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Abstract
Starting with a reduced form derived from standard urban economics theory, this 
paper estimates the possible job-shortfall across UK and EU regions using a time-
space dynamic panel data model with a spatial moving average random effects struc-
ture of the disturbances. The paper provides a logical rational for the presence of 
spatial and temporal dependencies involving the endogenous variable, leading to 
estimates based on a state-of-the-art dynamic spatial generalized moments estima-
tor proposed by Baltagi et al. (Reg Sci Urban Econ, 2018. https ://doi.org/10.1016/j.
regsc iurbe co.2018.04.013). Given reliable interregional trade estimates, the simula-
tions are based on a linear predictor which utilizes different regional interdepend-
ency matrices according to assumptions about interregional trade post-Brexit. The 
results indicate that heightened barriers to trade will evidently cause job-shortfalls 
both in the UK and across the EU, but it is also shown that there is a considerable 
amount of asymmetry in the outcomes across regions and sectors.

JEL Classification C23 · C33 · C53 · E27 · F10 · J21 · R12

1 Introduction

The paper aims to simulate potential outcomes for employment across 255 EU 
regions as a result of the impending and, at the time of writing, probable departure 
of the UK from the EU, commonly known as Brexit. Most analysts agree that Brexit 
will have momentous consequences for the UK and (remaining) EU economies, but 
there is very minimal analysis at the regional scale, and analysis typically fails to 
account for interconnectivity at the regional level. Some regional impact studies 
have been carried out by Dhingra et al. (2017a, b), Los et al. (2017) and McCann 
(2018), and the current paper complements or contrasts with this research by apply-
ing a state-of-the-art dynamic spatial panel data model, in which a pan-European 
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approach is adopted involving the majority of EU regions1 and all UK regions. This 
modelling approach is ideally suited to capturing the impact of spatial interconnec-
tivity of the European regions and projecting the long-run consequences of Brexit 
across EU and UK regions, thus enabling comparison of the impact on both sides 
of the Channel and the Irish Sea. To this end, we use the dynamic spatial panel data 
model and prediction equation recently introduced into the literature by Baltagi et al. 
(2018) and applied in different contexts by Fingleton et al. (2018) and Fingleton and 
Szumilo (2019). The model assumes that employment in a given region depends on 
the levels of production and investment within that region, as shown in the basic 
economic model which underpins the estimating equation, and it also depends on 
demand coming from all the regions of the EU and UK, as determined by inter-
regional trade flows. Additionally, the model proposes that employment levels in 
any regional are closely linked to employment levels in the region in the previous 
period and on employment levels in trade-connected EU and UK regions in the pre-
vious period. Following this literature, a rational basis for the presence of spatial 
and temporal lags is introduced which more typically is ad hoc in the spatial econo-
metrics literature. In addition, the model takes account of unobserved factors which 
also affect the level of employment. These are captured by region-specific random 
effects which are also spatially interdependent. An additional feature of the approach 
adopted is the way in which endogeneity is handled, with the application of internal 
instruments in the spirit of Arellano and Bond (1991), thus eliminating the often dif-
ficult search for valid external instruments.

The focus of analysis is the so-called job-shortfall which could arise due to 
Brexit. In other words, the intention is not to forecast what happens to the actual 
levels of employment in each region, which would be the predicted change in the 
number of jobs, but to simulate what the impact of Brexit would be assuming no 
consequential responses such as jobs created by new trade links formed post-Brexit, 
changes to the UK’s competitivity and consequences for demand and employment 
due to changes in exchange rates and prices, changes to migration flows in and out 
of the UK, changes in the competitivity of firms if trade barriers are increased and 
regulations relaxed, and possible changes in levels of inward and outward invest-
ment and capital stock if capital relocates. Contemplating these and other possible 
consequences enhance uncertainty regarding what might be the actual change in the 
levels of employment in the UK regions, so in this paper the focus is on attempting 
to simulate the job-shortfall due to Brexit per se.

Stated more explicitly, the empirical analysis bases the spatial interdependence of 
levels of employment across different regions on how closely they are connected in 
terms of trade. We assume that employment levels partly reflect demand for a given 
region’s good and services coming from the UK and EU regions. Naturally, since 
about 50% of the UK’s trade in 2019 is with countries outside the EU, demand com-
ing from these non-EU countries will also affect the levels of employment. For both 
UK and EU regions generally, we assume that the non-EU component of demand 

1 Although Switzerland and Norway are formally outside the EU, they are an integral part of the analy-
sis. Their regions are referred to as EU regions for convenience.
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is reflected by the levels of production and investment within each region. In this 
way, we have attempted to isolate the impact of reduced trade between UK and EU 
regions from the potential effects of changes in non-EU trade on employment. In 
the simulations, the non-EU trade flows and hence capital and output are assumed 
to remain at the same level as previously, thus leading to our focus on job-short-
fall rather than job-loss or job-gain. Moreover, in an effort to make the simulations 
robust, simplifying assumptions are made regarding the impact of Brexit on trade 
flows between individual UK and EU regions, leading to a geography of the Brexit 
impact that is immune to changes in the actual level of assumed trade.

More specifically, estimates are made of employment levels across N = 255 EU 
regions both with and without Brexit. The explicit drivers of employment are output 
and capital, which are approximated by Gross Value Added (GVA) and a function of 
Gross Fixed Capital Formation (GFCF), respectively. Estimation is based on a viable 
data series over the period from 2001 to 2010. Data for 2011 and 2012 are not used 
in estimation but held for one- and two-step ahead prediction. Different assumptions 
can be made about post-2011 paths for GVA and GFCF, given that accessible data 
with the same geography are not available over the more recent period, although it 
has been found that these have relatively little effect on outcomes.

The structure of the paper is as follows. In Sect. 2, the model is outlined, and the 
data described in Sect. 3. Section 4 summarizes the estimator, and Sect. 5 the result-
ing estimates. Section 6 focuses on prediction methodology, and Sect. 7 gives details 
of the method for simulating the Brexit effect. Section 8 gives the simulation results, 
and Sect.  9 concludes. The “Appendices” section give the theoretical basis of the 
estimating equation, provide details of the outcomes from alternative estimators, 
and summarize the Chow–Lin approach to obtaining an interregional connectivity 
matrix. The last section lists the references.

2  The model

The reduced form used as a basis to simulate the Brexit effect assumes that employ-
ment partly depends on level of output, as measured by GVA (Gross Value Added), 
denoted by �t , and (a proxy for) the level of capital within the region, based on 
GFCF (Gross Fixed Capital Formation), which is denoted by �t . To show this, we 
start with the theoretical model given as Eq. (1), which is based on Eq. (30) given 
in “Appendix”. The N by 1 vector �d

t
 is the density of employment per unit area, and 

�t is the level of efficiency of labour at time t, so that the product �d
t
�t is the number 

of labour efficiency units. This is related to �̃t , which is a measure of output in the 
competitive final goods and services sector in each region at time t, via the constant 
parameters � and �̃  , thus

In order to obtain total output �t , it is assumed that �̃t = ��t , in which � is an 
N by 1 vector giving the share of total output in each region that is competitive 
final goods and services output. For simplicity of estimation, it is assumed that � is 

(1)�̃t = �(�d
t
�t)

�̃
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constant over time. Also the employment levels are �t = ��d
t
 in which � is the area of 

land in each region. Taking logs gives

Rearranging (2) gives

To obtain (3), I assume that labour efficiency �t =
�t

�̃t
 , with more efficient labour 

having a higher level of output per unit of capital �̃t . As shown below in Eq. (14), an 
approximation to the log level of capital is ln �̃t = − ln ã + b̃ ln �t , hence 
ln �t = ln�t + ln ã − b̃ ln �t , and from this

Collecting together constants as c with � an N by 1 vector of ones, and reorgan-
izing gives

in which the error term �t captures the time-invariant regional heterogeneity in 
land � and in shares � , which are unobserved, as given in Eq. (12).

In the dynamic context, it is reasonable to assume that disparities in employment 
levels across locations will persist as an equilibrium outcome to unchanging and 
fundamental causes. We therefore proceed, following in parallel the exposition in 
Baltagi et al. (2018), to assume that (log) employment levels across regions, denoted 
by the N by 1 vector ln �t at time t will persist at dynamically stable levels so that 
ln �t = ln �t−1 unless there are changes in the levels of �t or �t , or changes in com-
mon factors, interregional trade, or unobserved effects. If such a disturbance occurs 
at time t and is ephemeral, then ln �t ≠ ln �t−1 but over a subsequent period of qui-
escence t → T  then once again we expect employment levels to converge on a new 
equilibrium, at which ln �T = ln �T−1. Assume data are observed where ln �t ≠ ln �t−1 
but tending to converge, so that ln �t = f (ln �t−1) , and an autoregressive process is 
assumed, hence

in which � is an N by 1 vector and � is a scalar parameter. In the long-run with 
abs(𝛾) < 1 , and with no subsequent disturbances, the process converges to 
ln �T =

�

(1−�)
.

Consider next connectivity between regions in the form of a matrix �∗
N

 , which is 
a time-invariant N by N matrix, where N is the number of regions. Spatial interde-
pendence between regions is a feature of many different situations, and can be mod-
elled either via an autoregressive process involving the dependent variable, or via 
spatial interdependence of the errors, or by both as in this paper. The problem of 
how to model dependence between N regions is typically resolved by application of 

(2)ln� + ln �t = ln� + �̃ ln �
t
+ �̃ ln �t − �̃ ln�

ln �t =
1

�̃

(
ln� + ln �t − ln�

)
− ln �t + ln�

(3)ln �t =
1

�̃

(
ln� + ln �t − ln�

)
+ ln � − ln �t − ln ã + b̃ ln �t

(4)ln �t = c� +
1 − �̃

�̃
ln �t + b̃ ln �t + �t

(5)ln �t = � + � ln �t−1
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an N by N matrix of constant quantitative values or weights assigned to the cells of 
�∗

N
 which indicate the existence and importance of a link between each pair of 

regions. In many spatial econometric applications, connectivity of the N regions will 
be some function of the distance between them, be it geographical distance or some 
measure of economic distance. In the paper, we proxy economic distance by the 
level of trade between each pair of regions, more trade equals shorter economic dis-
tance. Usefully, �∗

N
 provides a parsimonious parametrization for interdependence 

between, in this case, employment levels in different regions. As explained by LeS-
age and Pace (2009), once we allow for dependence relations between a set of N by 
N entities on a single variable, for example as represented by the N by 1 vector ln �t , 
there are potentially N2 −N parameters that define individual interdependence, such 
as the relation between ln �it and ln �jt , having excluded dependence of an observa-
tion on itself. This leads to an over-parametrization problem, which can be solved by 
imposing an a priori structure, or weights matrix �∗

N
 , on the interdependence rela-

tions, thus reducing the number of parameters to be estimated from N2 −N to one, 
denoted here by �1 . For purposes of interpreting parameter estimates, we normalize 
by dividing �∗

N
 by the maximum eigenvalue of �∗

N
 to give2 �N . Using this nor-

malization, the maximum eigenvalue of �N is 1, and the continuous range for which (
�N − �1�N

)
 is non-singular is 1

min(eig)
< 𝜌1 <

1

max(eig)
= 1,in which �1 is a scalar spa-

tial autoregressive parameter.
Multiplying (5) by �1�N gives

Subtracting (6) from (5) leads to another logically consistent expression, in which 
the spatial dependence implied by (6) can be seen in (7) as an explicit cause of vari-
ation in ln �t . Thus,

Writing � = −�1� gives

in which �N =
(
�N − �1�N

)
,�N = (��N + ��N) and �N is an identity matrix of 

order N. In order to solve Eq. (7), given appropriate parameter restrictions, Eq. (7) 
converges to ln �T =

(
�N − �N

)−1
�N�.

Introducing additional covariates by writing �N� = (c� + ��) , in which c� is a 
constant N by 1 vector, � is an N by k matrix and � is a k by 1 vector, gives

(6)�1�N ln �t = �1�N� + �1�N� ln �t−1

ln �t − �1�N ln �t = � + � ln �t−1 −
(
�1�N� + �1�N� ln �t−1

)
(
�N − �1�N

)
ln �t =

(
��N − �1��N

)
ln �t−1 +

(
�N − �1�N

)
�

(7)ln �t = �−1
N

[
�N ln �t−1 + �N�

]

ln �t = �−1
N

[
�N ln �t−1 + c� + ��

]

2 The matrix �
N

 retains (scaled) absolute levels rather than shares as the basis of interregional con-
nectivity, and we make the standard assumptions for a weights matrix, that it comprises fixed (non-sto-
chastic) non-negative values with zeros on the leading diagonal and its row and column sums are uni-
formly bounded in absolute value, and maintain the same assumption for �−1

N
=
(
�
N
− �

1
�

N

)−1 (Elhorst 
2014, p. 99).
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In order to maintain dynamically stable simulations, following Elhorst (2001, 
2014,  p. 98), Parent and LeSage (2011,  p. 478; 2012, p. 731) and Debarsy et  al. 
(2012, p. 162), the largest characteristic root 

(
emax

)
 of �−1

N
�N should be less than 1. 

This restriction ensures that employment converges to equilibrium levels

Additional realism is introduced in three ways. First, the restriction that � = −�1� 
is removed since this greatly simplifies estimation. However, we anticipate that 
�̂ ≈ −�̂1�̂ . Second, taking account of the variables in Eq.  (4), the time-invariant 
matrix � is replaced by time-varying matrix3 �t . Third, spatially dependent unob-
servables are represented by the error term �t . Although the system may, depend-
ing on �−1

N
�N , still tend towards equilibrium, equilibrium will be continuously 

disturbed and new equilibrium levels established as t varies. For simplicity of esti-
mation, interregional connectivity is assumed to remain constant over the estima-
tion period. These considerations lead to the model of employment levels4 given in 
Eqs. (9,10,11,12), which is a time-space dynamic panel data model, thus

Given �1t = ln �t , �2t = ln �t , �3t = ln �t, �t =
[
�1t �2t �3t

]
 and � =

[
�1 �2 �3

]T , 
Eq. (9) can be stated more explicitly as

The presence of the district-invariant mean of the dependent variable �t attempts to 
allow for the presence of observed or unobserved common factors affecting all dis-
tricts at each point in time. This approach is motivated by Pesaran (2015) who pro-
vides a major treatise on the different approaches to modelling dynamic spatial panel 
data with common factors, and by Bailey et al. (2016) who ask, ‘to what extent are 
the observed dependencies between different spatial units due to common factors—
for example, aggregate shocks—that affect different units rather than being the result 
of local interactions that generate spatial spillover effects?’. They propose the use 
of cross-unit averages to extract common factors, an approach that has also been 

(8)ln �T =
(
�N − �N

)−1
(c� + ��)

(9)ln �t = �−1
N

[
�N ln �t−1 + c� + �t� + �t

]

(10)
ln �t = c� + � ln �t−1 + �1�N ln �t + �1 ln �t

+⋯ �2 ln �t + �3 ln �t + ��N ln �t−1 + �t

(11)�t = �t − �2�N�t

(12)

uit = �i + �it i = 1,… ,N, t = 1,… , T

�i ∼ iid(0, �2
�
)

�it ∼ iid(0, �2
�
)

3 We assume that the elements of �
t
 are uniformly bounded in absolute value.

4 Changes in employment levels are driven by changes in the fundamental variables in the theoretical 
model, and could come about as a result of consequent changes in unemployment rates, levels of eco-
nomic activity, and the number of UK and international inward and outward migrants.
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applied by Fingleton et al. (2018) and Fingleton and Szumilo (2019). The introduc-
tion of common factors to spatial econometric models has also been considered by 
among others Vega and Elhorst (2016) and Ertur and Musolesi (2017).

The disturbances �t capture the effects of the spatially dependent unobserved var-
iables, with a compound structure (12) comprising time-invariant unobserved unit-
specific interregional heterogeneity represented by �i with i = 1,… ,N and unob-
served idiosyncratic shocks represented by �it;i = 1,… ,N, t = 1,… , T  . These are 
assumed to be independent of each other and are collectively represented by uit . It is 
important to recognize that the �is represent the net effect of unobserved variables 
which in the short run can be treated as time invariant.

Most usually, the assumption is that spatial dependence is an autoregressive 
(SAR-RE) process, such that �t = �2�N�t + �t . However, in this paper the assump-
tion for the error process is a spatial moving average process (SMA-RE) as in 
Eq. (11), thus �t = �N�t , where �N =

(
�N − �2�N

)
 . This means that the error pro-

cess is such that a shock in a region affects only neighbouring regions as defined 
by a row-standardized interregional contiguity matrix5 �N . In contrast, an SAR-RE 
process would entail shocks affecting all regions. There are two reasons for this. 
First, assuming SMA-RE rather than SAR-RE errors improves the predictive per-
formance of the estimator, as described in Sect. 6. Second, SMA-RE errors might 
proxy for omitted spillovers, which otherwise might be captured by the spatial lags 
�N�t. This is pertinent since the presence of �N�t on the right-hand side of (9) 
could adversely affect estimation. As explained by Fingleton et al. (2017) and Bal-
tagi et  al. (2018), an SMA-RE error specification ‘mitigates against the problem 
for instrumental variable estimation identified by Pace et  al. (2012)’. In two-stage 
least squares (2SLS) estimation, the instrument set should comprise the ‘exogenous’ 
variables ( �t ) and their spatial lags ( �N�t ), and kept to a low order to avoid linear 
dependence and retain full column rank for the matrix of instruments (1998, Kele-
jian and Prucha 1999). The performance of the estimation procedure could be sub-
optimal, as explained by Pace et  al. (2012), by including �N�t among the set of 
explanatory variables. This is because with spatial lags ( �N�t ) among the set of 
regressors, then spatial lags of the spatial lags ( �2

N
�t,�

3
N
�t , . . .) feature among the 

instruments, and this could lead to a weak instrument problem. To avoid this, SMA-
RE errors are adopted as an alternative way to capture local spillovers.

3  Data

In estimating Eq. (10), data for employment ( �t ), output as measured by Gross Value 
Added (GVA, �t) and capital as proxied by a function of Gross Fixed Capital For-
mation (GFCF, �t ), both denominated in €2005m, are taken from the Cambridge 
Econometrics European Regional Economic database, with observations over the 

5 The matrix �
N

 has ̃̃e
−1

max
= 1 , where ̃̃e is the vector of purely real characteristic roots of �

N
 . Often 

�
N

 = �
N

 , otherwise we assume that �
N

 has the same properties as �
N

 , and with the restriction that 
��e
−1

min
< 𝜌

2
< ��e

−1

max
= 1 one guarantees the invertibility of �

N
 as in Eq. (22).
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10-year period from 2001 to 2010 used to estimate the model. Data are also avail-
able for 2011−2012 , but are held back to allow out-of-sample prediction tests of 
the model and some rivals. �t is used to reflect capital stock �̃t , for which data are 
unavailable, on the basis of a simple relationship which is assumed to exist between 
the two variables. �t measures gross net investment (acquisitions minus disposals of 
produced fixed assets) in fixed capital assets and so provides an indicator of changes 
to the stock of capital. The assumption is that �t is a nonlinear function of a constant 
fraction ã of �̃t so that

hence

As a test of the viability of this approximation, assume a standard model for the 
evolution of capital stock which is depreciating at a constant rate d̃ so that

in which T is a large number. One problem with (15) is that it requires the initial cap-
ital stock at time t = 1 , i.e. �̃1. However, given arbitrary values for �̃1 and d̃ , values 
for ã and b̃ can be found, whereby (14) provides a reasonable approximation to the 
outcome of iterations (15). A more realistic test is provided by the existence of both 
(albeit experimental estimates of) capital stock6 (Derbyshire et al. 2010) and of well-
founded GFCF data. Using the latest available data for both �t and �̃t , which is for 
the year, t = 2008 , and taking logs of (14), leads to a loglinear regression of ln �̃t on 
ln�t which gives OLS estimates of the constant ln ã−1 = 2.4546 (t ratio = 13.5628 ) 
and slope b̃ = 1.0195 (t ratio = 50.8118) , with R2 = 0.8888. The plot of ln�t against 
ln �̃t shows a significant linear relationship and no evidence of outliers or of hetero-
scedasticity It thus appears that the model given as Eq. (13) provides a good approx-
imation. The estimated ã = 0.0859 suggests the approximate proportion of the capi-
tal stock that is invested, and, by comparison, 

∑
�t∕

∑
�̃t = 0.0686.

The matrix �N is based on estimated bilateral trade flows between EU NUTS2 
regions. The data come from the PBL (the Netherlands Environmental Assessment 
Agency)7 who developed a new methodology which is close to that of Simini et al. 
(2012). Details of the methodology are given in Thissen et  al. (2013, 2013a, b), 
see also Gianelle (2014). The method follows a top-down approach and therefore 
is consistent with the national accounts of the different countries. Given the total 
international exports and imports on the country level, interregional trade flows are 
derived using data on business travel (services) and on freight transport (goods). 

(13)�t =
(
ã̃�t

) 1

b̃

(14)�̃t =
1

ã

(
�b̃
t

)

(15)�̃t = �t + (1 − d̃)̃�t−1; t = 2,… , T

6 I am grateful to Cambridge Econometrics for providing these data.
7 We are grateful to Mark Thiessen, who kindly provided the data. The data can be visualized at http://
thema sites .pbl.nl/eu-trade /index 2.html?vis=net-score s.

http://themasites.pbl.nl/eu-trade/index2.html?vis=net-scores
http://themasites.pbl.nl/eu-trade/index2.html?vis=net-scores
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Additionally, exports that went to EU destination countries’ final demand8 were also 
included. Trade flows involving regions of non-EU countries such as Switzerland 
and Norway were obtained on the basis of interregional trade flows estimated by 
the best linear disaggregation method of Chow and Lin (1971), which was initially 
used to break down annual time series into quarterly series (see Abeysinghe and 
Lee 1998; Doran and Fingleton 2014). In this, commencing with aggregate trade 
values9 between 21 EU counties, these were allocated to the NUTS2 regions. A par-
allel approach has been used by Polasek et al. (2010), Vidoli and Mazziotta (2010), 
and Fingleton et al. (2015). More details of the method are provided in “Appendix”. 
Finally, OLS regression of the log PBL trade flows on log Chow–Lin trade flows 
produced parameters used to predict the missing PBL regional trade flows for Swit-
zerland and Norway using the values for these regions obtained via the Chow–Lin 
approach. For estimation, the start-of-period trade flows for the year 2000 are used. 
This year is chosen because it is the earliest available, so it is treated as exogenous 
to �t , �t and �t , for t = 2001 to 2010. Prediction is based on the 2010 trade flows sup-
plemented in the same way by Chow–Lin data. Estimates are also given in “Appen-
dix” Table A3 based on a �N matrix constructed entirely from the Chow–Lin trade 
flows. These simply use great circle distances and year 2000 GVA levels, and so are 
also assumed to be exogenous. The comparative predictive performance of each set 
of estimates is discussed in Sect. 6.

4  Estimator for the time‑space dynamic panel data model

Comprehensive overviews of spatial panel econometrics are given by Pesaran 
(2015,  Chapters  29 and 30) and Baltagi (2013, Chapter  13) which highlight its 
growing importance for the applied econometrician. The estimator used in this 
paper, introduced by Baltagi et  al. (2018), adds to the available methodology by 
allowing a wider range of spatial interaction effects which include the spatial lag of 
the temporal lag of the dependent variable WN ln �t−1 , thus avoiding bias due to con-
straints necessary for dynamic stability and stationarity, and also by allowing spatial 
moving average compound error dependence rather than the usual autoregressive 
compound error process found in the majority of spatial econometric models. The 
estimator, which is applied to Eq. (9), is based on the earlier paper by Baltagi et al. 
(2014), which extends the approach of Arellano and Bond (1991) by the introduc-
tion of extra moments in line with the presence and availability of spatial lags (see 
also Bouayad-Agha and Védrine 2010). Since the estimator is described elsewhere, 
a simple outline sketch is provided here focussing on the treatment of regressors 

8 1. Final consumption expenditure by households and non-profit organizations
 2. Final consumption expenditure by government
 3. Net capital formation
 4. Inventory adjustment

9 They are downloadable from http://cid.econ.ucdav is.edu/data/undat a/undat a.html, see also Feenstra 
et al. (2005).

http://cid.econ.ucdavis.edu/data/undata/undata.html


464 B. Fingleton 

1 3

as predetermined rather than exogenous.10 Hence in Eq.  (10), ln�t and ln�t are 
considered to be predetermined alongside endogenous right-hand side variables 
ln �t−1,�N ln �t−1and �N ln �t and ln �t.

Focussing on the endogenous dependent variable ln �t , the instruments include 
ln �t lagged by two periods, and its spatial lag �N ln �t also lagged by two periods, 
so that the moments equations (16 and 17) hold assuming �it is serially uncorrelated 
and E(Δ�it,Δ�it−2) = 0 . Thus, following Baltagi et al. (2018), with, we have

in which E denotes the expectation. Also, if we were to assume exogenous rather 
than predetermined regressors 

(
�1, �2

)
 this leads to (18)

for t = 3,… , T  . Given that in (18) the regressors 
(
�1, �2

)
 are exogenous, the 

moments equations are satisfied including the entire set
�11,… , �1T , �21,… , �2T ,�N�11,… ,�N�1T and �N�21,… ,�N�2T regardless of 

time t. As explained in Baltagi et al. (2018), additional instruments can be generated 
via the matrix �2

N
 , but for simplicity these are omitted from the estimators used in 

the current paper.
Strict exogeneity rules out any feedback from past shocks to current values of 

the variable, and the need to accommodate feedback leads to the preferred estima-
tor based on predetermined regressors (see Bond 2002; Pesaran 2015). Predeter-
mined regressors are contemporaneously uncorrelated, so that corr(�t , �t) = 0, but 
do depend on earlier shocks so that, for example, corr(�t , �t−1) ≠ 0 . This means that 
an adjustment to ln �,which embodies �, at time t does not have an instantaneous 
effect on output and capital investment time t but takes effect at t + 1 and later. This 
allows an extension to the set of instruments (compared with assuming endogene-
ity, where all endogenous variables are lagged by two periods), by the inclusion of 
�1t−1, �2t−1,�N�1t−1 , and �N�2t−1 so that

Given the set of instruments as in Eq. (19), these are used to obtain initial estimates 
of � , �1, � , �1, �2 and �3 , having first differenced the data to eliminate the time-invariant 

(16)E
(
ln eilΔ�it

)
= 0 ∀i, l = 1, 2,… , T − 2;t = 3, 4,…T

(17)E

(∑
i≠j

wij ln eilΔ�it

)
= 0 ∀i, l = 1, 2,… , T − 2;t = 3, 4,…T

(18)�t =

⎛⎜⎜⎝

ln �1,… , ln �t−2,�N ln �1,… ,�N ln �t−2, �11,… , �1T ,

�21,… , �2T ,�N�11,… ,�N�1T ,�N�21,… ,�N�2T ,

�31,… , �3t−2,��31,… ,�N�3t−2,

⎞⎟⎟⎠

(19)�t =

⎛⎜⎜⎜⎝

ln �1,… , ln �t−2,�N ln �1,… ,�N ln �t−2,

�11,… �1t−2, �1t−1, �21,… �2t−2, �2t−1, �31,… �3t−2,

�N�11,…�N�1t−2,�N�1t−1,�N�21,…�N�2t−2,�N�2t−1,

�N�31,…�N�3t−2

⎞⎟⎟⎟⎠

10 We show below that the assumption of predetermined regressors produces superior one-step ahead 
predictions compared with assuming exogenous regressors.
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individual effects � which are correlated with the time and space-lagged dependent varia-
bles. The resulting estimates are then used to give estimated errors which lead to estimates 
of the parameters of the spatial moving average error process, namely �2, �2

�
 and �2

�
 using 

moments equations given in Fingleton (2008). Given these, preliminary one-stage con-
sistent spatial GM estimates are obtained, followed by the two-stage Spatial GM estimates 
of � , �2, � and � based on a robust version of the variance-covariance matrix.

5  Estimates

Table 1 shows that the � estimate for the spatial lag of the temporal lag ( �N ln �t−1) 
is not dissimilar to −�̂ �̂1 , in line with expectation stemming from an equilibrium 

Table 1  Estimates of Eq. 9

�
2
 t-ratio based on null bootstrap distribution of �

2

Parameter Param. est. St. error t-ratio

� 0.6765 0.002948 229.4
�
1

0.5566 0.01037 53.67
�
1

0.1216 0.002062 58.94
�
2

0.03274 0.0007239 45.22
�
3

− 0.0201 0.006553 − 3.067
� − 0.4009 0.008314 − 48.22
�
2

− 0.7646 0.047227 − 16.27
�2

�
0.1347

�2

�
0.0003

Fig. 1  Out-of-sample predictions for 2011
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process. Also, Table 1 estimates are stationary and dynamically stable, as shown by 
the largest characteristic root of �−1

N
�N which is equal to 0.6874, and the stationary 

bounds for �2 are �e−1
min

= −1.1239 < 𝜌2 < �e−1
max

= 1. Observe that the negative values 
of �̂2 imply positive spatial dependence among the errors. Among the instrument 
set, we have several endogenous variables, one is the dependent variable lagged 
by two periods, ln �t−2 , its spatial lag lagged by two periods �N ln �t−2, ln �t−2 and 
�N ln �t−2 . To satisfy the orthogonality conditions and moments equations for these 
instruments, we require a lack of serial correlation in the �it , in other words we need 
to satisfy the assumption that E

(
Δ�it,Δ�it−2

)
= 0 . Arellano and Bond (1991) give a 

Table 2  London—doubling trade reduction and regressor levels

Trade reduction 2% 4% 8% 16%

Job-shortfall Ratios
2011 levels − 2.56 − 5.11 − 10.20 − 20.35 1.996 1.996 1.995
2 × 2011 levels − 2.70 − 5.40 − 10.79 − 21.52 2.000 1.998 1.994
Ratios 1.055 1.055 1.056 1.057

Table 3  Paris—doubling trade reduction and regressor levels

Trade reduction 2% 4% 8% 16%

Job-shortfall Ratios
2011 levels − 1.30 − 2.59 − 5.16 − 10.27 1.992 1.992 1.990
2 × 2011 levels − 1.37 − 2.74 − 5.47 − 10.88 2.000 1.996 1.989
Ratios 1.054 1.058 1.060 1.059

Fig. 2  Dynamic paths for % employment shortfall
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test m2 = cov
(
Δ�it,Δ�it−2

)
∕s.e . which is asymptotically N(0, 1) under the null of no 

serial correlation. In our case m2 = − 0.9389 with two-tailed p value equal to 0.3478. 
Thus, we assume that there is an absence of serial correlation as required. Note also 
that m1 = cov

(
Δ�it,Δ�it−1

)
∕s.e = − 6.22 indicating significant first-order serial cor-

relation as one would expect, since if the �it are serially uncorrelated, Δ�it has first 
order moving average serial correlation. A second complementary approach to test-
ing the validity of the instrument set is via the application of the Sargan–Hansen test 
of over-identifying restrictions, which is equal to 253.3. This is insignificant when 
referred to the �2

314
 distribution, and while this evidently supports the moments con-

ditions implied by our dynamic spatial panel model, one should be cautious because 
it may have low power, given the presence of many moments conditions (Bowsher 
2002; Pesaran 2015).

“Appendix” Table 4 gives the estimates of some rival estimators, including one 
with SMA-RE errors but assuming exogenous regressors (Table  A1), and with 

Fig. 3  % employment shortfall across 255 EU regions
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SAR-RE errors assuming predetermined regressors (Table A2). As noted in Sect. 6, 
the predictive ability of these rivals is not as good as obtained via the preferred esti-
mates summarized in Table 1.

6  Prediction

In order to support the preferred model summarized by Table 1, a cross-validation 
strategy is employed to assess the performance of competing estimators ‘by com-
paring their predictive ability on data which have not been used in model estima-
tion’ (Anselin 1988). Out-of-sample predictions of the level of employment across 
regions are obtained for the years 2011 and 2012 using 2011 and 2012 data com-
bined with the parameter estimates obtained for data over the estimation period from 
2001 to 2010.

Following Chamberlain (1984), Sevestre and Trognon (1996), and Baltagi et al. 
(2014, 2018), the linear predictor is

in which E[.] denotes the expectation, so this can be seen to be identical to Eq. (9) 
but with expectations. With regard to the estimate of the time-invariant component 
of the error term � , assuming a spatial moving average error process gives Eq. (9) 
rewritten thus

(20)E
[
ln �t

]
= �−1

N

[
�NE

[
ln �t−1

]
+ �t� + c� +�NE

[
�t
]]

Fig. 4  % employment shortfall across 255 regions
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In order to obtain estimates ̂�(t) estimates �̂
N
=
(
�
N
− �̂

2
�

N

)
, �̂

N
=
(
�
N
− �̂

1
�

N

)
,

�̂
N
=

(
�̂ + �̂�

N

)
 and ĉ and �̂ are used along with random draws from �t ∼ N(0, �̂2

�
). 

We then take the mean over time of the �̂(t)
s for t = 2,… , T  , subsequently scaling 

so that it has variance equal to �̂2
�
, thus giving the estimate �̂ of the time-invariant 

error component. The outcome is the prediction Eq. (23) for T + 1 = 2011, in which 
�1T+1 = ln �T+1 , �2T+1 = ln �T+1, and �3T+1 = ln �T+1, t = 1,… , T .

(21)
�t = �N ln �t − �N ln �t−1 − �t� − c�

�N�t = �N ln �t − CN ln �t−1 − �t� − c�

(22)
�t = � + �t

�(t) = �−1
N

(
�N ln �t − �N ln �t−1 − �t� − c�

)
− �t

Fig. 5  % employment shortfall UK and Ireland
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For two-step ahead,11 �1T+2 = ln �T+2, �2T+2 = ln �T+2 and �3T+2 = ln �T+2 . 
Figure  1 shows a close correlation between predicted log employment ln �̂T+1and 
observed log employment, suggesting that the preferred estimator giving Table  1 
estimates would be a good basis for simulating the impact on employment following 
Brexit.

The preference for Table  1 estimates is based on the mean of the 

RMSE =

�∑N

i=1

�
ln ei,T+s − ln êi,T+s

�2
∕N for s = 1, 2, denoted by RMSE . In the 

case of Table 1, RMSE = 0.0781 . Rival estimators (“Appendix” Table 4) give less 
accurate one- and two-step ahead predictions. In the case of assuming SMA-RE 
errors and exogenous regressors, RMSE = 0.1791 . Assuming SAR-RE errors with 
predetermined regressors gives RMSE = 0.2890 . Note that in the case of SAR-RE 
errors, �̂N =

(
�N − �̂2�N

)−1 in Eqs. (20, 21, 23). Table 4 also gives estimates relat-
ing to SMA-RE errors and predetermined regressors, but are based on �N derived 
using the Chow–Lin approach. In this case RMSE = 0.2529 , providing support for 
the choice of �N based on the PBL trade data. Table 4 also gives estimates based 

(23)ln �̂T+1 = �̂−1
N

[
�̂N ln �̂T + �T+1�̂ + ĉ� + �̂N�̂

]

Fig. 6  % employment shortfall

11 Data limitations mean that for 2012, � in each region is estimated using each region’s previous growth 
rate.
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on SMA-RE errors and predetermined (and exogenous) regressors, but with the 
additional variables �N�1, the spatial lag of ln� , and �N�2 , the spatial lag of ln k , 
with �N given by the PBL trade data. This is thus a form of spatial Durbin speci-
fication, but with regressors �t =

(
�1t, �2t,�N�1t,�N�2t

)
 the additional covariates 

evidently cause a problem of weak instruments, giving dynamically unstable non-
stationary estimates, as reflected by the largest characteristic root of �−1

N
�N equal 

to 1.0663 (1.9041) and, with � in Eqs.  (22) and (23) RMSE = 7.4403 (3.0918). 
The same spatial Durbin specification again assuming predetermined regressors 
but with �2 restricted to zero gives a largest characteristic root equal to 1.1127 and 
RMSE = 3.3017 . The same spatial Durbin specification assuming exogenous regres-
sors and with a spatial autoregressive (SAR) error process gives a largest character-
istic root equal to 2.489 and RMSE = 20.9333.These results point to the viability of 
Table 1 estimates for prediction purposes.

Fig. 7  % employment shortfall due to industry
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7  Simulating the Brexit effect

The approach adopted is to use the parameters estimates in Table  1 to predict 
the impact on employment of presumably reduced trade between the UK and the 
remaining EU regions in the year 2020 and beyond. Attention is focussed on 2020 
and later, given that the UK’s formal exit from the EU is scheduled for the first half 
of 2019, so 2020 will be the first full year outside the EU. Given a lack of appropri-
ate and accessible data, for instance with the same geography as up to 2011, beyond 
2011 employment could be predicted on the basis of assumptions about the level of 
�, � and � in 2020.

From � = 2020 onwards, there are two scenarios, one based on the trade flows 
assuming no-Brexit effect, and the other assuming a Brexit effect on trade flows, and 
the difference between them is taken as the Brexit effect. Regarding the no-Brexit 
effect scenario, this applies matrix �N ,which is based on the latest available trade 
flows pertaining to the year 2010. The prediction is then given by the solution to 
Eq. (24) with �̂N =

(
�N − �̂1�N

)
, �̂N =

(
�̂ + �̂�N

)
 and �̂N =

(
�N − �̂2�N

)
. Also 

�� is an (N by 3) matrix containing the forward projections ln�� , ln�� and ln � , thus

The second scenario is to assume that bilateral trade between the UK regions and 
the (remaining) EU regions is, for example, 2% lower than it would otherwise be. 
Thus, of the N = 255 UK plus EU regions, there are N2 − N = 64, 770 bilateral 

(24)ln �̂� = �̂−1
N

[
�̂N ln �̂�−1 + �� �̂ + ĉ� + �̂N�̂

]

Fig. 8  Frequency distribution from Fig. 7
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trade flows in any one year involving the regions. With 37 UK regions and 218 EU 
regions (2 × 37 × 218) = 16,132 interregional trade flows are assumed to be 2% 
smaller than under an assumption of no-Brexit effect. This Brexit-affected trade flow 
matrix is denoted by �̃

N
 which leads to �̃N =

(
�N − �̂1�̃N

)
, �̃N =

(
�̂ + �̂�̃N

)
 and 

the prediction equation

Thus, the % job-shortfall at time � is ln �̃� − ln �̂�.
Using the equilibrium solution of (8), but also taking into account � at time � = T  

and �̂N� , employment converges to

ln �̃� = �̃−1
N

[
�̃N ln �̃�−1 + �� �̂ + ĉ� + �̂N�̂

]

ln �̂T =
(
�̂
N
− �̂N

)−1[
�T �̂ + ĉ� + �̂N�

]

Fig. 9  % employment shortfall UK and Ireland due to industry
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Similarly

Thus, the % job-shortfall with long-run convergence at time T is ln �̂T − ln �̃T , 
hence

One assumption might be that �, � and � in 2020 are at the same level as observed 
in each region in 2011. An alternative assumption could be that from 2011 onwards 
they grow at their historical rates, taken over the period from 1991 to 2011 in each 
region. On this basis on average the level of � and � in 2025 is approximately 25% 
more than the 2011 levels. However, Table  2 gives simulation outcomes for the 
examples of Inner London and Paris which illustrate the relative insensitivity of 

ln �̃T =
(
�̃
N
− �̃N

)−1[
�T �̂ + ĉ� + �̂N�

]

ln �̂T − ln �̃T =

[(
�̂N − �̂N

)−1
](

�T �̂ + ĉ� + �̂N�
)

−

[(
�̃
N
− �̃N

)−1
](

�T �̂ + ĉ� + �̂N�
)

Fig. 10  Frequency distribution from Fig. 9
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job-shortfall to assumed regressor levels. The table shows that doubling the level 
of � and � gives equilibrium job-shortfalls that are only about 6% higher, as a result 
of the same increases applying to both Brexit and no-Brexit outcomes. Table 2 also 
shows that doubling the trade reduction in each region in effect doubles the job-
shortfall. It shows that doubling the % trade reduction, say from 2 to 4% , has the 
effect of doubling the job-shortfall in each region. Increasing the % reduction by a 
factor of 8, going from 2 to 16% , increases each region’s job-shortfall by a factor of 
8. This means that ratio of Inner London to Paris remains stable (which for this pair 
of regions is approximately 1.98) regardless of what is assumed for % trade reduc-
tion. This stability of the outcome ratio exists for any pair of regions so that maps of 
job-shortfalls would be in a sense identical—identifying the same regions with large 
or small levels giving constant outcome ratios—irrespective of the assumed % trade 
reduction. This geographical stability is a result of the assumptions made within the 

Fig. 11  % employment shortfall due to transport equipment, etc.
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simulation exercise, with trade for all UK to EU trade flows reduced by the same %. 
This means that the subsequent map patterns are immune to the assumed reduction 
in trade, although the scales would differ, where we focus on a trade reduction other 
than 2% . So in this way, we see we have an element of robustness in our simula-
tions. Of course in an ideal world, one might wish to make changes to trade on an 
individual region by region and sector by sector basis rather than assume that trade 
reduces by the same amount across all regions and all sectors. However, this is very 
much the unknown, although some sectorally specific estimates are given elsewhere. 

Sectorally specific Brexit impacts are obtained by assuming that trade in specific 
sectors alone is restricted. While this is unrealistic, it is likely that there will be sec-
torally differentiated impacts but it is difficult to know by how much trade in manu-
factures, for example, will be reduced compared with trade in services.12 A simple 
approach is therefore to assume that a specific sector is impacted by Brexit, but that 
there is zero impact on other sectors. This highlights the geography of the sector-
specific trade impacts, because the sectoral trade patterns have different geographies 
and therefore the impacts have different geographical distributions to the outcomes 
assuming a global reduction across all sectors (Table 3).

Fig. 12  Frequency distribution from Fig. 11

12 Excluding non-market services.
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8  Results

The initial outcomes relate to a reduction in EU-UK trade of 2% across all sectors. 
The predicted % changes in employment across the EU and UK regions assuming 
the 2011 levels for �, � and � are shown by Fig. 2. This shows the dynamic paths for 
each region to 2050, with convergence to steady state occurring after 2030. From 
this, it is evident that the maximum equilibrium job-shortfall is − 2.56%, in the case 
of Inner London, with most other regions falling below 1% . Figure 3 shows the geo-
graphical pattern of the Brexit impact equal to ln �̃� − ln �̂� for � = 2025 , indicating a 
maximum shortfall by 2025 of − 2.34% (Inner London). The picture which emerges 
from the simulation is that the negative Brexit impact is diverse across regions and 
bilateral, with both UK regions and EU regions likely to see a job-shortfall. Fig-
ure 3 shows larger negative impacts in regions with strong trading links to the UK, 

Fig. 13  % shortfall UK and Ireland due to transport equipment, etc.
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most notably in the Ile de France (Paris) region ( −1.19% ), the Southern and Eastern 
region of Ireland ( −1.35% ), and the Oberbayern region centred on Munich(− 0.99% ). 
Figure 4 gives the frequency distribution of Fig. 3 data, highlighting the fact that 
despite some large impacts, for about 160 of the 255 regions, Brexit is likely to have 
close to zero effect on employment. Figure 5 shows that within the UK, Inner and 
Outer London ( −1.32% ) are expected to have the biggest % shortfall by 2025, with 
impacts generally higher along the Thames valley in Berkshire, Bucks and Oxford-
shire ( −1.09% ) towards Gloucestershire, Wiltshire and North Somerset ( − 1.19% ). 
Generally, %s are higher around the Greater South East and in some of the large 
conurbations (Birmingham − 0.78% , Manchester − 0.76% , West Yorkshire − 0.67% ) 
than in more rural and peripheral regions. Figure 6 gives the frequency distribution 
of Fig. 5 data, emphasizing the Inner London outlier, with many regions having a 
job-shortfall of less than − 0.5% . As noted above, if one were to assume different 
reductions in trade other than 2% , the outcomes for employment would be different, 
but proportional to the 2% impact, so that the ratio of impacts in different regions 
and the geographical pattern would be identical.

Next, consider the separate impacts on employment of restricted trade in the 
manufacturing sector, defined as the production of food, beverages and tobacco, tex-
tiles and leather, coke, refined petroleum, nuclear fuel and chemicals, electrical and 
optical equipment and transport equipment and other manufacturing. Simulating on 
the same basis, region paths converge to equilibrium levels as with Fig. 2, although 

Fig. 14  Frequency distribution from Fig. 13
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the equilibrium levels differ from those of Fig.  2. We take a snapshot across the 
dynamic paths in Figs.  7, 8, 9 and 10, showing the % shortfall in employment in 
manufactures by region for the year 2025. Figure 7 shows that the geography of the 
impact due to 2% less industry trade is very similar to the overall pattern shown 
in Fig.  3. However, a comparison of Figs.  4 and  8 emphasizes the differences in 
the levels of impact, with the maximum level in Inner London. Figures  9 and 10 
show the % job-shortfall in the UK and Ireland. Again the impact in the South and 
East of Britain and, especially, London is clear, and the effect on Ireland remains 
pronounced.

We also estimate the impact of reduced trade within the manufacturing sector. 
Of particular interest is the group of industries defined for trade purposes as com-
prising ‘electrical and optical equipment and transport equipment’, which includes 

Fig. 15  Services impact: % employment shortfall across 255 EU regions
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the all-important production of vehicles. With technological development, we have 
seen the geographical fragmentation of production processes involved in vehicle 
manufacture, with the development of spatially dispersed value chains as different 
elements of the production processes optimally located in different regions or coun-
tries. Also just in time processes means that quick and easy access to parts and com-
ponents used in manufacturing vehicles is important, so interregional connectivity 
is important, and any disruption of it due to increased barriers to trade will have a 
significant impact. The impacts of a 2% trade reduction are summarized in Figs. 11 
and 12, which picks out some of the production hot spots. In Figs. 13 and 14, the 
integrated nature of production and dispersed knock-on effects of reduced trade are 
evident from the relatively even spread of impacts across regions.

Compared with industry, the impact of reduced trade in services13 is much less 
symmetrical, with the bulk of the job-shortfall occurring in Britain and Ireland. This 
is clear from Figs. 15 and 16. Inner London clearly stands out with the most signifi-
cant projected job-shortfall compared with all other EU regions, and apart from the 
South and Eastern region of Ireland, almost all nonzero job-shortfalls occur in Great 
Britain. Figures  17 and  18 emphasize the polarized effect of service trade reduc-
tion, with Inner London standing out as an outlier. Outer London and Southern and 
Eastern Ireland see comparable effects, ahead of all the other UK regions. Focussing 

Fig. 16  Frequency distribution from Fig. 15

13 Distribution, Hotels and restaurants, Transport storage and communication, Financial intermediation 
and Real estate renting and business activities
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on the highly important Financial Intermediation sector, Figs.  19 and  20 empha-
size even more strongly the asymmetric impact on Brexit, with more than 200 non-
UK–EU regions having almost zero job-shortfall. The most affected non-UK–EU 
region is the South and East of Ireland, followed by Luxembourg. Figures 21 and 22 
illustrate the role of Inner London in particular as a centre for financial interme-
diation, but overall for the UK increased trade barriers for this element of services 
seems to have a less profound impact on the job-shortfall than the more geographi-
cally widespread and deeper impact of reduced trade in transport equipment.

Fig. 17  % employment shortfall UK and Ireland due to services
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8.1  Conclusion

The paper shows negative Brexit-induced impacts on employment which affect not 
only the UK regions but also employment levels in EU regions, especially those 
which are close trading partners. This pan-European interregional interdependency 
is captured in the state-of-the-art model by spatial and temporal interactions based 
on the best available trade flow estimates which determine the strength of interde-
pendence. This means that employment within a region not only depends on the lev-
els of output and capital within the region, but also on demand coming from other 
regions which are trading partners. The impacts will be multi-way, what happens 
to employment in London depends partly on what happens in Paris, which depends 
on what happens in Munich, which depends on what happens in London, etc. The 
approach adopted has been to assume a reduction in trade between EU and UK 
regions which gives a corresponding reduction in demand for jobs. The predicted 
job-shortfalls depend on the assumed global % reduction in trade between UK and 
EU regions, but the modelling assumptions ensured stability in the geography of 
Brexit impact.

In the paper, the impact of Brexit is measured in terms of the 2025 job-shortfall, 
which is the reduction in the number of jobs in each region due to Brexit assum-
ing no alternative sources of employment are put in place. This of course might 
be a false assumption, as the pro-Brexit lobby has consistently emphasized the 
potential stimulus of new trade deals with other non-EU countries. Therefore, the 
Brexit impact as reflected in the maps of job-shortfall indicates those regions which 

Fig. 18  Frequency distribution from Fig. 17
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could be in the greatest need of alternative compensating sources of employment. 
Thus, the paper is not predicting a job-loss per se, simply a potential job-loss with-
out successful alternative trade arrangements post-Brexit. Additional employment 
due to trade diversion effects due to higher UK–EU trade barriers (Ortiz Valverde 
and Latorre 2018, Dhingra et al. 2017a, Krueger 1999) could possibly be captured 
within the current modelling set-up via changes to the levels of output and capital 
in each region, but these would be difficult to estimate and there is some empirical 
evidence that they might be quite small (Krueger 1999; Magee 2008).

Key outcomes are as follows. First, both UK and EU regions are negatively 
affected, this is a lose–lose scenario. Second, the deepest most concentrated impact 
is for the UK, many EU regions are barely affected, but the South and East regions 
of Ireland are the worst affected EU region, with impacts on a par with the worst 
affected UK regions. In addition the Ile de France, Oberbayern, Stuggart and 

Fig. 19  % employment shortfall due to financial intermediation



484 B. Fingleton 

1 3

Dusseldorf stand out as regions likely to see significant job-shortfalls. Third, in the 
UK, Southern regions, especially in and around London, and big cities, are expected 
to see the largest job-shortfall. Fourth, the effect of manufacturing trade reduction 
will be evidently larger than for services, but the service impact is more asymmetric, 
with the bulk of the job-shortfall focussed on UK regions, especially London. This 
is even more the case when comparing the effect of trade reductions in vehicles and 
financial intermediation.

Overall, the simulations suggest that the biggest Brexit impact on UK regions will 
occur in the richer South East and urban areas, which is in line with work from LSE 
based on GVA, which shows that ‘areas in the South of England, and urban areas, 
are harder hit by Brexit...the areas that were most likely to vote remain are those that 
are predicted to be most negatively impacted by Brexit’ (Dhingra et al. 2017b). This 
interpretation is in direct contrast to other work which maintains that ‘the regions 
which voted Leave also tended to be more dependent on Europe for their prosperity 
than the regions which voted Remain’ (Los et al. 2017).

Clearly, Brexit is a complex phenomenon leading to diverse interpretations of 
outcomes, as evident in the special issue of Papers in Regional Science (McCann 
2018). The outcomes presented in this paper are based on model assumptions, but 
it is argued that the main driver of the results is the data, not imposed assumptions. 
Nevertheless, great caution is needed in interpreting the validity and value of any 
‘prediction’ effort. It is worth recalling the words of Box and Draper (1986), ’Essen-
tially, all models are wrong but some are useful’. David Spiegelhalter, Professor of 
the Public Understanding of Risk at the University of Cambridge, refers to Donald 
Rumsfeld as the patron saint of Risk Analysis, who will be remembered for famously 

Fig. 20  Frequency distribution from Fig. 19
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saying that ’but there are also unknown unknowns. There are things we do not know 
we don’t know’. We should therefore put forward predictions with all due humility, 
but clearly and without fear, because we don’t want to come across as ‘dithering 
scientists’. In defence of the approach adopted, there is support from the words of 
Pesaran (1990), who points out that ‘Econometric models are important tools for 
forecasting and policy analysis, and it is unlikely that they will be discarded in the 
future. The challenge is to recognize their limitations and to work towards turning 
them into more reliable and effective tools. There seem to be no viable alternatives’.

Fig. 21  % employment shortfall UK and Ireland due to financial intermediation
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Appendices

See Table 4.

Fig. 22  Frequency distribution from Fig. 21
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Theoretical background

The theoretical background to the model specification commencing with Eq.  (1) 
is derived from standard urban economics as given by Abdel-Rahman and Fujita 
(1990), Ciccone and Hall (1996) and Fujita and Thisse (2002), among others. The 
theory commences with a constant returns to scale Cobb–Douglas production func-
tion for the output q̃ of the competitive final goods and services sector

in which m denotes sector-specific labour efficiency units and the level of composite 
services is given by i, and h is area of land. Assume h = 1 then

q̃ =
(
m�̃ i1−�̃

)�

h1−�

(25)q̃ =
(
m�̃ i1−�̃

)�

Table 4  Estimates of Eq. 9

A1: assuming exogenous regressors, SMA-RE errors
A2: assuming predetermined regressors, SAR-RE errors
A3: assuming predetermined regressors, SMA-RE errors, Chow–Lin �

N

A4: Spatial Durbin, predetermined regressors, SMA-RE errors
A5: Spatial Durbin, exogenous regressors, SMA-RE errors

Parameters A1 A2 A3 A4 A5

� 0.5634
(0.001425)

(395.2)

0.6908
(0.003387)

(204.0)

0.7102
(0.005737)

(123.8)

0.3357
(0.00209)

(160.6)

0.5673
(0.002129)

(266.4)

�
1

0.5909
(0.006908)

(85.54)

0.7355
(0.02388)

(30.8)

0.6539
(0.01081)

(60.48)

1.516
(0.01156)

(131.2)

1.1990
(0.01358)

(88.3)

�
1

0.1787
(0.0006129)

(291.5)

0.1493
(0.001614)

(92.46)

0.1577
(0.002976)

(52.98)

0.3604
(0.001307)

(275.6)

0.1897
(0.001245)

(152.4)

�
2

0.01966
(0.0001589)

(123.7)

0.002392
(0.0008091)

(2.956)

0.01858
(0.001353)

(13.73)

− 0.03702
(0.0007463)

(−49.61)

0.01581
(0.0002156)

(73.34)

�̃
1

... ... ... 0.2910
(0.005024)

(57.91)

0.3576
(0.006044)

(59.18)

�̃
2

... ... ... − 0.3930
(0.003494)

(−112.5)

− 0.3025
(0.002825)

(−107.1)

� − 0.3807
(0.005913)

(−64.39)

−0.6739
(0.02267)

(−29.73)

−0.7551
(0.01528)

(−49.42)

−0.8863
(0.008452)

(−104.9)

−0.9465
(0.009802)

(−96.56)

�
2

−0.6545 0.7119 −0.9456 −0.3079 −0.5852

�2

�
0.2786 0.0539 0.1851 0.0097 0.4663

�2

v
0.0003 0.0692 0.0005 0.0006 0.0003

Max char. root 0.5845 0.7595 0.8665 1.0663 1.9041
Forecasting RMSE
2011 0.1413 0.2248 0.2343 7.4094 3.0746
2012 0.2168 0.3532 0.2715 7.4711 3.1091
Average 0.1791 0.2890 0.2529 7.4403 3.0918
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Assume that the equilibrium output of each service firm is ie and there are g firms, 
depending on the total services effective labour. We obtain g by dividing the total 
services effective labour by the effective labour per firm, thus

In (26), (1 − �̃) equals the services labour share of total effective labour ẽ under 
competitive equilibrium in the labour market. For each services firm, we have inter-
nal returns to scale, with s denoting the fixed labour requirement and a the marginal 
labour requirement, so that aie + s is the effective labour per firm at equilibrium. 
From the CES production function, we obtain

where �̃  is a measure of monopoly power in the monopolistically competitive ser-
vices sector, and �̃

�̃−1
 is the constant elasticity of substitution. Substituting i into 

equation (25) gives

Substituting for g in Eq. (28) gives

which simplifies to

This shows that with � = 1 there are increasing returns ( �𝛾 > 1) if service firms 
are relevant to output in the competitive sector (�𝛽 < 1) and also possess monopoly 
power 

(
�𝜇 > 1

)
. However, 𝛼 < 1 indicates that land is also a relevant factor, and 

depending on the value of � a tendency to increasing returns could be offset by the 
congestion effect caused by the restriction of production to a unit of land, leading to 
�𝛾 < 1 hence diminishing returns.

Other estimates

The Chow–Lin approach

This commences with aggregate trade values between Ñ = 21 EU counties (denoted 
by the square (Ñ × Ñ) matrix �

Ñ
 , in which the subscript Ñ means national). There 

are Ñ = 21 unobserved intra-country trade flows, thus giving p = 420 observations 
for the year 2000. The Ñ2 = 441 ‘observations’ are the dependent variable in a 
Weighted Least Squares regression model. All observed trade flows are given the 

(26)g =
(1 − �̃ )̃e

aie + s

(27)i = g�̃ie

(28)q̃ =
(
m�̃g�̃−�̃�̃ i1−�̃

e

)�

(29)q̃ = ẽ
�
(
�̃+�̃−�̃�̃

)
�̃ �̃�

(
aie + s

)��̃(�̃−1)
i
�
(
1−�̃

)

e

(
1 − �̃

)−�̃�
(
�̃−1

)

(30)q̃ = �ẽ
�
(
1+

(
1−�̃

)
(�̃−1)

)
= �ẽ�̃
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weight 1, and those unobserved weighted zero. In terms of parameter estimates, an 
entirely equivalent procedure is to estimate the 420 observed trade flows by OLS. In 
the regression, the explanatory regressors are great circle distances between country 
pairs ( �

Ñ
 ), and the product of each pair of country’s national GVA level ( ̃�Ñ ) in the 

year 2000, so that given the (Ñ × 1) vector �̃Ñ , ��N = ���N
��⊤
�N
 is an (Ñ × Ñ) matrix. 

Subsequently, �
Ñ
,�

Ñ
 and �

Ñ
 are reshaped as (Ñ2 × 1) vectors �

Ñ
 , �

Ñ
 and �

Ñ
 , and 

together with �
Ñ

 which is an (Ñ2 × 1) vector of ones, these variables provide the 
input for the regression denoted by Eq. (31), thus giving the estimates �̂

Ñ
 . Interre-

gional trade estimates are based on the (national-level) regression parameter esti-
mates �̂

Ñ
 and on the estimated regression residuals �̂Ñ . Thus, trade flows between 

regions, denoted by �
R̃
 , are obtained by applying the national-level estimates �̂

Ñ
 to 

the regressors measured at the regional level, denoted by �
R̃
 and �

R̃
 . Also, an equal 

share of the national-level residuals �̂Ñ is added to regions corresponding to country 
pairs. This process is summarized by the two equations:

with log bilateral interregional trade flows ln �
R̃
 then being obtained using

To obtain the (R̃2 × 1) vector �̂
R̃
 , we calculate the (R̃ × R̃) matrix ���R = ����N�

⊤ where 
� = �⊤(��⊤)−1 and � is an (Ñ × R̃) indicator matrix with ones in each country’s row 
indicating which regions are within that country, and zeros indicating those which 
are not. The (Ñ × Ñ) matrix of residuals �̂Ñ is formed by reshaping the (Ñ2 × 1) 
vector �̂

Ñ so that �̂
Ñ
(1 ∶ Ñ, 1) = �̂

Ñ
(1 ∶ Ñ), �̂

Ñ
(1 ∶ Ñ, 2) = �̂

Ñ
(Ñ + 1 ∶ 2Ñ),… ,

�̂
Ñ
(1 ∶ Ñ, Ñ) = �̂

Ñ
(Ñ2 − Ñ + 1 ∶ Ñ

2).
The outcome �̂

R̃
 is an (R̃ × R̃) matrix containing the inter-country residuals �̂Ñ 

allocated equally to all regions corresponding to country pairs. Also, there are block 
diagonal zeros as a result of the unobserved intra-country trade flows, and zeros 
across four rows representing four regions equal to the countries Estonia, Lithuania, 
Latvia and Luxembourg which were excluded from the initial regression. Finally, �̂

R̃
 

is reshaped as the (R̃2 × 1) vector �̂
R̃
 of Eq. (32) to give ln �

R̃
 . The resulting (R̃ × R̃) 

matrix of interregional trade flows is �∗
N
= �

R̃
.
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Ñ
= �
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Ñ,2 ln �R̃ + �
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