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Abstract Amidst many previous network models lacking a spatial dimension, this
paper proposes a dynamic agent-based model of social network formation that explic-
itly considers space. We find that varying the dynamics of agent interaction causes the
emergence of differential degree distributions as well as nonlinear dynamics in social
and spatial inequalities. The scale-free property of degree connectivity vanishes when
tie formation dominates tie dissolution, with power laws re-emerging when tie dissolu-
tion is of equal strength or stronger than tie formation. Furthermore, we find a nonlinear
relationship between network density and agent inequality in social resources. In par-
ticular, multiple phase transitions occur where the relationship is positive in one phase
but negative in another. This suggests that, contrary to intuition, higher connectivity
can have an adverse distributional impact by benefiting the already privileged. Crit-
ically, we find a tradeoff between agent inequality and spatial inequality where the
geographic concentration of social resources accompanies a more equal distribution
of connectivity. Finally, the disadvantage of agents with limited spatial reach is exac-
erbated as network density increases. Our results thus highlight the importance of
distinguishing between social and spatial inequality in policymaking.
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1 Introduction

Regional science since its inception has focused on socioeconomic phenomena with
a spatial dimension (Nijkamp et al. 2014). Social networks in particular are one of the
defining issues of our time that have transformed how we think about socioeconomic
phenomena. A growing body of empirical work measuring different aspects of social
networks has indeed shown that connections matter for a variety of outcomes, such as
getting jobs (Lin and Dumin 1986), becoming more successful entrepreneurs (Greve
and Salaff 2003), or maintaining high-performing organizations (Borgatti and Cross
2003). But while it is intuitive to many that social interactions should respect Tobler’s
(1970) “first law of geography,” ground-breaking models of networks such as the
preferential attachment model of Barabdasi and Albert (1999), the random graph model
of Erdos and Rényi (1960), or the small-world model of Watts and Strogatz (1998) all
assume that geographic space has little to no relevance. Casual empiricism, however,
suggests that space matters in important ways. Urban dwellers, for example, rely much
more for mutual support on local neighbors than on acquaintances in other cities (Gans
1962; Mansury and Shin 2015). This is in line with a Pew Internet study that shows
face-to-face contact has remained the dominant means of communication even for
core users of online social network sites (Hampton et al. 2009).

Regional science is well positioned to contribute to the literature on spatial networks
as it has long recognized the critical role of physical geography in socioeconomic
relationships. Cities in particular are manifestations of the dense interactions among
residents living in close proximity to one another (Batty 2013). Situating entities in
space therefore strengthens the empirical basis and sheds new light on the nature of
social networks. Spatially embedded models of networks indeed show the non-trivial
impact of geography on network properties (Kosmidis et al. 2008) as well as the
importance of geographically concentrated networks (Browning et al. 2004). Empiri-
cal studies by both sociologists (McPherson et al. 2001; Wellman 1996) and regional
scientists (Cassi and Plunket 2014; Fritsch and Kauffeld-Monz 2010; Ioannides and
Topa 2010) confirm the critical role of space, with social distance (e.g. the fre-
quency of contact or the strength of relations) being heavily influenced by geographic
propinquity.

An important feature of contemporary social networks is churning brought about by
social actors that continuously re-evaluate and alter their links. For example, it has been
observed that more than half of social networking users have “unfriended” contacts in
their networks—deleting members from their friends list (Madden 2012). This is also
evident in online dating networks, where members who start out as strangers eventually
enter a committed relationship (Smith and Duggan 2013). Many of these relationships
end up being dissolved in the end. From a broader perspective, it has been argued that
rising crime and disorder in cities are in large part brought about by the decay of local
social ties (Sampson 2004). Others have gone so far as to suggest that the continuous
decline in social connections has impoverished our lives and communities (Putnam
2001).
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The churning dynamics are consistent with the view of networks as complex,
dynamic, self-organizing systems embedded in space and governed by individual inter-
actions. The present study therefore examines the evolution of spatial networks using
agent-based models (ABMs), a class of complex-systems approximations where the
abstraction maintains “a close association with real-world agents of interest” (Miller
and Page 2009). Regional scientists in particular have used simulation techniques to
explore the bottom-up processes that drive the emergence of spatial patterns (Mansury
and Gulyés 2007; Torrens 2007, 2010; Xie et al. 2007). In essence, an ABM is a set
of agent-specific rule-based algorithms that shape the outcomes for individual agents.
The algorithms allow agents to interact directly with one another, and in so doing link
individual changes to systems dynamics. ABMs’ main advantage for modeling social
networks is that they utilize a more realistic bottom-up approach that gives agency to
social actors to collectively generate systems behavior.

This paper addresses the following research questions. The first focuses on power
law distributions building upon the observation that while many real-life social net-
works have highly skewed distributions, many others do not. For example, while
citation networks and actor networks are both networks of collaboration, the former
tend to follow the power law (Barabasi 2002) even though the latter exhibit small-world
properties (Watts 1999). The present study queries when a scale-free distribution is
sustainable in a spatial network where agents are allowed to re-evaluate their ties,
and conversely under what conditions churning destabilizes the power law. Second,
we argue that social capital is a socioeconomic resource affected by the decisions to
maintain, dissolve, and form new connections. A natural question then is how the
unequal distribution of social capital is affected by the differential strength of network
churn factors, and under what conditions the disparities can be mitigated.

Our paper contributes to the literature by adding space into an ABM of preferential
attachment (PA) with network churn, and by showing how such refinements result in
previously unknown emergent properties and network behavior. In contrast to the sole
focus on connectivity in the original preferential attachment model, here we consider
the refinement proposed by Bianconi and Barabasi (2001) allowing agent fitness to
also influence the probability to form a new connection. Space then matters in the
specification where proximity affects agent fitness, which intertwines with churning
to embed the agent selection mechanism in an evolving spatial landscape. Our model is
further enriched by the distinction between two types of agents—namely introverts and
extroverts—in a community where introverts are limited in their spatial scope of inter-
actions, while extroverts are free to maintain long range connections. This is in line with
the theory and empirics that reveal that psychological traits dictate social interactions
(Cuperman and Ickes 2009) and economic outcomes (Tversky and Kahneman 1981).

The next section highlights three key concepts, namely PA, power laws, and
homophily. Section 3 elaborates on our network model, and Sect. 4 on the imple-
mentation of our ABM in simulation analysis. The penultimate Sect. 5 analyzes our
simulation results focusing on the degree distributions of agents under different para-
meter settings, as well as on the individual and spatial inequalities in social capital.
The concluding section discusses key policy implications and recommendations.
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2 Theoretical framework
2.1 Preferential attachment (PA)

The original PA model proposed by Barabdsi and Albert (1999) ushered in a boom in
network studies in the late 1990s. While the model was formalized in their seminal
paper, the idea that the rate in which a particular agent acquires links is propor-
tional to the links that the agent already has—thus preferential attachment—had been
around long before. Notably, de Solla Price 1965 discussed the concept of cumula-
tive advantage in the context of scientific citations, while sociologists referred to the
same phenomena as the Matthew effect (Merton 1968), named after the Gospel of
Matthew: “For whoever has will be given more, and they will have an abundance.”
(Mt, 25:29). This “rich get richer” mechanism has been observed in many types of
networks, ranging from the internet and power grids to social networks (see Barabasi
2002 for examples).

The model assumes a network that starts with a small number of nodes that are
randomly connected. In every succeeding step, a new node is added, linking itself to
the incumbent nodes already in the network. PA is incorporated by the simple rule that
incoming nodes prefer incumbents that are already well connected, thus awarding an
incumbent with significant connectivity a higher probability of attracting newcomers.
The PA model serves as a good starting point for analyses of social networks due to two
key characteristics. First, it features a network that expands continuously through agent
and tie addition. Second, new agents connect to others already in the network through
a process of selection, which favors more connected agents. The first characteristic is
essential in modeling growing networks that are fundamentally different from static
networks with a fixed number of nodes and edges (Erdos and Rényi 1960; Watts
and Strogatz 1998). The second characteristic captures the fact that in many social
networks, agents choose to associate with others that are already well connected.
In theoretical terms, selection is introduced by allowing the probability that a node
attracts others to be proportional to its degree connectivity,! which is in contrast to
random network models in which the probabilities of attachment are fixed in time.

The PA model, however, abstracts away from certain important aspects of real
networks. The lack of a spatial dimension in particular is one critical omission to
which we devote Sect. 2.3 below. The PA model also ignores network churn, unlike
random graph or small-world models that allow for the “rewiring” of links. Thus once
an agent is connected to an incumbent upon entry, it ceases to seek new connections and
only passively receives links from subsequent newcomers. Ignoring churn, however,
disregards the body of empirical literature confirming that social actors constantly
re-evaluate network ties based on individual decisions and preferences (Karnstedt
et al. 2010; Sasovova et al. 2010). Furthermore, without tie formation and detachment
among incumbents, the PA model gives near absolute agency to older nodes,? which
is simply not the case in many settings. The present study responds to the challenge

I The degree of a node refers to the number of connections that the node has.

2 This is simply because nodes that have been present for longer periods of time have more opportunities
to form links with incoming nodes (see Adamic and Huberman 2000 for a critique).
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of developing a spatial agent-based model to study the evolution of networks in a
churning environment where relationships ebb and flow.

2.2 Power laws

The PA model was conceived to explain the World Wide Web in which a few influential
Web sites have a very large number of links, while the rest harbor only a few connec-
tions. This highly unequal distribution exhibits a power law, which refers to the linear
relationship in the log—log plot of the degree distribution.? Power law distributions are
scale-free, a notion that is best understood vis-a-vis the scale-dependent counterparts.
Magnitudes such as the length of a town block, the height of a building and the num-
ber of bedrooms in a housing unit have a characteristic scale, which means the mean
value is representative of the magnitude that one actually observes on the ground. By
contrast, power law distributed urban social networks lack characteristic scale, and
this means that the average number of acquaintances is not a good predictor of the
extent to which a city resident is connected. In stochastic terms, the degree distribution
exhibits “fat tails,” which implies scale independence, or scale-free.

Urban and regional scholars have long been familiar with regularities in the size
distribution of cities (Zipf 1949). More relevant for our study here is the presence of
power law relationships in spatial networks, such as those for commuters (De Montis
etal. 2009). The essence of power law distributions is captured by the existence of a few
nodes with very large degrees, acting as “hubs.” Fat-tailed distributions therefore imply
wide variations in the extent of social contacts—and thus the resources (Granovetter
2005; Lin 2001)—that a node can tap into. While most have modest connections, a few
exert enormous influence by virtue of their hundreds or even thousands of contacts.
The implied distribution of resources is therefore highly skewed.

Understanding the sources of inequality in space is one of the central challenges of
the science of regions. But before we can begin addressing spatial inequality, we must
first disentangle the processes that give rise to differential degree distributions. Under
what conditions do networks sustain fat-tailed distributions, and under what condi-
tions does the power law break down? It is important to note that many networks are
scale dependent. In the small-world networks that Watts and Strogatz (1998) consider
for example, the degree distribution follows a random distribution, and the authors
give numerous examples of such networks. Thus while the power law distribution is
observed for specific networks, there are many networks that exhibit characteristic
scale with small deviations from the average connectivity.

The present study addresses this and other questions, including whether the power
law can be sustained in networks where the arrival of new nodes and links occurs at
the same time as the elimination of ties among existing nodes. The evidence drawn
from our ABM simulations hints at the potential tug of war between tie formation and
tie dissolution. The power law seems to persist when dissolution dominates formation,
but vanishes in the opposite case.

3 The degree distribution of a network describes the relative frequencies of nodes with different degrees
(Jackson 2008).

@ Springer



280 J. B. Cho et al.

2.3 Homophily, propinquity, and social capital

As elegant as the preferential attachment (PA) model may be, it leaves out a number of
important variables. Social ties depend not only on connectivity but also on other social
and economic indicators. In particular, the model abstracts away from homophily,
which refers to the tendency for people to associate with those sharing a wide range
of similar attributes. Homophily is one of the most fundamental forces identified
to date that have been known to shape social networks (McPherson et al. 2001).
Numerous studies of social relationships indicate the dominance of homophily in
social interactions, ranging from ties of marriage (Kalmijn 1998) or friendship (Aral
et al. 2009; Verbrugge 1983), to membership in voluntary associations (Cornwell and
Dokshin 2014) or appearing with others in a public space (Mayhew et al. 1995). The
PA model is in essence a model of heterophily, whereby nodes prefer to connect to
others that are as different as possible (in the number of links) to themselves. Within
the social networks literature, whether it is homophilous or heterophilous ties that
predominate has long been debated. Developments in theory and empirics suggest
that both are instrumental in explaining social interactions, with one dominating the
other under different circumstances (Burt 2005; Mehra et al. 1998).

An important source of homophily is propinquity, as we are more likely to sus-
tain relationships with others that are geographically closer to us rather than with
others farther away (McPherson et al. 2001). Zipf (1949) states that the importance
of propinquity stems from the notion of effort, for it takes more energy and effort
to maintain relationships with distant contacts. Many examples, such as studies of
neighborhoods (Campbell 1990), residential proximity (Verbrugge 1983), or immi-
grant enclaves (Wilson and Portes 1980) show that more homophilous interactions
take place when social actors are closer to each other.* Locations thus determine not
only physical factors, but also the common traits that forge neighborhoods. It is to
account for homophily that we give each node a unique location in the network of
heterophilous interactions. The introduction of space allows us to set the probability
for tie creation to be inversely related to the relative distance between nodes.

Spatial embeddedness changes the dynamics of tie formation as locations intro-
duce an important new source of heterogeneity. In the preferential attachment model,
heterogeneity stems only from differences in connectivity. The introduction of space
means that nodes with the same connectivity are not necessarily equally attractive, as
it depends on where they are located in relation to the evaluating node. As we will
show below, the introduction of space results in degree distributions that generally
lack power law properties. While hubs with the highest number of connections are
still the biggest draw, we do not expect hubs to be secluded in space as isolation would
have prevented them from becoming a hub to begin with.

Closely aligned with the notions of homophily and heterophily is the concept of
social capital. It has been theorized that strong homophilous relationships promote
higher levels of trust, reciprocity, and enforcement of norms (Coleman 1988). By
contrast, weak heterophilous relationships matter when people need to “get ahead,”

4 Proximity and preferences come together in Schelling’s famous work where people sharing similar traits
end up in the proximity of each other despite only mild preference for neighbors who are like them.
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with individuals maintaining more such relationships gaining brokerage capacity or
better access to non-redundant information (Burt 1992, 2005; Granovetter 1973).
Social capital is thus a resource that one can tap into, but unlike physical or human
capital, it is embedded in the network fabric that one is a part of (Portes 1998). As
we will show below, this conception allows us to examine the inequalities in social
capital emerging from the differential propensities to form and dissolve ties.

3 The model

In the following presentation of the model, we will use the term agents and nodes
interchangeably. We consider a network comprised a set of nodes N = {1, 2, ..., n}
and a set of undirected links L € N x N. Multiple links between two given nodes
as well as self-links are assumed to be absent. The network is initially conceived with
two nodes that are connected to each other at # = 0. In each subsequent period, a
new node joins the network and must choose which of the preexisting nodes it will
connect to. As in the preferential attachment model, a preexisting node is chosen with
probability that is proportional to its degree connectivity (Vega-Redondo 2007) as
well as its individual fitness. The probabilistic approach is used to represent sources
of variability in network formation that are too complex to capture mechanistically.
In real networks, ties are not always formed based on connections because of either
bounded rationality or factors other than connectivity.

The novel attachment mechanism here stems from the preferential bias for pre-
existing nodes with higher fitness, captured through the fitness parameter n, which
represents individual-specific characteristics such as social affinity, wealth, or human
capital (Bianconi and Barabdsi 2001). Formally, the probability I1; ; that a new node
i will connect to an incumbent node j depends on both the connectivity k; and the
fitness parameter 1 ; such that:

M= (1)
2. njkj

Equation (1) has a straightforward interpretation. Other things equal, a higher con-
nectivity raises the likelihood of being linked to an incoming node, but a lower fitness
would lower this probability. A node searching for a new contact evaluates an existing
node j’s fitness based on the combination of two factors, namely human capital A ; and
the distance between the two nodes d;;, such that:

Aj
nj = 2 ()
ij
The level of human capital A; is drawn from a uniform random distribution with
support [0, 1]. Note that Eq. (2) introduces space by assigning every agent a unique
location in the network so that no two nodes can occupy the same area.
A central feature of the tie dynamics in our model is the formation and dissolution of
ties among incumbent nodes. The trajectory is cumulatively driven by a combination
of tie creation and tie deletion, leading to network churning (Koka et al. 2006). For
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tie formation, we introduce the notion of maximum visibility reach that distinguishes
extroverts from introverts. The former are capable of connecting to other agents any-
where within the spatial grid, while the latter are agents that are unable to connect to
other agents outside of their visibility range (v). Formally, the probability l'IF for an
extrovert e to connect to any other node j that is not yet a link neighbor is calculated
as:

njkj
Ny, =6 =—"—, 3)
o T2 s, Mik;
where 6 is the tie formation parameter drawn from the interval [0, 1], and S, is the
set of node e’s link neighbors. By contrast, the tie formation probability for introverts
iis defined as:

02U whend;; <v
nf. = fzjsés dUSvn/k/ W= 4)

0 otherwise.

Equation (4) assigns a nonzero probability for an introvert i to connect to agents within
i’s visibility range, d;; < v, or zero otherwise.

For tie decay, the probability that any node i deletes a tie with a current link neighbor
is determined by the number of links currently maintained by that agent (k;) and the
distance between the two nodes (d;;). This is based on the notion that maintaining ties
requires social effort (Lin 2001), and hence other things equal, nodes with a larger
number of links lose connectivity at a higher rate compared to nodes with only a few
links. At the same time, links between nodes farther away have a higher chance to
dissolve. Formally, we introduce a tie decay parameter that controls how ephemeral
ties are within the network. The equation that governs the probability for node i to
dissolve its link to neighbor j is as follows:

2

d-
—u -d? . 2
P — lZ]eS, 12, when Oqk;d;; < Z]esi dl]’ )

i,J .
1 otherwise

where 6 is the tie dissolution parameter drawn from the interval [0, 1.3

To capture individual network resources, we utilize the concept of social capital,
defined as the instrumental resources that are available to actors through the social
ties they maintain (Lin 2001). Formally, we utilize a simple definition of an agent’s
individual social capital SC; as the sum of the human capital (Coleman 1988; Moretti
2004) of an agent’s first-degree link neighbors such that:

SCi = > 4. (6)

JESi

5P,

i j can become greater than 1 when 6,k; dl/ > jes; d , in which case the probability defaults to 1.
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and naturally we define aggregate social capital in the network to be > ; SC;. It is
important to note that social capital—both at the individual and aggregate levels—
indirectly feeds back into our model in the form of influencing individual decisions
of tie formation and dissolution. From the setup, the individual social capital measure
depends on both the number of links (which increases the number of link neighbors
j that are included in set S;) as well as the quality of these links (the human capital
that a link neighbor is endowed with). Agents with more links will, ceteris paribus,
have more social capital, which feeds back to them by (1) increasing their chances of
being linked by other agents, while at the same time (2) increasing their likelihood of
losing links to others due to higher values of k; which increases I1 f i [see Eq. (5)]. On
the other hand, agents with higher quality links, ceteris paribus, will be affected by an
increased chance of losing links, for their link neighbors will usually harbor a larger
number of connections which would increase the chance of tie dissolution. Aggregate
social capital also feeds back to individual agents, with higher levels resulting in lower
tie formation due to network saturation (i.e., less possible links to be formed) as well
as higher tie dissolution (i.e., more possible links to be severed).

Note that there are two mechanisms that act against each other to determine levels of
social capital; namely (1) the mechanism of preferential attachment based on degree,
human capital, and distance, and (2) the mechanism of preferential detachment based
on degree and distance. We will assess how individual and aggregate levels of social
capital—as well as inequality in social capital—evolve for varying values of the tie
formation (65) and tie decay (6) parameters.

4 Algorithm implementation

We use the standard protocol of “Overview, Design concepts, and Details” (ODD, see
Railsback and Grimm 2011) to describe the agent-based algorithm. ODD provides a
standardized way of presenting the ABM starting with three elements which overview
the model and how it is designed, followed by specific design concepts that illustrate
the ABM’s key characteristics, and ending with three elements that describe the ini-
tialization and implementation details. We highlight the main purpose of the model,
as well as the entities, variables, scale, and processes below (see “Appendix 4" for
specific details of the model according to the ODD protocol).

4.1 Purpose
The model seeks to examine how churning affects network resources and system
characteristics in a spatial setting. Specifically, we consider how the degree distribution

of agents differs based on varying strengths of tie formation and dissolution, as well
as how these factors influence individual and spatial inequalities.

4.2 Entities, state variables, and scales

The model has three types of entities: individual agents, their network connections,
and square patches of residential locations. The network connections are assumed
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to be binary (i.e., either a link exists or it does not), non-redundant (i.e., no more
than one link can exist between any two agents), undirected (i.e., the direction of
the link is indistinguishable), and containing no self-loops (i.e., no links to oneself).
Each patch is in the state of either empty or occupied by maximum one agent, and
make up a square grid landscape of 100 x 100(L = 100).° Since opposite edges
are disconnected, the landscape represents a two-dimensional Euclidean surface. This
is to facilitate the analysis of spatial inequalities between agents as well as specific
core-periphery structures that are better represented in two-dimensional space. The
patches have no state variables other than their relative position within the grid, which
dictates the distances to other patches, and thus the distances between agents.

Agents seek to expand the extent of their connections in the endeavor to increase
their social capital while being constrained by the effort required to maintain their
ties. Each individual agent is defined by both static and dynamic state variables. The
static state variables comprise the agent type (whether extrovert or introvert), level
of human capital, the propensity to form ties among incumbents (the tie formation
parameter) and to dissolve existing ties (the tie dissolution parameter), and spatial
coordinates, which are all predetermined at agent birth. The dynamic state variables
are the individual degree connectivity, relative fitness, and social capital. The global
variables are the degree distribution, aggregate social capital, and measure of inequality
(the Gini coefficient). The model’s temporal scale is such that each simulation is run
until the population of agents (N) reaches 1000, which results in a maximum link
count of 499,500.

4.3 Process overview and scheduling

There are three processes in the model: (1) the linking of a newcomer to an incum-
bent member of the network, and the (2) formation and (3) dissolution of ties among
incumbents. Regarding the first process, in each period a new agent enters the system
and is assigned a random location on the spatial landscape and with equal proba-
bilities is deemed either an introvert or extrovert. Introverts are assigned a visibility
range parameter value (v) of 15.7 After each incumbent node is assigned a value of
I1; ; [see Eq. (1)], the newcomer first chooses an incumbent at random and creates
a link with probability IT; ;. In the event that the newcomer fails to create a link, it
would continue to draw randomly from the full set of incumbents until a connection
is formed.® Tie formation between incumbents and tie dissolution are implemented
using an exhaustive search method where each incumbent evaluates the probabilities
for tie formation [see Egs. (3) and (4)] and tie decay [see Eq. (5)] for all candidate
agents (i.e., all agents that are not currently linked for tie formation, and all agents that
are linked for tie decay) in every time step, forming and deleting links accordingly. The
sequence is such that first a newcomer is added to the network and linked, followed

6 Sensitivity analysis is run for different world sizes. See “Appendix 3”.
7 As with world size, sensitivity analysis is run for differing visibility ranges. See “Appendix 3.”

8 In other words, the re-selection is done with replacement.
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Initialization of model
(t=0)

- 2 agents created
- Assigned static state variables

v

New agentis born <

- Assigned static state variables

v

New agent connects to
incumbent

- Based on each pairwise probability
I1;; (eq. 1) with incumbents

Incumbent is extrovert Incumbent is introvert
i t=t+1
Tie formation Tie formation
- Based on each pairwise probability ng, - Based on each pairwise probability ﬂf,
(eq. 3) with incumbents not already linked (eq. 4) with incumbents not already linked

v

Tie dissolution

- Based on each pairwise probability I,
(eq. 5) with incumbents already linked

(
v

End simulation

Fig.1 ABM flowchart

by tie formation and afterward tie deletion processes for the incumbents.” One time
period ends when all three processes have been completed for all agents (Fig. 1).

We conduct a parameter sweep on the tie formation parameter 6 s and the tie disso-
lution parameter 6,4, each of which is allowed to vary between 0 and 1. The analyses
employ the mean of five simulation runs for each parameter setting with a unique
random number seed for every configuration.!? All simulations are implemented in
NetLogo (Wilensky 1999), a multi-agent programmable modeling environment pop-
ularly used worldwide. We examine the implications of different parameter settings
for degree connectivity, network churning, and the presence or absence of power law

9 Thus it is possible to delete a link with an incumbent for which an agent has created a link in the same
time period.

10 We choose five simulations as the optimal level that balances computational burden with potential
variability, as our results suggest that the overall variability of network characteristics is minimal across
different random seeds. This is due to the fact that each agent is subject to a stochastic process of initial
linkage, link formation, and decay with every other agent in the network at every time period. The enormous
amount of stochasticity involved with constructing a final network of 1000 agents thus renders the resulting
network as a whole robust to large variations in aggregate characteristics.
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distributions. We also examine the distributional impact (measured by the Gini coeffi-
cient) of these settings, calculated by assessing the level of social capital obtained by
the agents through their network ties. Finally, we consider the spatial distribution of
agents with high or low levels of social capital to examine the role of network churn
in a spatial context.

5 Simulation results
5.1 Degree distributions and the power law

In seeking to establish the conditions in which the power law prevails, we first verify our
agent-based algorithm by confirming that the power law holds when 6y = 6; = 0, i.e.,
for the original preferential model of Barabdsi and Albert (1999) in which incumbents
are not allowed to form or dissolve ties with one another. Figure 2a shows that indeed
the power law prevails in the long-run distribution of degree connectivity with this
parameter setting, with a coefficient of determination R-squared of 0.9 and a power
exponent of 1.9 which, as it turns out, roughly coincides with the lower bound of the
range for many real networks (Barabasi and Albert 1999).

The scale-free property, however, vanishes as soon as a small but positive propen-
sity to form new ties is introduced among incumbent agents while holding 6; = 0.
Figure 2b, c reveals that for networks where links never decay, a slight increase in 6 ¢
results in the complete breakdown of the power law. The shifting of the points on the
plot to the right as 6 increases shows how rising propensity to form new ties among
incumbents benefits the relatively disadvantaged (in the number of links) by awarding
them with more connections.

The power law returns when tie formation and decay are both present, but only
when they are either roughly equal in strength or when the rate of tie dissolution is
greater than that for tie formation. Figure 2d shows the resurgence of the scale-free
property when 6y = 0.4 and 6; = 0.5, accompanied by a highly unequal distribution
of social capital as evident from the Gini coefficient that is at least twice that for
cases where churning is absent (i.e., when 6y = 6; = 0). This suggests that power
law distributions that seem ostensibly similar could have vastly different implications
for social equity. Churning characterizes most real-world networks, and our model
predicts a much higher concentration of social capital at the top than the canonical PA
model when both tie formation and decay are present. However, the power law breaks
down again when incumbents form ties at a rate that far exceeds the rate at which ties
are dissolved.

Figure 2e—h shows that the degree distribution approaches a bell-shaped curve
as the ratio 67 /6, increases. At the same time, social capital becomes more evenly
distributed as the Gini coefficient declines.

Our results also reveal that the power law prevails only in networks with very low
density.!! Under the original PA model, a network grown starting from two agents

IJ Network density is simply the number of links K divided by the number of possible links K, where
K =n(n—1) /2 and n is the number of nodes in an un-directed network.
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Fig. 2 Degree distributions for select parameter settings. The X-axis corresponds to the degree of nodes,
while the Y-axis to the number of nodes with such degrees, in log—log scale

up to 1000 agents in increments of 1 inevitably results in a link count of 999, which
corresponds to a network density of 0.2 %. The power law network depicted in Fig. 2d
has a link count of 236 and a much lower density of 0.047 %. As we have shown,
when tie formation dominates tie dissolution—resulting in a larger number of links
and higher density—the power law breaks down.
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Fig. 3 Relationship between power law fit (R-squared) and network churn parameters. Darker colors
represent higher R-squared. Values are the mean over five simulation runs each with a different random
seed for every parameter configuration

Figure 3 depicts the fit of the power law curves under different combinations of the
churn parameters 6 (tie formation) and 6 (tie dissolution). Our results suggest that
in general, higher values of 6, relative to 6 result in distributions that more closely
follow power laws. The upper left portion of the figure is dominated by distributions
with R-squared greater than 0.8. There is, however, substantial variation in the upper
left extremes due to the sparseness of the network in these extremes as well as due
to the stochastic evolution of the degree distributions. The figure confirms the results
from Fig. 2, with the power law fit decreasing substantially as tie formation becomes
more prominent. In addition, it can be seen that introducing tie formation has a much
larger effect in breaking the power law for lower values of 6;. For example, when
64 = 0.6, an increase of 6y from 0 to 0.5 still results in a degree distribution with
R-squared of roughly 0.9. However, when 6; = 0.1, similar R-squared values can be
obtained only when 6 is less than 0.1.

The ability of ABMs to capture system dynamics is advantageous in studying the
evolution of networks. Under two different parameter configurations that both result
in power law distributions, we show how the same system properties may emerge
albeit with different micro-foundations. Figure 4 depicts network formation for when
(1) 8y = 64 = 0 (Fig. 4a—d), and when (2) 8y = 0.4,6, = 0.5 (Fig. 4e-h), both
of which exhibit power law properties (see Fig. 2). In the absence of churning, the
evolution of degree connectivity is path dependent, much like in the canonical PA
model that awards higher degrees to incumbents that have been in the network longer.
Thus the nodes in Fig. 4a that initially command relatively higher connectivity in
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the early stages are able to maintain their advantage throughout. However, when net-
work churn is present, those that initially had greater connectivity (Fig. 4e) quickly
lose their advantage, being replaced by other nodes that were able to get ahead at
different times. Thus while overall the two systems both converge to power law distri-
butions, the trajectories are vastly different. This suggests that the original PA model
is a special case within the general class of models for which the power law prevails.
Furthermore, our results reveal that distinct bottom-up dynamics likely lead to differ-
ential access to social capital (see Fig. 4) even for systems that exhibit similar macro-
properties.

5.2 Aggregate social capital

Figure 5 and “Appendix 17 display long-run levels of aggregate social capital and
total link count K for different values of ¢ and 6,. As Fig. 5 shows, aggregate social
capital falls monotonically with higher propensity (6,) for incumbents to dissolve ties
while holding tie formation (6f) constant. Such results are intuitively appealing, in
that we should expect to see lower levels of trust and therefore social capital in a fluid
environment where ties are easily broken. Furthermore, the marginal impact of higher
values of 8, tends to diminish for larger values of 6 (see also “Appendix 1,” Table 1)).
For example, an increase in 6; from 0.5 to 0.6 while holding 6 fixed at 0.5 results
in a 30 % decline in aggregate social capital, but when 0y is fixed at 1.0, the same
increase in 6, results in a decrease of only 20 %. This suggests that, other things equal,
greater inclination to form new ties increases the resiliency of social capital to forces
that dissolve existing ties.

Conversely, Fig. 5 also shows that a higher inclination (6) to connect to other
incumbents is the rising tide that lifts aggregate social capital across different values

° ° ° d hd ® °
= 54 Y =
:E [ ¢ e 6,=0
s e 0,=0.1
8 -
e v 0,202
2 o ° ® ° o ® A 0,503
© (] -
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Fig.5 Tieformation (6¢), decay (6;), and aggregate social capital. Values are the mean over five simulation
runs each with a different random seed for every parameter configuration
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of 6. This can be traced to aggregate social capital being proportional to the total
number of links in the network, which increases as 0y rises. Less obvious is the
finding that the marginal effect of tie formation diminishes at higher 6 values. For
example, a rise in 6y from 0.4 to 0.5 holding 6, constant at 0.5 brings about a 35 %
increase in total social capital (see “Appendix 17), but arise in 6y from 0.9 to 1.0 again
at 8; = 0.5 results in a much lower increase of 14 %. In hindsight, this is internally
consistent with the logic of the model. Everybody is connected to almost everybody
else when 0 is already near maximum, and so a further increase in 6 ¢ will only have
a limited effect on total social capital.

Unexpectedly, however, the marginal impact of tie formation accelerates for larger
04’s. Using part of the above example, an increase in 6 from 0.4 to 0.5 at 6; = 0.5
brings about a 35 % increase in total social capital, but the same increase at 9; = 1.0
triples the increase to over 107 %. It appears that while rapid decay (high 6,) foments
a sparse network, it is precisely this limited connectivity that allows a higher rate of tie
formation to exert greater influence on aggregate social capital. This can be explained
by the higher chances to connect to agents endowed with higher human capital when
overall connectivity is low.

An important emergent outcome is the nonlinear relationship between network
churn and aggregate social capital. Figure 5 reveals a drastic decrease in social capital
by a factor of 58 and a decrease in the number of connections by a factor of 62 (see
also “Appendix 1”’) when 6, is raised from 0.0 to 0.1. This is in contrast to changes at
higher 6, values where on average the decrease is less than twofold for every 0.1 incre-
ment in ;. These results suggest a phase transition—defined as a significant change
of state when parameter values cross a certain threshold (Solé et al. 1996)—occurring
in the vicinity of 6; = 0, where the qualitative behavior of the system undergoes a
significant alteration. Considered a signature of complex networks (Castellano et al.
2000; Holme and Newman 2006), in our case the phase transition is the change from
a very sparse network with an average network density of 0.12 % for nonzero val-
ues of 6, to a relatively dense network with an average density of 29.4 % when
04 = 0.

The simulation results thus highlight the important role of tie dissolution when
analyzing different types of networks. Our findings suggest that networks in which
ties are permanent are distinct from those in which ties are transient. Networks with
permanent ties have significantly greater connectivity as the high density suggests,
which results in higher levels of aggregate social capital. The introduction of even
a small likelihood for ties to dissolve, however, shifts the system into one in which
connectivity is much lower, and this transition occurs suddenly rather than gradually.
The importance of such a distinction has been empirically observed. For example, Wil-
son and Portes (1980) document the experiences of immigrant minorities integrating
into the US labor market, with findings suggesting that immigrant groups in enclaves
characterized by more permanent ethnic and cultural ties frequently perform better
economically than other minorities that are more fragmented spatially (and thus part
of more transient social networks). The phase transition in our model appears in line
with such evidence.
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5.3 Inequality

Figure 6 and “Appendix 2”” show the implications of network churn for the distribution
of social capital measured by the Gini coefficient. Figure 6a reveals that tie dissolution
and the Gini coefficient are in general positively correlated, suggesting that a higher
rate of tie decay amplifies inequality. This is an unexpected, emergent outcome because
ties dissolve more rapidly for highly connected agents [see Eq. (5)]. Since agents with
higher human capital also maintain more links, tie decay is expected to equalize the dis-
tribution of social capital. But while indeed higher rate of tie decay causes high human
capital agents to lose links faster, the preferential attachment (PA) mechanism ensures
that the majority of these links are to lower human capital agents. As it turns out, agents
with lower human capital lose ground in relative terms, and inequality rises as a result.

On the other hand, a higher rate of tie formation holding 6, constant generally
reduces inequality, unless ties are relatively permanent. Here it is important to recog-
nize the two opposing forces at work. The first is the mechanism of preferential
attachment (PA) initiated by the agent itself (or active PA). For an agent endowed
with relatively low human capital, a new tie to a high human capital agent increases
the former’s social capital more than the latter’s, and active PA thus tends to reduce
inequality. The second is through being preferentially attached to (or passive PA) by
other agents within the network. Passive PA favors the well-endowed, and thus tends
to accentuate the gap between the highly connected and the relatively isolated. It turns
out that which one dominates depends on the magnitude of the decay parameter 6,.
When ties are permanent (6; = 0), the effect of increasing 6 follows an inverted
U pattern where the Gini increases at first and then declines after a certain threshold
is surpassed. Thus passive PA is the dominant force initially for lower values of 6.
This is followed by reduced inequality as the network nears saturation (i.e., full con-
nectivity) when 6 is comparatively large and active PA dominates. When some ties
are transient however, equalization through the active mechanism begins to take full
effect and higher 0¢’s lower inequality across the board.

Our simulation results highlight the phase transition near §; = 0, marking the
changing nature of the impact of incumbent tie formation. To shed light on the transi-
tion, we run simulations with very small values of 6, in the neighborhood of 6; ~ 0.
Figure 6b shows that for sufficiently low, nonzero rates of tie decay within the range
0 < 64 < 0.01 (panels 2 to 5), the relationship between 6 and inequality roughly
follows a U-shaped curve. In this regime, an increase in 6 decreases inequality to a
certain minimum, after which a further increase in 6 does the opposite and actually
increases inequality. As 6 approaches 0, this pattern gradually reverts to the shape that
characterizes that for 6; = 0. The relationship between tie formation and inequality
is thus highly nonlinear depending on the tie decay parameter. The implication is that
when ties are relatively permanent, any policy aimed to promote connectivity could
inadvertently privilege the connected even more.

In addition to overall inequality captured by the Gini coefficient, we also examine
the gap between higher and lower human capital agents to shed light on how differential
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access to human capital affects the trajectories for social capital.'? Figure 7 depicts the
evolution of agent inequality based on human capital levels for four different parameter
settings, each embodying distinct trajectories. Here, the difference in social capital
between high (75th percentile or above) and low (25th percentile or below) human
capital agents is measured relative to the latter.'> Comparing the case for 6 r=04=0

12 Dynamic analyses of the Gini coefficient (not included here) suggest that the Gini is relatively stable for
all parameter settings across time, after the network has evolved to include a sufficient number of agents
for reliable Gini calculation.

13 Specifically, inequality is measured at each time point as the difference in average social capital between
high (75th percentile and above) and low (25th percentile and below) human capital agents, divided by the
average social capital of the low human capital agents.
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and that for 6y = 0.4, 6; = 0.5, it can be seen that the two settings converge to similar
values of inequality in the long run, yet the trajectory for the network with churning is
much more volatile. Both configurations yield scale-free degree distributions, but our
results reveal that power laws also produce a highly skewed distribution of social capital
with the higher human capital agents commanding levels of social capital twice that of
the lower human capital agents. The oscillations for the churning case (87 = 0.4, 6, =
0.5) are due to the constant rewiring of links, and it is churning that allows lower human
capital agents to improve their social standing vis-a-vis the more privileged ones.

5.4 Aggregate social capital and agent inequality

The non-monotonic relationship shown in Fig. 8 between distribution (measured by
the Gini) and overall connectivity (measured by total link count) merits an explana-
tion.'* As discussed in Sect. 5.2, what matters for connectivity is the ratio 6 /04 since
aggregate social capital is strictly increasing in 6y while strictly decreasing in 6. The
trajectory for inequality on the other hand is dependent on both the magnitude of 6,

14 We use link count instead of aggregate social capital to make our results more intuitive, recognizing that
the two are qualitatively similar in their behavior across parameter values (see “Appendix 17).
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and its relative strength. Hence starting from a sparse network, an increase in the ratio
01 /604 generally accomplishes both higher connectivity and a more equal distribution.
But if the ratio is increased further by lowering tie decay rate 6, from a level already
close to zero, then a tradeoff ensues where stronger connectivity accompanies greater
concentration of social capital. However, a reversal is observed at sufficiently high
levels of connectivity with the return of the inverse relationship.

More specifically, there are two transitions occurring at total link count k & 35,000
and at k &~ 126,000, respectively, resulting in three distinct phases. To explain these
results recall that an agent acquires social capital through two opposing mechanisms,
namely active and passive PA. Which one dominates here hinges on the level of
network activity and network density, which in turn depend on the combination of 6
and 6. Phase I represents sparse networks with low network densities between 0 and
7% where the fall in of inequality is driven by three factors. First, low human capital
agents maintain a very small number of—if any—Iinks. An increase in 07 therefore
renders their connection gains through active PA comparatively larger. Second, the
gains for higher human capital agents being passively linked to are not as large as the
gains for lower human capital agents actively initiating connections. Finally, even in
sparse networks higher human capital agents command more links and thus have a
higher probability for their ties to decay as long as 6; > 0.
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Phase II includes networks with moderate density between 7 and 25%. Here
inequality increases with aggregate social capital because in moderately dense net-
works, the gains for lower human capital agents is not as large as in sparse networks
for a significant number of high benefit links have already been exploited. This is
in contrast to higher human capital agents who benefit from both active and passive
attachment mechanisms. Finally, Phase Il represents very dense networks nearing link
saturation for which inequality falls once again as connectivity increases further. This
is due to most incumbents in this regime already having links with most others, and
thus a new tie is simply becoming the equalizing vehicle that closes the gap between
lower and higher human capital agents.

5.5 Spatial inequalities

Space matters in our model as agents’ relative positions within the spatial landscape
influence the level of social capital that they are able to maintain. We turn now to
the locational patterns of agents commanding higher than average social capital, and
compare these with those for the rest. Since the amount of aggregate social capital
differs across different parameter settings, for comparison purposes we calculate the

relative amount of social capital SC; an agent has as:

_SCi/ Y, SCi
- 1/N

Al

1 3

where N is the total number of agents within the network. Thus an agent with a value of

SC; greater than 1 maintains a greater amount of social capital than when mean social
capital is uniformly distributed among all agents. We then divide agents into two cate-

gories, based on whether they have values of ﬁi greater than or less than (or equal to) 1.

Figure 9 shows the long-run spatial distribution of agents with SC; > 1 for select
parameter settings, where the nodes are color-coded based on whether they are extro-
verts or introverts.'> Recall that extroverts are unencumbered in connecting with others
while introverts are constrained by their spatial reach.'® The original PA model with
0r = 64 = 0 is shown in Fig. 9a, where high social capital agents are randomly

distributed with a significant number with SC; greater than 1 on the outer edges of the
grid. By contrast, Fig. 9b—d indicates that a higher number of links (K) accompanies
the clustering of the high social capital agents toward the center, which in turn implies
the lower social capital agents primarily occupying the fringe. Figure 4e, f shows that
high social capital agents again disperse spatially for even larger values of K. What is
striking is that the spatial distribution of high social capital agents closest to the center
(Fig. 9d) occurs precisely at the parameter setting for which the Gini coefficient is the

15 While not shown, due to the random spatial distribution of all agents the blank areas in Fig. 9 are occupied
by low social capital agents.

16 Analysis of the spatial distribution of agents based on human capital levels (not shown here) suggests that
the spatial distribution of social capital is independent from that of human capital, with no clear emergent
pattern.
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lowest (see Fig. 6b). This implies that, overall, spatial inequality and social capital
inequality are inversely related. Other parameter settings with higher Gini coefficients
indeed produce a lesser concentration toward the center.

Our results can be explained when we take into consideration the distinct trajectories
of link formation as K increases. For sparse networks, the paucity of links lowers the
probability of linking to agents further away, since the model prioritizes agents that
are close by. This results in agents occupying locally central positions being able to
maintain higher levels of social capital, resulting in a more even distribution of such
agents within the spatial grid. As density increases, long-distance ties increasingly
become likely and as a result agents commanding globally central positions have
higher chances of connecting to or being connected. Centrally positioned agents then
end up accumulating more social capital than agents on the fringe who have fewer
options. However, as density increases even further, the network becomes saturated to
the point where central agents lose their advantage, for agents on the fringe are also
able to maintain links with distant nodes.

Another key observation is the distinct pattern in the composition of high social
capital agents relative to their breed as the number of links increases. In Fig. 9a—d, the
distribution of extroverts versus introverts is relatively even suggesting that in low-
density networks, introverts ceteris paribus have equal opportunities to acquire high
levels of social capital. However, Fig. 9e, f reveals that as the number of links crosses
a certain threshold, introverts rapidly vanish from the set of high social capital agents.
Figure 10a reveals that indeed there is a sharp increase in the absolute difference in
average social capital between extroverts and introverts near log 4.55 &~ 35,000, which
is precisely the point at which social capital inequality enters the first phase transition
(see Fig. 8). While not shown here, this sharp increase in social capital inequality
between extroverts and introverts persists even after controlling for the overall higher
levels of aggregate social capital in denser networks.

This suggests that the transition from phase 1 to 2 in Fig. 8 not only entails a sharp
increase in aggregate inequality, but high levels of inequality between extroverts and
introverts as well. At a link count of roughly 100,000, extroverts command levels of
social capital more than twice that of the introverts, which is substantial considering
that for lower values of K they were virtually identical.

It turns out that disparities increase in network density because of the limited vis-
ibility reach (v) of introverts. In the beginning, both extroverts and introverts mainly
connect with those close by since pairs that are in the vicinity have a higher chance to
form connections. As the network crosses a certain density threshold however, both
types exhaust their local possibilities, yet extroverts continue to connect with other
agents farther away while introverts are no longer able to establish new ties due to
their spatial constraints.

Overall, the tradeoff between spatial and individual inequality suggests that policies
geared toward reducing one could adversely affect the other. In addition, our model
offers one plausible explanation for the existence of agglomeration economies within
a social interactions setting. The essential sources of agglomeration are off-market
knowledge exchanges, input and output linkages, as well as labor market pooling
(Marshall 1920), which are all driven to some extent by social interactions (Ioannides
2013). Our model suggests that spatial agglomeration benefits individuals in the core
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Fig. 10 Differences in social capital between introverts and extroverts as a function of link count, measured
as raw differences (extrovert s.c.—introvert s.c.). Values are the mean over five simulation runs each with
a different random seed for every parameter configuration

by allowing them to maintain more social connections than those in the periphery,
which in turn may result in better economic outcomes.

6 Conclusions

We have examined the evolution of degree distributions under different parameter
configurations to establish conditions in which the power law is sustained and the
cases in which it breaks down. While our presentation has focused on a few select
parameter settings, sensitivity analysis reveals that our results are robust across dif-
ferent configurations for world size L and introvert visibility v (see “Appendix 3”).
Generally, we find that networks in which ties are scarce and the rate of tie dissolution
is relatively high exhibit power law degree distributions. We also find that networks
with link dissolution are fundamentally different from those in which ties are relatively
permanent, underscoring the importance of distinguishing between the two types of
networks. As a classic example, Watts (1999) shows that many social networks with
tie decay are characterized by “small-world” properties, and these result in a very
different degree distribution from that of networks where ties are permanent, which
Barabasi and Albert (1999) find to exhibit the power law. In fact, our results suggest
that the power law distributions found for networks grown under PA are just a special
case of a broader class of networks that take into consideration churning dynamics.
Of particular interest is the concentration of social resources, which we find to
be closely related to network density as it evolves in three distinct phases. Sparse
networks exhibit a decrease in social capital inequality as network density increases,
moderately dense networks exhibit increases in inequality with higher density, and very
dense networks exhibit a decrease in inequality as the network reaches full saturation.
In a complete (i.e., fully connected) network, no inequality would exist and the level
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of aggregate social capital would be maximal. However, such networks are extremely
rare in real life. Our model suggests that due consideration for the relative strength
of tie formation and dissolution is warranted when aiming to mitigate disparities
over control of network resources. For example, when considering the spread of tacit
information, encouraging more networking activity in an ethnic enclave where ties are
relatively permanent and dense would have very different results than encouraging such
activity among trade association members where ties are weaker and more transient.
This relationship between network density and inequality among agents is further
complicated when considering the spatial aspects of inequality. We find that spatial
inequality is greater—in the form of higher social capital agents being distributed near
the core—when inequality among agents overall is low. Our results suggest that we
should acknowledge the potential tradeoff between spatial inequality and individual
inequality with respect to social resources.

In this paper, we have conceptualized social capital as a network resource rather
than an individual resource that an agent is endowed with. This view is motivated by
distributional considerations. The poor in particular—due to resource deprivation—
are more likely to utilize membership in community networks that exchange help
in crises than to resort to individual coping mechanisms (Gans 1962). Our results
highlight counterintuitively that simply encouraging more networking activity among
individuals may not result in the disadvantaged benefiting from the increased intensity
of social interactions.

Although this study does not pursue it, the current specification has enabled a new
kind of analysis for furthering the understanding of network dynamics. Our model
establishes the impact of connectivity on social capital through Eq. (6). The accu-
mulation of social capital, however, likely results in higher betweenness centrality
(Freeman 1977), which directly triggers additional rounds of tie decay and formation.
An examination of closed-loop feedback effects of this type is beyond the scope of
the present study but should be attempted in the future as an extension.

Finally, while social capital has mainly been studied within the context of social
networks, we note that it can be generalized to other domains—such as economic
networks—in which resources obtained from network ties are of central importance.
Our model’s simple definition of social capital to be the human capital sum of link
neighbors allows our framework to be readily extended to other types of networks,
possibly by substituting human capital with a different resource of importance. We
hope that our demonstration highlighting the complexity of network behavior in space
and in the presence of churning dynamics will stimulate further investigation of the
implications for differential spatial patterns and social inequality.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.
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Appendix 1

See Table 1.

Table 1 Relationship between 6 ¢, 07, and (a) aggregate social capital > SC; (b) link count (k)

0 04

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

(a) Aggregate social capital (3; SC;)
0 12154 5.0 2.1 1.8 0.6 -4 - - - - -
0.1 49,813.1 5783 251.0 150.7 93.8 67.6 427 298 202 82 -
02 80,618.1 1106.5 508.4 306.1 208.1 137.0 95.7 715 493 224 1.7
0.3 109,908.4 1649.8 7345 4746 3263 2233 1639 1256 903 426 99
04  136,943.3 21993 9904 618.1 4350 288.0 227.0 173.6 1158 71.8 26.8
0.5 168,187.3 27034 1267.0 780.0 542.6 390.3 2955 2309 169.7 1059 55.6
0.6 189,633.4 3280.7 1513.8 9157 680.7 4923 3940 288.7 219.6 166.8 99.6
0.7 219,3142 3821.6 17833 1137.7 7953 6034 480.3 380.8 2740 2143 1352
0.8 242,426.7 4307.1 2044.5 1279.0 9323 706.1 550.8 445.6 349.5 265.1 185.7
0.9  267,520.2 4883.1 2309.4 1485.6 1094.1 808.6 648.7 541.8 420.6 331.5 262.7
1 285,562.4 5348.8 2547.3 1631.3 1227.8 921.6 763.8 601.1 517.2 4344 334.1
Agc 57.6 1.1 0.6 0.4 0.4 0.3 0.3 0.3 0.3 0.5 -

(b) Link count (K)
0 999 4 2 2 1 - - - - - -
0.1 45244 469 207 126 78 57 38 25 17 7 -
0.2 73,048 930 412 249 172 112 81 61 43 21 1
0.3 99,041 1384 615 389 263 183 133 109 74 37 8
04 122,936 1853 827 512 356 239 192 146 98 63 24
0.5 150,770 2305 1065 652 446 326 243 191 143 90 47
0.6 173,607 2815 1296 780 565 409 329 240 185 140 83
0.7 202,849 3252 1514 96l 662 505 394 319 232 180 120
0.8 226,062 3718 1748 1092 790 586 467 374 292 229 160
0.9 250,995 4251 1978 1264 927 681 549 453 355 282 224
1 270,693 4683 2232 1398 1036 776 640 517 434 366 283
Ag 620 1.2 0.6 0.4 0.4 0.3 0.3 0.3 0.3 0.5 -

A is the average change (in multiples) in (a) social capital and (b) link count compared to the next highest
64 value. N = 1000, L = 100, v = 15. Values are averaged over 5 simulations
4 For lower values of O, sufficiently high values of 6; prohibit the network from maintaining any links,
resulting in no social capital

Appendix 2

See Table 2.
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Table 2 Relationship between 6 504, and the Gini coefficient

Or 04
0 0.00125  0.0025 0.005 0.01 0.015 0.02 0.1 0.2

0 0.413  0.690 0.822 0.904 0.955 0.969 0.976 0.995 0.998
0.1 0.321  0.225 0.242 0.252 0.288 0.318 0.356 0.684 0.825
0.2 0.358  0.210 0.170 0.197 0.228 0.249 0.276 0.529 0.707
0.3 0.376  0.261 0.170 0.159 0.202 0.217 0.233 0.447 0.612
0.4 0.373  0.289 0.204 0.135 0.179 0.201 0.211 0.390 0.550
0.5 0.365 0.315 0.231 0.140 0.154 0.181 0.195 0.354 0.490
0.6 0.347  0.322 0.257 0.162 0.138 0.171 0.185 0.316 0.447
0.7 0.324  0.329 0.275 0.182 0.126 0.157 0.172 0.295 0.412
0.8 0.307  0.331] 0.287 0.203 0.122 0.140 0.162 0.280 0.372
0.9 0.282  0.331] 0.300 0.221 0.122 0.133 0.154 0.259 0.367
1 0.263  0.329 0.302 0.230 0.134 0.122 0.144 0.256 0.340

Agini  0.027  0.114 0.170 0.052 —-0.073 —-0.068 —0.362 —0.215 —0.130

Or 04

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0 0.998  0.798 - - - - - -
0.1 0.890 0.921 0.945 0.964 0.977 0.984 0.993 -
0.2 0.795  0.849 0.894 0.922 0.943 0.962 0.980  0.398
0.3 0.715  0.789 0.847 0.881 0.901 0.933 0.966  0.992
0.4 0.658  0.723 0.799 0.834 0.871 0.909 0.944  0.978
0.5 0.591  0.667 0.742 0.797 0.835 0.874 0.914  0.958
0.6 0.555  0.637 0.703 0.741 0.807 0.845 0.886  0.929
0.7 0.503  0.584 0.653 0.710 0.754 0.805 0.849  0.900
0.8 0.478  0.543 0.620 0.670 0.716 0.772 0.819  0.864
0.9 0.437  0.509 0.579 0.634 0.676 0.735 0.782  0.822
1 0416 0479 0.538 0.596 0.646 0.690 0.728  0.785

Agini —0.062 —0.085 —0.056 —0.046 —0.045 —0.040 0.032 -

AGini 1s the average change in the Gini coefficient compared to the next highest 6; value. N = 1000,
L =100, v = 15. Values are averaged over 5 simulations

Appendix 3

See Fig. 11.
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Appendix 4
Details of the model according to the ODD protocol
Design concepts

e Basic principles: see Sect. 3.

e Emergence: We look for the emergence of a power law distribution under different
specifications of the tie formation and dissolution parameters, as well as under what
circumstances the power law breaks down. We also look for the emergence of high
and low inequalities in social capital among agents as well as spatial patterns of
inequality based on different parameter settings.

e Adaptation: There is no explicit adaptation of the agents in terms of changes in
static state variables. Nonetheless, the agents adapt their behavior with respect to
their levels of social capital, with higher social capital agents deleting more ties
due to the limited social effort they can exert.

e Objective: The agents’ objective is to maximize their social capital in each time
frame, by connecting to another agent that preferentially has a higher level of
human capital (which would imply that these agents also have higher connectiv-
ity). However, the agents are constrained by distance, being able to connect more
easily to others who are closer to themselves. Introverts are also constrained by
their neighborhood visibility, only being able to connect to others within a fixed
threshold distance.

e Sensing: Agents use probabilities in deciding which new connection to form and
which tie to dissolve. The probabilities are calculated based on the information set
that reveals the human capital and connectivity levels of other agents, as well as
their relative distance to these agents. Introverts are assumed to be able to sense
this information only for agents within their visibility reach, while extroverts are
assumed to be fully knowledgeable of all information regarding all agents in the
network.

e Interaction: Agents interact directly with each other through the formation and the
dissolution of links, which in the real world would represent the re-evaluation of
social connections. Introverts interact only with other agents within their visibility
reach, while extroverts interact with all other agents. All agents interact with all
possible others in each time frame.

e Stochasticity: Stochastic processes are used to assign the spatial position of each
agent at birth. In addition, the human capital of each agent is randomly drawn from
auniform distribution within the interval [0, 1]. Stochasticity also appears in all tie
formation and dissolution processes, for these processes are determined based on
probabilities which may yield different results based on different random number
seeds.

e Collectives: The collective—or aggregate—Ilevel of social capital, the degree dis-
tribution, average levels of social capital for extroverts versus introverts, as well
as spatial patterns of social capital inequality are represented in the model, and
emerge from the behavioral characteristics of agents.
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e Observation: We track the evolution of degree distribution, individual and aggre-
gate levels of social capital, and inequality in social capital among agents as well
as spatially. We use numeric data representations as well as graphs to present these
outputs of interest, and also utilize maps of agents to present spatial patterns.

Initialization

At the beginning of every simulation (+ = 0), two agents linked to each other are placed
uniformly and randomly on a respective patch. These two agents are assigned into the
introvert or extrovert breed randomly with equal probability, and their human capital is
drawn from a uniform distribution with [0, 1] support. Introverts are assigned a specific
neighborhood visibility reach value. In addition, the tie formation and dissolution
parameters are set globally at specific values, and these values are assumed to be
constant across agents.

Input data

The environment is assumed to be generic, and thus the model has no input data.

Submodels

See the process overview and scheduling section for details on each procedure.
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