gini 
Index of cities influence infection rates from coronavirus? 
Israel as a case study

Yuval Arbel1  · Chaim Fialkoff2 · Amichai Kerner3 · Miryam Kerner4

Received: 3 June 2020 / Accepted: 24 July 2021 / Published online: 29 August 2021 
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021

Abstract
A prominent characteristic of the COVID-19 pandemic is the marked geographic 
variation in COVID-19 prevalence. The objective of the current study is to assess 
the influence of population density and socio-economic measures (socio-economic 
ranking and the Gini Index) across cities on coronavirus infection rates. Israel pro-
vides an interesting case study based on the highly non-uniform distribution of urban 
populations, the existence of one of the most densely populated cities in the world 
and diversified populations. Moreover, COVID19 challenges the consensus regard-
ing compact planning design. Consequently, it is important to analyze the relation-
ship between COVID19 spread and population density. The outcomes of our study 
show that ceteris paribus projected probabilities to be infected from coronavirus rise 
with population density from 1.6 to 2.72% up to a maximum of 5.17–5.238% for a 
population density of 20,282–20,542 persons per square kilometer (sq. km.). Above 
this benchmark, the anticipated infection rate drops up to 4.06–4.50%. Projected 
infection rates of 4.06–4.50% are equal in cities, towns and regional councils (Local 
Authorities) with the maximal population density of 26,510 and 11,979–13,343 per-
sons per sq. km. A possible interpretation is that while denser cities facilitate human 
interactions, they also enable and promote improved health infrastructure. This, in 
turn, contributes to medical literacy, namely, elevated awareness to the benefits asso-
ciated with compliance with hygienic practices (washing hands), social distancing 
rules and wearing masks. Findings may support compact planning design principles, 
namely, development of dense, mixed use, walkable and transit accessible commu-
nity design in compact and polycentric regions. Indeed, city planners should weigh 
the costs and benefits of many risk factors, including the COVID19 pandemic.
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1 Introduction

Coronavirus 2019 (COVID-19) is a declared global pandemic with multiple risk fac-
tors (WHO report: coronavirus). A prominent characteristic of the pandemic is the 
marked geographic variation in COVID-19 prevalence. As of March 2020, several 
countries—the epicenters of the pandemic—were already badly affected by the pan-
demic, while others had just confirmed the first few cases. Balsius (2020) attributes 
this epidemic prevalence to the power law distribution (e.g., Newman 2005), namely, 
the correlation between the arrival time of the disease and the COVID-19 prevalence.

An interesting related debate at the city level is the role of development density 
in the spread of pandemics. Compact areas facilitate more intensive human interac-
tion and could lead to higher exposure to the infection, which make them the potential 
epicenter of the pandemic crisis (Glaeser 2011; Eubank et al. 2004). At the same time, 
dense areas tend to have superior health and educational systems that are more pre-
pared to handle pandemics, leading to higher recovery rates and lower mortality rates 
(Dye 2008). Densely developed areas also have the infrastructure to more effectively 
put in place measures that foster social distancing, thus reducing actual rates of infec-
tion. Density also could make it easier to provide services for citizens in-need at the 
time of social distancing orders (Bell et al. 2009). (Hamidi et al. 2020b pp 1–2).1

In the context of COVID19 infection rates, urbanization economies may work via 
two channels. On the one hand, urbanization economies facilitate human interaction 
(Glaeser 2011; Hamidi 2020b), which, in turn, may lead to higher infection rates. 
On the other hand, large cities typically offer better medical services, which, in turn, 
may promote medical literacy, namely, elevated awareness concerning the benefits 
of complying with hygienic practices (washing hands), social distancing rules and 
wearing masks. Given the growing criticism against compact planning design in 
California for potentially facilitating the spread of future viruses (Kahn 2020), new 
empirical evidence might prove to be important.

The Israeli Ministry of Health Report (2019) clearly demonstrates the highest 
(lowest) concentration of medical doctors in larger cities: a national average of 3.4 
physicians per 1,000 persons, Tel Aviv—5.3 physicians per 1,000 persons (Northern 
and Southern Districts—2.5–3.5 physicians per 1,000 persons). In a study among 
pregnant mothers, female literacy was found to be equivalent to increased number of 
nurses (Robinson and Wharrad 2001).

Given this geographic variation, it is of interest to examine whether and to what 
extent infection rates within countries are influenced by differences in urban popula-
tion densities and socio-economic conditions. Schmitt-Grohé et al. (2020) found no 
correlation between access to Covid-19 testing and the level of income in New York 
City. The ten percent of the city’s population living in the richest zip codes with 29 

1 Moreover, in his textbook, O’Sullivan (2012) states that: “The urbanization economies discussed so 
far——input sharing, labor pooling, skill matching and knoledge spillovers—generate higher productiv-
ity and lower production costs. In this part of the chapter we’ll consider three other advantages associated 
with a larger urban economy: better employment opportunities for families, a better learning environment 
for workers, and better social opportunities.” (pages 62–63). And “A quick internet search reveals that 
larger cities have more book clubs on a wider variety of topics, consistent with the notion that bigger cit-
ies provide better social matches.” (page 64).
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percent of the city’s income received 11 percent of the Covid-19 tests. The ten per-
cent of the city’s population living in the poorest zip codes with only four percent 
of the city’s income received ten percent of the tests. On the other hand, Clarke and 
Whitely (2020) argue that economic inequality can help predict COVID19 deaths 
in the USA. Other important factors the authors mention are population densities: 
“Population density matters as well since inter-personal transmission of the virus 
will be higher in densely populated areas.”

The objective of the current study is to assess the influence of these two factors 
(population density and socio-economic measures)2 on coronavirus infection rates—
the ratio between the number of infected persons to the total examined city popula-
tion. These data are calculated based on the Israeli Ministry of Health report, which is 
updated as of May 11, 2020. Population densities, socio-economic measures and the 
Gini Index updated to 2018 are based on the Israel Central Bureau of Statistics (CBS) 
reports. Given the highly non-uniform distribution of population across cities, the exist-
ence of one of the most densely populated cities in the world (Bnei Brak) and diversi-
fied populations, Israel provides an interesting case study to explore this hypothesis.

The remainder of this study is organized as follows. Section 2 reports the back-
ground and descriptive statistics. Section 3 describes the methodology and Sect. 4 
reports the results. Finally, Sect. 5 concludes and summarizes.

2  Background and descriptive statistics

2.1  Background

Israel is considered to be a highly urbanized nation. According to the ICBD report 
(Israel in Figures—Selected Data from The Statistical Abstract of Israel 2019), in 
2018 a total of 88.9% of the Israeli population, consisting of 8,967,600 inhabitants, 
lived either in cities (74.2%) or municipalities (14.7%) (page 30). The urbanization 
processes vis á vis a credible terrorist rocket threats that Israel faces (Elster et  al. 
2017) may pose a challenge to the conventional approach of compact urban plan-
ning. The map in the appendix demonstrates another challenge to compact planning 
design, namely, the spread of the COVID19 pandemic.3

“Appendix A2” displays the map of Israel stratified by population densities. Israel 
is currently populated by 8.97 million inhabitants, of whom above 75% are Jews, 
approximately 20% are Arabs and the rest are defined as “other.” The total area of 
the nine statistical regions in the country, including East Jerusalem and the Golan 
Heights, is 22,072 sq. km., and if lakes are excluded, the total area is reduced to 
21,643 sq. km. (Israel CBS: Israel in Figures 2019).

2 For the definition of socio-economic measure see, for example, ICBS: Characterization and Classifica-
tion of Geographical Units by the Socio-Economic Level of the Population, 2015. Available at: https:// 
www. cbs. gov. il/ en/ publi catio ns/ Pages/ 2019/ Chara cteri zation- and- Class ifica tion- of- Geogr aphic al- Units- 
by- the- Socio- Econo mic- Level- of- the- Popul ation- 2015. aspx
3 In the US context, California’s pioneering state-wide plan for infill and transit-oriented housing devel-
opment is being increasingly criticized for potentially facilitating the spread of future viruses (Kahn, 
2020).

https://www.cbs.gov.il/en/publications/Pages/2019/Characterization-and-Classification-of-Geographical-Units-by-the-Socio-Economic-Level-of-the-Population-2015.aspx
https://www.cbs.gov.il/en/publications/Pages/2019/Characterization-and-Classification-of-Geographical-Units-by-the-Socio-Economic-Level-of-the-Population-2015.aspx
https://www.cbs.gov.il/en/publications/Pages/2019/Characterization-and-Classification-of-Geographical-Units-by-the-Socio-Economic-Level-of-the-Population-2015.aspx
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The spatial distribution of population is highly non-uniform, and there is high var-
iability in population densities across regions. This may be demonstrated at the Table 
in “Appendix A3” While most of the southern parts of Israel are sparsely populated 
(less than 100 persons per sq. km.), population density rises with a shift to the north; 
until it reaches a peak of 6,276–12,385 persons per sq. km. in the Tel Aviv District 
(one of the most densely populated regions on a global scale). Shifting further to the 
central west and the northern parts of Israel, population densities drop to 1000–2999 
persons per sq. km. in the Haifa, Nazerath and Karmiel and Nahariya sub-districts 
(ICBD report: Population—Statistical Abstract of Israel 2019- No.70. Available at: 
https:// www. cbs. gov. il/ he/ publi catio ns/ doclib/ 2019/2. shnat onpop ulati on/ 02_ 01e. pdf).

The three major cities in Israel are Jerusalem (919,438 residents), Tel Aviv (451,523 
residents) and Haifa (283,640 residents), in 2018. Jerusalem is the biggest city and the 
nation’s capital. The Israeli Parliament (the Knesset), the Supreme Court, the Israeli 
Central Bank, and most of the government offices, including the Prime Minister’s 
Office, are all located in Jerusalem. Tel Aviv is the center of the Gush Dan conurba-
tion—Israel’s most heavily populated and dense metropolis, and is considered to be the 
business and financial center of the country (Gat 1996, 1998).

The Haifa region stands out as the most capital-intensive part of Israel because heavy 
industry has been concentrated in Haifa since Ottoman times. Throughout 1987–2007, 
the North had the most capital and the Krayot towns the least (Beenstock et al. 2011: 
606). Prior to 1985, the governmental policy preferred capital investment in the periph-
ery to investment in the center. During this period, regional policy was designed to pre-
vent depopulation in the periphery for strategic and not just economic reasons. How-
ever, investment in the periphery often had a relatively low return on investment.

Following the Economic Stabilization Plan of 1985, regional policy, like other 
aspects of economic policy, underwent radical changes. Greater emphasis was placed 
on market forces in trade policy, labor market policy, macroeconomic policy, and inno-
vation policy. Wholesale support for investment in the periphery was diminished in 
favor of more selective regional incentives such as R&D, high-tech and business, incu-
bator projects (Avnimelech et al. 2007). Therefore, it is not surprising that the periphery 
began to lose its preferred status over the center. (Beenstock et al. 2011: 606).

“Appendix A4” displays the map of Israel stratified by percentage of locally gener-
ated income in the budget of Local Authorities. This variable is positively correlated 
with the Socio-Economic IndexSocio-Economic Index, where the latter variable is 
positively correlated with the Gini Index (0.6986–0.7382, calculated p value for the 
rejection of zero correlation < 0.01): an increase in the wealth of a Local Authority is 
associated with higher income inequality. Yet, one cannot reject the null hypothesis that 
population density and the socio-economic ranking of the Local Authorities are uncor-
related (p = 0.3587; 0.4804. The implication is that the spatial spread of Local Authori-
ties based on socio-economics ranking is uniformly distributed across Israel.

Following Alperovich (1984) and O’Sullivan (2012: 81–82), we ran a rank-
size rule test for the 111–255 Israeli Local Authorities. The conventional empiri-
cal model for such a test is given by the following equation:

(1)G(P) = AP−�

https://www.cbs.gov.il/he/publications/doclib/2019/2.shnatonpopulation/02_01e.pdf
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where G(P) = number of cities with population P or more; P = population of city; 
A = constant term; α = Pareto exponent. This parameter has important implications 
in terms of population distribution across cities. As this parameter becomes lower, 
populations are less evenly distributed across cities. For more populated and denser 
cities, one would anticipate more frequent human interaction, on the one hand, 
which, in turn, may lead to higher infection rates with lower values of α. On the 
other hand, large cities typically provide better medical services, which, in turn, 
may promote medical literacy, namely, elevated heightened awareness to the ben-
efits of compliance with hygienic practices (washing hands), social distancing rules 
and wearing masks (Glaeser 2011; Hamidi et al. 2020b). This, in turn, may lead to 
higher infection rates with lower values of α:

The estimation results of Eq. (1) for the entire population of 255 cities yield:

And for the full sample of 238 Local Authorities that include information 
about infection rates, the Socio-Economic Index and the Gini Index for inequality 
(95% of the entire population):

As anticipated, estimation of � is low, and the null hypothesis � = −1 is clearly 
rejected (99% confidence interval of [− 0.8604, − 0.7742], [− 0.9034, − 0.8429]). 
In his meta-analysis, Nitsch (2005) found that in most studies this parameter is 
below − 1.0. As suggested by the strict interpretation of the Zip’s law, the impli-
cation might be a departure from uniform distribution of population across cities 
in Israel.

Given that our sample is restricted to 111 Local Authorities with information 
about the Socio-Economic Index and the Gini Index for inequality, and COVID19 
infection rates above zero, the estimation results of Eq. (1) for the sample of 111 
Local Authorities yield:

where standard errors are given in parentheses. The null hypothesis of � = −1 is not 
supported empirically at the 5% level (p = 0.0338 and 95% confidence interval is [− 
1.078857, − 1.003204]).

2.2  Descriptive statistics

Table  1 reports the descriptive statistics and Fig.  1—the histogram of each variable 
for the entire sample of 238 Local Authorities and the sample of 111 observations that 
excludes Local Authorities without COVID19 cases. As the histogram demonstrates, 
the distribution of the Rate_Infected and Pop_Density is skewed to the right. The 

proj[ln(G(P))] = 12.48522 − 0.8173233 ln(P); R2 = 0.9053

(0.1623) (0.0166157)

proj[ln(G(P))] =13.05622 − 0.8731546ln(P); R2 = 0.9319

(0.1512) (0.0153638)

proj[ln(G(P))] =14.82664 − 1.04103ln(P); R2 = 0.9647

(0.20133) (0.01909)
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skewness is 1.50–1.73 (Rate_Infected) and 2.42–3.18 (Pop_Density). The null hypothe-
sis of symmetrical distribution is clearly rejected. The calculated adjusted  Chi2 statistics 
with 2 degrees of freedom are: 64.15–138.80 for the entire sample of 238 Local Author-
ities and 26.23–55.49 for the sample that excludes Local Authorities without COVID19 
cases. The 1% critical  Chi2 value is only 9.21034. In contrast, the distribution of the 

Fig. 1  Histograms of Variables at A Local Authority Level
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Gini Index and socio-economic ranking seems to be much more symmetrical. The null 
hypothesis of symmetrical distribution is not rejected empirically (p = 0.0156–0.9402).

2.3  Pearson correlation matrices

Table 2 reports the Pearson Correlation Matrices for the entire sample of 238 Local 
Authorities and the sample of 111 observations that excludes Local Authorities 
without COVID19 cases. The table supports the conclusion that there is no collin-
earity between Population Density and both socio-economic measures (Socio-Eco-
nomic Ranking and Gini Index). However, there is high collinearity between Socio-
Economic Ranking and Gini Index (0.6986–0.7382, where for both correlations the 
null hypothesis of zero correlation is clearly rejected).4

Finally, note the positive Pearson correlations between infection rates and popula-
tion densities (0.3845 for the full sample, where p < 0.01 for the rejection of the zero 
correlation null hypothesis, and 0.2250 for the restricted sample, where p = 0.0176 for 
the rejection of the zero correlation null hypothesis). When the sample is restricted to 
exclude Local Authorities with zero infection rates, the Pearson correlation between 
infection rates and socio-economic ranking drops from minus 12.02% (p = 0.0641) 
to minus 45.68% (p < 0.01). The implication is a rise in the explanatory power of 
this variable vis-á-vis a drop in the explanatory power of population density with the 
restriction of the sample.

Table 2  Pearson Correlation Matrix

Calculated p values for testing the null hypothesis of zero correlation are given in parentheses. 
**p < 0.05, ***p < 0.01

Rate_Infected Population_Density Gini Socio_
Economic

(A) The entire sample of 238 Local Authorities:
Rate_Infected 1.0000
Population_Density 0.3845***

(< 0.01)
1.0000

Gini Index 0.0788 − 0.0373 1.0000
(0.2259) (0.5666)

Socio_Economic_Index − 0.1202* − 0.0460 0.7382*** 1.0000
(0.0641) (0.4804) (< 0.01)

(B) 111 Local Authorities, where number of infected persons is above zero:
Rate_Infected 1.0000
Population_Density 0.2250**

(0.0176)
1.0000

Gini Index − 0.0705
(0.4620)

− 0.0681
(0.4776)

1.0000

Socio_Economic_Index − 0.4568***
(< 0.01)

− 0.0879
(0.3587)

0.6986***
(< 0.01)

1.0000

4 To investigate the impact of this collinearity on the regression outcomes, in subsequent section we 
provide a robustness test.
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3  Methodology

Consider the following estimated maximum likelihood objective function of the 
fractional probit model (e.g., Papke and Wooldrige (1996); Johnston and Dinardo 
(1997): 61–63,5 424–426; Wooldrige (2010)):

where j is the index for each Local Authority (for the full model j = 1, 2, 3,… , 238 
and for the model, which excludes Local Authorities with zero infection rates 
j = 1, 2, 3,… , 111 ); �j =

√

POPj (the square root of Local Authority population); 

yj = Infection_ratej =
Infectedj

Examinedj
 where 0 ≤ yj < 1 ; x′

j
 is a matrix whose dimensions 

are 238 × 5 or 111 × 5 ( x�

j,1
= 1⃗ for the constant term; x�

j,2
= PopulationDensityj in 

square kilometers;
x
�

j,3
= Population_Density2

j
 ; x�

j,4
= Gini Indexj (a measure that ranges between 

zero = perfect equality and 1 = perfect inequality) and x′

j,5
 = Socio-Economic ranking 

of the Local Authority, which ranges between 1 = the lowest, to 10 = the highest). 
Finally, Φ is the cumulative normal distribution function; z�

j
= x

�

j
 and � and � are col-

umn vectors of the parameters with up to four rows.
The fractional probit model was pioneered and has been extensively used in biomet-

rics applications (Amemiya 1981: 1484; Johnston and Dinardo 1997: 413). It belongs to 
the family of discrete choice models. Biologists (medical researchers) employ this sort 
of model to measure the relationship between survival of an insect = 1; otherwise = 0 
(patients recovery = 1; non-recovery = 0) and the dosage of insecticide (drugs). Conse-
quently, it seems plausible to employ this model in a micro-individual level sample, 
where the limited dependent variable equals 1/0 if the person was infected/not-infected.

The difference between the Probit and the Fractional Probit model is the defini-
tion of the dependent variable. While the dependent variable in the former receives 
only 1 or zero ( yi = 1∕0 for infected/not-infected), the dependent variable in 
the latter may receive any continuous variable bounded between 0 and 1, so that: 
0 ≤ yi ≤ 1  (Papke and Woldridge 1996: 621). This model fits the definition of Infec-
tion Rate as Cases divided by the population of the Local Authority.

With this exception, the discussion on these bounded models are quite similar. It 
is possible to run an OLS procedure with a limited dependent variable (the Linear 
Probability Model or LPM). The advantage of this model lies in the fact that the 

(2)lnL =

N
∑

j=1

�jyj ln
{

G
(

x
�

j
�
)}

+

N
∑

j=1

�j

(

1 − yj
)

ln
{

1 − G
(

x
�

j
�
)}

(3)G
(

x
�

j
�
)

= Φ
{

x
�

j
�∕ exp

(

z
�

j
�
)}

5 The likelihood function of the model: Y
i
= � + �X

i
+ u

i
 may be defined as L

(

�, �, �2;Y
i

)

 . The maxi-
mum likelihood estimators (MLE) �̂, �̂, �̂2 maximize the probability of obtaining the sample values that 
have actually been observed (Johnston and dinardo 1997: 61–63). The method gained a widespread pop-
ularity due to a range of desirable large sample asymptotic properties, including: consistency, asymptotic 
normality and efficiency, (Johnston and dinardo 1997: 143–145).
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coefficients are readily interpreted as marginal probabilities. Yet, according to John-
ston and Dinardo 1997: “A major weakness of the linear probability model is that it 
does not constrain the predicted value to lie between 0 and 1.” (page 417—italics in 
the source). Based on the 1988 Population Survey data, the authors highlight. This 
weakness, where according to the projected probabilities to become a union member 
(Union = 1/0 for Union/non-union member), 5% of the persons have a minus 10% 
chance of being a union member (page 417).

The Probit model, whose predictions are bounded between 0 and 1, is the cumu-
lative standard normal distribution function. An additional advantage of the pro-
bit model is: “In the probit model, the derivative of the probability with respect to 
X varies with the level of X and the other variables in the model.” (Johnston and 
Dinardo 1997: 422—Italics are in the source).

Johnston and Dinardo (1997) also mention the following disadvantage of the 
probit model: “Observe that the sign pattern of the coefficients is the same one we 
observed for the linear probability model. However, calculating the change in the 
probability of union membership with respect to one of the right-hand-side variables 
is not so simple as it was in the linear probability model.” (page 422).

Finally, the Logit model, whose predictions are bounded between 0 and 1 is given 
by: prob

(

yi = 1
)

=
exp (Xi�)

1+exp (Xi�)
 (Johnston and Dinardo 1997: 424). The main differ-

ence between the normal distribution and the logistic distribution is that the latter 
has more weight in the tail. Yet Johnston and Dinardo (1997: 424–426) demonstrate, 
in contrast to the LPM, the minor projected differences obtained from the estimation 
of the probit and logit models.

4  Results

4.1  Main results

Table 3 reports the regression outcomes of Eqs. (2)–(3). The bottom of the table gives 
the outcomes of the Harvey Harvey-Godfrey test for heteroskedasticity, where the 
dependent variable in the auxiliary regression is ln �̂�2 (Ramanathan 2002: 348–350). 
This specification seems to fit the model described by Eq. (3). The outcomes support 
heteroskedasticity with respect to population density and the Socio-Economic Index 
for the full sample of 238 Local Authorities (consisting of 95.39% of the Israeli popu-
lation), and with respect to population density and the Gini Index for the restricted 
sample of 111 Local Authorities (consisting of 78.80% of the Israeli population).

The outcomes reported at the top of Table  3 indicate that the linear model is 
rejected in favor of the quadratic model. The negative sign of the coefficient of popula-
tion density indicates a parabola with a maximal point, namely, projected probability 
of infection rates is expected to rise with population density at a decreasing pace, until 
it reaches a maximal point, after which projected probability to be infected drops.

Given the difficulty to interpret directly the coefficients of the fractional probit 
regressions, and based on the outcomes reported in Table 3, Figs. 2a–b give the pro-
jected probability to be infected from COVID19 with respect to population density. 
The figures show an anticipated rise in COVID19 infection rate with population 
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density from 1.6 to 2.72% up to a maximum of 5.17–5.238% for a population den-
sity of 20,282–20,542 persons per sq. km. Above this benchmark—anticipated 
infection rate drops up to 4.06–4.50%. Projected infection rates of 4.06–4.50% 

a

b

Fig. 2  a Including Local Authorities with no infection (238 Local Authorities). b Excluding Local 
Authorities with no infection (111 Local Authorities). Notes Based on the outcomes reported in Table 3
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Table 4  Robustness tests of different empirical models

(1) (3) (5)
Empirical model Probit Logit LPM

VARIABLES Rate_infected × 
√

POP Rate_infected × 
√

POP Rate_infected × 
√

POP

(A) Full Sample

Population_Density2 × 
√

POP − 8.39 ×  10−10***
(0.00109)

− 2.21 ×  10−9***
(0.000321)

3.94 ×  10−12

(0.853)

Population_Density × 
√

POP 4.58 ×  10−5***
(4.99 ×  10−8)

0.000111***
(5.97 ×  10−8)

2.14 ×  10−6***
(1.60 ×  10−5)

Gini × 
√

POP 4.053***
(1.26 ×  10−10)

9.492***
(1.23 ×  10−10)

0.283***
(< 0.01)

Socio_Economic_
index × 

√

POP

−.907***
(< 01)

-− 0.213***
(< 0.01)

− 0.00657***
(< 0.01)

Constant × 
√

POP − 3.409***
(< 0.01)

− 7.086***
(< 0.01)

− 0.0687***
(8.06 ×  10−9)

Sum of POP in the sample 8,554,064 8,554,064 8,554,064
Total Israeli POP (2018) 8,967,600 8,967,600 8,967,600
% of sample from population 95.39% 95.39% 95.39%
Observations 238 238 238

(2) (4) (6)
Empirical model Probit Logit LPM
VARIABLES Rate_infected × 

√

POP Rate_infected × 
√

POP Rate_infected × 
√

POP

(B) Local Authorities with Positive Infection Rates

Population_Density2 × 
√

POP 2.01 ×  10−10

(0.371)
2.60 ×  10−10

(0.630)
5.51 ×  10−11**
(0.0225)

Population_Density × 
√

POP 9.53 ×  10−6

(0.19.)
2.48 ×  10−5

(0.162)
2.92 ×  10−7

(0.622)

Gini × 
√

POP 2.738***
(1.69 ×  10−7)

6.214***
(3.52 ×  10−7)

0.233***
(6.32 ×  10−10)

Socio_Economic_
index × 

√

POP

− 0.0914***
(< 0.01)

− 0.210***
(< 0.01)

− 0.00744***
(< 0.01)

Constant × 
√

POP − 2.625***
(< 0.01)

− 5.175***
(< 0.01)

−0.0312**
(0.0304)

Sum of POP in the sample 7,066,685 7,066,685 7,066,685
Total Israeli POP (2018) 8,967,600 8,967,600 8,967,600
% of sample from population 78.80% 78.80% 78.80%
Observations 111 111 111

Estimation outcomes are based on the fractional probit, fractional logit and LPM regressions, where pop-
ulation weights ( 

√

POP ) are included. The upper (lower) part of the Table reports the outcomes obtained 
where Local Authorities with no COVID19 cases were included (excluded). Robust p values are given in 
parentheses. *p < 0.1, **p < 0.05, ***p < 0.01.
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are equal in Local Authorities with the maximal population density of 26,510 and 
11,979–13,343 persons per sq. km.

Given that at denser regions (above 20,282–20,542 persons per sq. km.) projected 
infection rates are anticipated to drop, results of our study reveal a more complex 
COVID19 infection rate—population density relationship than previously thought, 
and may support the professional consensus in favor of a compact development 
(Hamidi et al. 2020b).

Returning to Table 3, results show a positive association between projected prob-
ability of infection rates and income inequality, and a negative association between 
projected probability of infection rates and the socio-economic ranking.

4.2  Robustness tests

As a robustness test, we compare the results obtained from the fractional pro-
bit with those obtained from the fractional logit and the linear probability models, 
where robust standard errors are employed and only inherent heteroscedasticity with 
respect to the group size ( 

√

POP ) is considered. The outcomes are given in Table 4 
and are robust to those obtained previously when the fractional probit and the frac-
tional logit models are applied to the full sample of 238 Local Authorities, covering 
95% of the Israeli population.

To measure the impact of first-order spatial autocorrelation, we mapped the entire 
238 Local Authorities based on longitude and latitude and sorted from southern to the 
northern parts of Israel. In addition, we corrected for heteroskedasticity, where �2

i
=

�2

N
 

and the weights are 
√

N =
√

POP (the square root of the population of each Local 
Authority). The outcomes are reported in Table 5, where columns (1) and (3) report 
the LPM estimates (with statistical tests for first order spatial autocorrelation) and col-
umns (2) and (4) report the estimates obtained via the Prais–Winsten regression.6

Results of the LPM procedure, which ignores first-order spatial autocorrelation, 
and the Durbin H test,7 demonstrate that the null hypothesis of zero autocorrelation 
( � = 0 ) is rejected for both the full sample of 238 Local Authorities at the 1% level 
(where �̂� = 0.3383 ) and the limited sample of 111 Local Authorities at the 5% level 

6 The structural model for AR(1) is: (1) Y
t
= � + �X

t
+ u

t
 where: (2) u

t
= �u

t−1 + �
t
 and �

t
 is the sto-

chastic random disturbance term. Eq.  2) can be rewritten as: (3) �
t
= u

t
− �u

t−1 . Multiplication of (1) 
by � and taking one lag backward yields: (4) �Y

t−1 = �� + ��X
t
+ �u

t
 . Subtracting (4) from (1) and 

rearranging terms yields: (5) Y
t
− �Y

t−1 = (1 − �)� + �
(

X
t
− �X

t−1

)

+
(

u
t
− �u

t−1

)

 . Finally, substitu-
tion of (2) in (5) yields: (6) Y

t
− �Y

t−1 = (1 − �)� + �
(

X
t
− �X

t−1

)

+ �
t
 . Reaaranging terms yields: (7) 

Y
t
− � − �X

t
= �

(

Y
t−1 − � − �X

t−1 + �
t

)

 (e.g., Johnston and Dinardo 1997: 188–191).
 The Cocrane-Orcrutt is an iterative procedure, which make use of Eqs.  (6) and (7) to correct for 
first order serial correlation (see, for example, Cochrane and Orrcut, 1949). Prais and Winsten (1954) 
improved this procedure, by pointing out that in spite of the lagged variables, the first observation should 
be used in the estimation procedure.
7 See, for example, Ramanathan, 2002: 447–448.
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(where �̂� = 0.6570 ). Yet, when the Prais–Winsten procedure replaces the LPM, 
results remain robust both in terms of the sign and significance of the coefficients.

An additional concern, which should be addressed, is the high collinearity between 
the socio-economic measures (Gini, Socio_Economic_Index). According to Johnston 
and Dinardo (1997): “The more the X’s look alike, the more imprecise is the attempt 
to estimate their relative effects. This situation is referred to as multicollinearity or col-
linearity (pages 88–89). There are two strategies to address this concern.

The first strategy is to argue that the two control variables included in the empiri-
cal model (Gini, Socio_Economic_Index) are relevant according to the theory or the 
logic of the researchers, and, consequently, multicollinearity is not an issue. Indeed, 
according to Ramanathan 2002: The danger of multicollinearity is a strong argu-
ment against the indiscriminate use of explanatory variables. The importance of the-
ory in formulating models should once again be emphasized. There may be strong 
theoretical reasons for including a variable even if multicollinearity might make its 
coefficient insignificant. In this case, the variable should be retained in the model 
even if multicollinearity exists. (page 216; a further discussion is given in Johnston 
and Dinardo 1997: 110–111; Kmenta 1997: 430–432; 442–446). Indeed, the con-
trol variables Gini and Socio_Economic_Index capture different dimensions of the 
socio-economic status of the city. While the former reflects the mean, the latter cap-
tures the dispersion around the mean of the city wealth or income.

The second strategy is to drop the Gini variable from the model and observe 
the change in sign of coefficient and p-values of the remaining variable. Table  6 
gives this robustness test, where the full model includes and excludes the inde-
pendent variable Gini. The outcomes of this test demonstrate that the coefficient of 
Socio_Economic_Index remains negative and statistically significant in the presence 
and absence of the Gini variable. The implication is that when the population den-
sity is controlled, COVID19 infection rate is anticipated to drop by 0.368–0.748% 
with one-point elevation of the socio-economic ranking of the city.

5  Summary and conclusions

Given the huge geographic variation in COVID-19 prevalence, the objective of the 
current study is to assess the influence of population density and socio-economic 
measures on coronavirus infection rates—the ratio between the number of infected 
persons and the total examined city population. These are calculated based on the 
Israeli Ministry of Health report, which is updated to May 11, 2020. Population den-
sities, socio-economic rankings and the Gini Index updated to 2018 are based on 
the Israel CBS reports. Israel provides an interesting case study based on the highly 
non-uniform distribution of population across cities, the existence of one of the most 
densely populated cities in the world (Bnei Brak) and diversified populations.
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Given the debate over whether compact planning may promote the spread of a 
virus, it is important to provide evidence referring to the relationship between 
COVID19 spread and population density. Indeed, compact planning promotes 
greater physical activity and less likelihood of obesity, heart disease, cancer preva-
lence (Ewing et al. 2014; Sallis et al. 2016; Arbel et al. 2019), higher life expectancy 
(Hamidi et al. 2018) and consumption of healthier food (Hamidi 2020a, b).

The outcomes of our study may provide support to the compact planning design. 
They demonstrate that ceteris paribus projected probabilities to be infected from corona-
virus rise with population density from 1.6 to 2.72% up to a maximum of 5.17–5.238% 
for a population density of 20,282–20,542 persons per square kilometer. Above this 
benchmark—the anticipated infection rate drops up to 4.06–4.50%. Projected infection 
rates of 4.06–4.50% are equal in Local Authorities with the maximal population density 
of 26,510 and 11,979–13,343 persons per sq. km. Indeed, city planners should weight 
the costs and benefits of many risk factors, including the COVID19 pandemic.

In the conventional urban economics textbooks, high population density represents 
multi-story structures with smaller building footprints, where price of land is expen-
sive (at the central cities, e.g., Mills and Hamilton 1989: 425–434; O’Sullivan 2012: 
127–151; Arbel et al. 2019). Yet, when population density is transformed from theory to 
practice, several econometric problems arise, including: (1) the difference between gross 
and net population density (McDonald and McMillen, 2011: 121); (2) inherent hetero-
scedasticity with respect to the group size; and (3) aggregation bias.8 Consequently, and 
in spite of our treatment in this inherent heteroskedasticity problem, the use of empiri-
cally measured population densities may be viewed as a limitation of our study.

Yet, referring to the aggregation bias problem, note that they might be rather 
small. In their textbook, McDonald and McMillen (2011) demonstrate the division 
of the same region around the center of New York City to 3,761 instead of 50 zones. 
This division results in only 9.677% rise in the absolute value of the estimated nega-
tive population density gradient—from 12.4 to 13.6% (page 125).

Appendix A1

Figure 3.

8 In the context of aggregation bias, Hamidi et al. (2020a) states that: “Density could also be related to the 
pandemic spread in smaller geographies such as the density of occupants in living units, which could be the 
subject of future studies once COVID-19 data are available for smaller spatial units.” (page 498, right column).
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Fig. 3  A Map of COVID19 Infection Rates in Israel, December 31, 2020. Source https:// clear- map. com/ 
ilz

https://clear-map.com/ilz
https://clear-map.com/ilz
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Fig. 4  Population Densities in Israel

Appendix A2

Figure 4.
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Appendix A3

Table 7.

Appendix A4

Figure 5.

Table 7  Population densities of 
selected areas

Source: ICBD report: Population—Statistical Abstract of Israel 
2019- No.70. Available at: https:// www. cbs. gov. il/ he/ publi catio ns/ 
doclib/ 2019/2. shnat onpop ulati on/ 02_ 01e. pdf

From South to North Area number Population Density 
(Persons Per Sq. 
Km.)

Negev Desert (South)  < 100
Northern Negev 612–621 100–249
Beer Sheba Sub-District 623 258
Ashkelon Sub-District 614 472
Jerusalem District 111 3,127.8
Ashdod Sub-District 613 4,239.9
Tel Aviv District 6,276–12,385
Haifa, Nazerath, Karmiel 

and Nahariya sub-districts
1,000–2,999

Fig. 5  Israel: Percentage of Locally Generated Income in the Budget of Local Authorities. Source https:// 
www. cbs. gov. il/ he/ publi catio ns/ doclib/ 2018/ local_ autho ritie s16_ 1722/ map2_h. pdf. Higher locally gener-
ated income are positively correlated with socio-economic ranking of municipalities and councils

▸

https://www.cbs.gov.il/he/publications/doclib/2019/2.shnatonpopulation/02_01e.pdf
https://www.cbs.gov.il/he/publications/doclib/2019/2.shnatonpopulation/02_01e.pdf
https://www.cbs.gov.il/he/publications/doclib/2018/local_authorities16_1722/map2_h.pdf
https://www.cbs.gov.il/he/publications/doclib/2018/local_authorities16_1722/map2_h.pdf
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