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Abstract
Purpose  The aim of this study was to investigate the performance of an artificial intelligence (AI)-based software for fully 
automated analysis of leg alignment pre- and postoperatively after high tibial osteotomy (HTO) on long-leg radiographs 
(LLRs).
Methods  Long-leg radiographs of 95 patients with varus malalignment that underwent medial open-wedge HTO were 
analyzed pre- and postoperatively. Three investigators and an AI software using deep learning algorithms (LAMA™, Image-
Biopsy Lab, Vienna, Austria) evaluated the hip–knee–ankle angle (HKA), mechanical axis deviation (MAD), joint line 
convergence angle (JLCA), medial proximal tibial angle (MPTA), and mechanical lateral distal femoral angle (mLDFA). All 
measurements were performed twice and the performance of the AI software was compared with individual human readers 
using a Bayesian mixed model. In addition, the inter-observer intraclass correlation coefficient (ICC) for inter-observer reli-
ability was evaluated by comparing measurements from manual readers. The intra-reader variability for manual measurements 
and the AI-based software was evaluated using the intra-observer ICC.
Results  Initial varus malalignment was corrected to slight valgus alignment after HTO. Measured by the AI algorithm and 
manually HKA (5.36° ± 3.03° and 5.47° ± 2.90° to − 0.70 ± 2.34 and − 0.54 ± 2.31), MAD (19.38 mm ± 11.39 mm and 
20.17 mm ± 10.99 mm to − 2.68 ± 8.75 and − 2.10 ± 8.61) and MPTA (86.29° ± 2.42° and 86.08° ± 2.34° to 91.6 ± 3.0 and 
91.81 ± 2.54) changed significantly from pre- to postoperative, while JLCA and mLDFA were not altered. The fully automated 
AI-based analyses showed no significant differences for all measurements compared with manual reads neither in native 
preoperative radiographs nor postoperatively after HTO. Mean absolute differences between the AI-based software and mean 
manual observer measurements were 0.5° or less for all measurements. Inter-observer ICCs for manual measurements were 
good to excellent for all measurements, except for JLCA, which showed moderate inter-observer ICCs. Intra-observer ICCs 
for manual measurements were excellent for all measurements, except for JLCA and for MPTA postoperatively. For the 
AI-aided analyses, repeated measurements showed entirely consistent results for all measurements with an intra-observer 
ICC of 1.0.
Conclusions  The AI-based software can provide fully automated analyses of native long-leg radiographs in patients with 
varus malalignment and after HTO with great accuracy and reproducibility and could support clinical workflows.
Level of evidence  Diagnostic study, Level III.
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MAD	� Mechanical axis deviation
mLDFA	� Mechanical lateral distal femoral angle
mLDTA	� Mechanical lateral distal tibial angle
mLPFA	� Mechanical lateral proximal femoral angle
MPTA	� Medial proximal tibial angle
OA	� Osteoarthritis
SUCRA​	� Surface under the cumulative ranking
TKA	� Total knee arthroplasty

Introduction

Indications for high tibial osteotomy (HTO) include medial 
knee osteoarthritis (OA) in patients with a bony varus 
deformity [7] and patients with cartilage repair surgery and 
varus malalignment [2, 14]. A thorough analysis of the leg 
alignment is mandatory for detection of malalignment and 
for locating the bony deformity, as HTO is indicated only in 
patients with the varus malalignment located in the proximal 
tibia [9]. Preoperative measurements in the coronal plane 
are usually performed on standing anteroposterior long-leg 
radiographs [16]. Traditionally, these measurements are per-
formed manually using medical imaging software. However, 
subjective landmark setting leads to high intra- and inter-
observer variability, poor reproducibility [3, 10, 20] and 
measurements depend on the experience of the observers 
[25].

Artificial intelligence and machine learning are increas-
ingly applied in musculoskeletal imaging [5, 15]. Various 
machine learning models have been developed [18] and 
demonstrated that automated analysis using AI and deep 
learning algorithms can enhance measurements and increase 
reproducibility [24]. Classical machine learning methods 
can be labeled as either supervised or unsupervised meth-
ods [8, 17]. Supervised machine learning methods predict 
health outcomes based on labeled data [17], while unsuper-
vised machine learning methods identify patterns in unla-
beled data sets and can identify new risk factors [8]. The 
American College of Radiology Data Science Institute has 
recognized leg length measurement in radiographs as an AI 
use case. Studies for angle measurements on native long-leg 
radiographs with neutral alignment and postoperatively after 
total knee arthroplasty (TKA) showed good results com-
pared with manual readers [12, 21, 23].

However, no study has investigated the performance of 
artificial intelligence enhanced analysis of varus malalign-
ment or after high tibial osteotomy. In the clinical environ-
ment, the utilization of an AI-based software has the poten-
tial to save resources, provide fast delivery of precise results 
and support clinical decision-making.

The aim of this study was to apply an AI-based software 
on long-leg radiographs in patients with symptomatic varus 
malalignment pre- and postoperatively after high tibial 

osteotomy. The software based on deep learning algorithms 
provides a fully automated analysis of leg alignment and 
bony deformity. It was hypothesized that the AI-based soft-
ware can accurately analyze leg alignment pre- and postop-
eratively after HTO. Second, it was hypothesized that the 
software performs equally compared with manual readers 
and that inclusion of the software as an individual reader 
does not alter the accuracy.

Materials and methods

Patients that received a medial open-wedge high tibial oste-
otomy between May 2019 to December 2020 at our institu-
tions were identified. Inclusion criteria were patients aged 
18 years or older, who were treated with an HTO and had at 
least one weight-bearing long-leg radiograph preoperatively 
and one at a minimum of 6 weeks postoperatively. Exclusion 
criteria were previous surgery with detectable implants in 
the proximal tibia, radiographs with artifacts, poor image 
quality, incorrect positioning and cropping errors. Image 
quality was assessed again by each reader before starting 
the annotation process. The assessment included checks 
for incorrect image cropping, clear visibility of bone con-
tours, excessive tilt and correct rotation of the lower limb. 
Correct rotation was evaluated by a combination of patella 
orientation, coverage of the fibular head, and configuration 
of the femoral notch. After a power analysis (see statistical 
methods) 95 patients with 190 radiographs were included 
in this study to guarantee sufficient sample size. Individual 
informed consent was waived by the local ethics committee 
due to the retrospective study design and anonymization of 
the data. All radiographs were acquired with the same device 
(DigitalDiagnost, Philips).

Manual measurements

Manual measurements were carried out by three investiga-
tors independently. Two of them are orthopedic surgeons 
and one of them is a radiologist, all with a minimum of 5 
year experience in musculoskeletal imaging. The annota-
tions were obtained using mediCAD® (Knee 2D module 
v6.0, mediCAD Hectec GmbH, Altdorf/Landshut, Germany) 
according to the user’s manual workflow. Each reader was 
blinded to the AI results, worked independently and anno-
tated each image twice in the same order. The measurements 
were exported from mediCAD® and collected in a Microsoft 
Excel sheet.

Automated measurements using AI software

The AI-based software used in this study was the LAMA™ 
(Leg Angle Measurement Assistant) software (version 
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1.04.15, CE version, ImageBiopsy Lab, Vienna, Austria). 
It was trained on over 15,000 radiographs from the OAI 
(Osteoarthritis Initiative study; US six-site multi-center), 
MOST (Multicenter Osteoarthritis Study, US two-site multi-
center), CHECK (Cohort Hip and Cohort Knee study; Neth-
erland single center) studies as well as five sites in Austria 
[19]. LAMA™ uses deep learning algorithms and multiple 
U-Net-based convolutional neural networks. The software 
automatically annotates the original DICOM (Digital Imag-
ing and Communications in Medicine) images and analyzes 
long-leg radiographs by detecting and localizing anatomi-
cally relevant landmarks on the femur and tibia relevant for 
the required measurements. In addition, if present, a calibra-
tion ball is identified and the resulting magnification fac-
tor for length measurements is applied. The AI follows the 
established radiological workflow: measurement of anatomi-
cal distances and angles, detection of disease morphologies 
and provides standardized reporting for all measurements. 
LAMA™ performs a consensus assessment for each radio-
graph. Every detection step is performed by three AI models 
that then vote for the appropriate result. The software con-
sists of multiple convolutional deep neural networks (CNNs) 
which operate on either all or part of the input images and 
perform segmentation, landmarking and detection tasks. A 
detailed description of the calculation logic, the training 
model and the CNNs is provided in the supplement mate-
rial of [23].

Measurements

The measurements for manual and AI-aided analyses that 
were further evaluated included mechanical axis deviation 
(MAD), hip–knee–ankle angle (HKA), joint line conver-
gence angle (JLCA), mechanical lateral distal femoral angle 
(mLDFA), and medial proximal tibial angle (MPTA) (see 
Fig. 1). Furthermore, standardized analyses included deter-
mination of full leg length, femur length, tibia length, ana-
tomical–mechanical axis angle (AMA), mechanical lateral 
proximal femoral angle (mLPFA), and mechanical lateral 
distal tibial angle (mLDTA). Estimation of the magnifica-
tion factor was performed using a 25 mm-calibration ball 
or ruler.

The study received approval from the Ethics Committee 
of Lower Austria, Austria (GS1-EK-3/171-2020).

Statistical methods

We used a Bayesian approach in our analysis, which has 
several advantages over conventional frequentist methods. 
These advantages include ease of interpretation and the 
avoidance of issues related to null hypothesis significance 
testing. In our case, the Bayesian approach allowed us to 
compare the performance of individual human readers with 

the AI and account for the fact that there is no real ground 
truth available. For this purpose, we used the surface under 
the cumulative ranking (SUCRA). We ranked the readers 
and the AI-based on the absolute deviation from the median 
of ratings from all readers and the AI. All analyses were 
conducted in the R environment (version 4.2.1) using the 
tidyverse package for data wrangling and plot creation. The 
calculations were performed using Markov chain Monte 
Carlo via the brms package. We conducted a multi-level 
analysis taking into account that we had multiple measures 
per patient, with restrictive priors preventing negative values 
for the absolute deviation. The intercept was suppressed. 
To determine a sufficient sample size for this study we per-
formed a power analysis using G*Power version 3.1.9.6. The 
effect size was based on reference values from previous stud-
ies and the level of significance and the power level were set 
at 0.05 and 0.90, respectfully. Based on these parameters, the 
minimal required sample to guarantee adequate power for 
statistical testing for the defined measurements was found to 
be 84. To guarantee sufficient statistical power, this number 
was increased and 95 patients with 190 radiographs were 
included in this study.

In addition, we conducted a sensitivity analysis, where we 
assessed whether the absolute deviation from the median is 
different in post-operative images depending on the rater. 
In this case, the intercept was included in the model. The 
intra- and inter-reader variability was evaluated using the 
Intraclass Correlation Coefficient (ICC). Values less than 
0.50 were considered poor reliability, those between 0.50 
and 0.75, as moderate reliability, those between 0.75 and 
0.90 as good reliability, and those greater than 0.90 as excel-
lent reliability.

Results

A total of 190 radiographs from 95 patients were included 
in this study (age: 46.9 ± 7.6 years; 41 female, 54 male). 
Nine measurements in five radiographs were identified as 
outliers due to invalid landmark setting by the AI software 
and were excluded for all further analyses. These erroneous 
measurements were observed on two preoperative and three 
postoperative radiographs. The following plots exclude these 
outliers. Analyses and plots including erroneous measure-
ments are provided in the supplement material for detailed 
error analysis.

Naturally, HKA, MAD and MPTA changed significantly 
after HTO, while JLCA and mLDFA were not altered. Pre-
operative varus malalignment was corrected to slight val-
gus alignment. Table 1 summarizes pre- and postoperative 
measurements by the AI-based software and manual meas-
urements. There were no significant differences between 
manual measurements and the fully automated AI-based 
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analyses neither in preoperative radiographs nor after HTO 
(see supplement material) (Fig. 2).

The deviations from the median for all observations are 
displayed in Fig. 3. The deviations from the median for 
each outcome measurement and all readers are displayed 

in Fig. 4. The corresponding absolute deviations are pro-
vided in the supplement material. The SUCRA plots show 
the probabilities that an individual reader ranks better (less 
absolute deviation from the median) than a certain rank (see 
Fig. 5). Except for the AMA, the AI software showed low 

Fig. 1   Representative images 
of weight-bearing long-leg 
radiographs of a patient with 
mild varus malalignment (top) 
and after medial opening wedge 
osteotomy (bottom). The figure 
shows native X-rays (left), 
manual measurements using 
mediCAD® (center), and fully 
automated analysis performed 
by an AI software (LAMA™); 
right). Measurements include 
mechanical axis deviation 
(MAD), hip–knee–ankle angle 
(HKA), joint line convergence 
angle (JLCA), mechanical 
lateral distal femoral angle 
(mLDFA), and medial proximal 
tibial angle (MPTA)
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probabilities to outperform manual readers. However, mean 
absolute differences between LAMA™ and mean manual 
observer measurements where below 0.5° and not statisti-
cally significant (p > 0.05) for all measurements (see sup-
plement material).

Inter- and intra-observer ICCs for all measurements 
pre- and postoperatively are shown in Tables 2 and 3. Inter-
observer ICCs for manual measurements were excellent for 

all measurements, except for JLCA, which showed moder-
ate to good inter-observer ICCs, and MPTA postoperatively, 
which showed good inter-observer ICC. Intra-observer ICCs 
for manual measurements were excellent for all measure-
ments, except for JLCA, which showed moderate to excellent 
ICCs and for MPTA postoperatively, which showed good to 
excellent ICCs. Repetitive analysis of pre- and postoperative 
radiographs using LAMA™ showed an entirely consistent 

Table 1   Pre- and postoperative 
radiographic measurements 
for LAMA™ and manual 
measurement

All values are reported as mean ± standard deviation (SD). For MAD and HKA positive values (+) indicate 
varus, while negative values (−) indicate valgus

LAMA™ Manual

Pre-op Post-op p value Pre-op Post-op p value

HKA (°) 5.36 (± 3.03) − 0.70 (± 2.34)  < 0.0001 5.47 (± 2.90) − 0.54 (± 2.31)  < 0.0001
MAD (mm) 19.38 (± 11.39) − 2.68 (± 8.75)  < 0.0001 20.17 (± 10.99) − 2.10 (± 8.61)  < 0.0001
JLCA (°) 2.23 (± 2.0) 1.37 (± 2.86) n.s 2.03 (± 1.84) 1.78 (± 1.83) n.s
MPTA (°) 86.29 (± 2.42) 91.6 (± 3.0)  < 0.0001 86.08 (± 2.34) 91.81 (± 2.54)  < 0.0001
mLDFA (°) 89.42 (± 1.99) 89.48 (± 2.96) n.s 89.52 (± 5.3) 89.49 (± 2.19) n.s

Fig. 2   AI software (LAMA™) 
report of a bilateral weight-
bearing long-leg radiograph 
after medial opening wedge 
osteotomy providing fully auto-
mated measurements
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reproducibility with an intra-observer ICC of 1.0, demon-
strating consistent intra-rater variability.

Discussion

The most important finding of the present study was that the 
AI-aided software for automated long-leg alignment meas-
urements produced reliable results for varus malaligned 

knees pre- and postoperatively after high tibial osteotomy. 
Although manual readers ranked higher than the AI-driven 
software, the discrepancies were below 0.5°, which are 
minor and would not alter clinical decision making.

A detailed deformity analysis to identify varus mala-
lignment is obligatory in patients with medial knee osteo-
arthritis or patients that require cartilage or medial menis-
cal repair. When malalignment is addressed concomitantly 
clinical outcomes after cartilage repair and meniscal repair 

Fig. 3   Deviation from the 
median for each individual 
observation of all readers and 
LAMA™

Fig. 4   Deviations from the 
median for each individual 
observation for all measure-
ments for reader 1–3 and 
LAMA™
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improve significantly [1]. Analysis of the bony geometry in 
the coronal plane is usually performed on weight-bearing 
anteroposterior long-leg radiographs. Manual measurements 
are time-consuming and can show high inter- and intrareader 
variability, depending on the experience and fatigue of the 
observer [3, 25]. Agreement is excellent for HKA and MAD, 
indicated by an intraclass correlation coefficient of over 0.9 
[4]. However, agreement for mLDFA, MPTA and JLCA is 
reported to be worse [3].

AI can support radiologists and orthopedic surgeons in 
analyzing radiographs automatically. The literature reports 
that various AI models have been introduced and tested. 
Due to the heterogeneity of algorithms applied, varying 
experience and background of clinical readers as well as 
different data sets used for performance testing, compara-
bility between studies is limited. However, AI-based analy-
ses offer several advantages, including improved accuracy, 
time savings, reproducibility and objectivity [22]. However, 
concerns regarding the application of AI for analyses of 
radiographs need to be recognized. These include limited 
transparency and interpretability of AI models, where the 

internal decision-making process might not be easily under-
standable. Second, AI algorithms require large amounts of 
high-quality training data [5]. If these data are biased or 
unrepresentative for a certain group of patients, it can lead 
to poor performance of AI models. Hence, it is important to 
address issues related to data bias to ensure equity and avoid 
under-representation of certain demographics [6]. Further-
more, effective integration of AI software into the clinical 
workflow is crucial. For the practical use and application 
of these models, seamless integration into existing systems 
(e.g., picture archiving and communication systems) is of 
utmost importance.

The evidence for AI-aided analyses of long-leg radio-
graphs is rapidly growing. Different study groups developed 
and validated various AI algorithms for automated measure-
ments on LLRs [13, 19, 23].

The software used in this study (LAMA™) is a com-
mercially available FDA- and CE-marked software that has 
been studied for native LLRs and implant alignment meas-
urement after TKA [21, 23]. Simon et al. performed a retro-
spective single-center analysis of 295 native LLRs, where 

Fig. 5   Surface under the cumulative ranking (SUCRA) plots for AMA, HKA, JLCA, MAD, mLDFA and MPTA. The plots indicate the prob-
ability that a reader ranks better than a certain rank (i.e., less absolute deviation from the median)

Table 2   Inter-observer Intraclass Correlation Coefficients (ICCs) for manual radiographic measurements pre- and postoperatively (95% confi-
dence interval)

HKA MAD JLCA MPTA mLDFA

All 0.99 (0.99–1.00) 0.99 (0.99–1.00) 0.74 (0.68–0.80) 0.95 (0.93–0.96) 0.94 (0.93–0.96)
Pre-op 0.99 (0.99–1.00) 0.99 (0.99–1.00) 0.79 (0.71–0.86) 0.93 (0.89–0.95) 0.95 (0.92–0.97)
Post-op 0.98 (0.98–0.99) 0.98 (0.98–0.99) 0.71 (0.62–0.79) 0.87 (0.82–0.92) 0.94 (0.92–0.96)
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they compared AI measurements with manual readers that 
constituted a “ground truth” [23]. AI produced an overall 
accuracy of 89.2% compared with the manual measurements 
after exclusion of radiographs with metalwork and postop-
erative images. The mean absolute-deviation for angles was 
0.39°–2.19°and 1.45–5.00 mm for length measurements. 
The intra-class-coefficient (ICC) showed good reliability in 
all lengths and angles according to Koo et al. (ICC ≥ 0.87). 
The equivalence-index (γ) was between 0.54 and 3.03° for 
angles and − 0.70 to 1.95 mm for lengths.

The evaluation of LLRs by LAMA™ after TKA showed 
a high reproducibility and reliability [21]. Correct detection 
of femoral and tibial components was achieved in 92.1%. 
Nevertheless, performance was altered in cases of con-
strained implants, where landmark setting failed in 12.5%. 
Furthermore, Huber et al. used LAMA™ analyses of preop-
erative LLRs in osteoarthritic knees prior to TKA to perform 
functional phenotype and coronal plane alignment of the 
knee classifications [11]. The authors found gender-specific 
differences with significant differences between men and 
women for all radiographic parameters.

However, to our best knowledge this is the first study 
investigating the performance of an AI application for varus 
malalignment and after HTO. Especially in the case of oste-
otomies and joint preserving surgeries a thorough analysis 
of the leg alignment and detection of the bony deformities 
is indispensable. The measurements are usually performed 
manually on long-leg radiographs using a medical imaging 
software. Still, manual landmark setting showed high intra- 
and inter-reader variability and poor reproducibility [3, 10, 
20]. Furthermore, studies demonstrated that the reliability is 
affected by the experience of the observers [25].

Our results show mean absolute differences between 
LAMA™ and mean manual observer measurements of 
0.5° or lower for all measurements. Although SUCRA 
plots show low probabilities that the AI software ranks 
better than manual readers, except for the AMA, there 
were no statistically significant differences between man-
ual measurements and the AI-based analyses, neither in 
native radiographs before surgery nor after osteotomy. 
The detected differences between the AI and manual 
measurements were minor and would not influence the 
clinical decision making-process. The advantage of the 
AI analysis is the immediate availability of measurement 
data and detailed information about the leg alignment. The 
data are automatically evaluated in less than half a min-
ute and immediately available to the treating physician. 
This instant information together with the reported accu-
racy and reproducibility could offer advantages in clini-
cal practice, especially in determining the indication for 
osteotomy and controlling the correction after HTO. The 
potential clinical relevance includes higher reproducibility, 
irrespective of the observer’s experience level or fatigue Ta
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and improved and prompt visualization for patients. The 
graphical report provided by the AI software highlights 
important findings and can be used for patient information 
and education. Furthermore, using the AI-based software 
leg alignment measurements could easily be available for 
every long-leg radiograph without the need for additional 
personnel resources. Hence, even patients with mild varus 
alignment might be identified faster and directed towards 
potential joint-preserving therapy.

Previous studies have demonstrated high accuracy of 
AI-aided analyses in native LLRs for leg length and align-
ment [13, 23]. However, this is the first study investigating 
an AI application for automated measurements specifically 
in a population of patients with varus malalignment that 
underwent HTO. Our results confirm the feasibility of fully 
automated measurements and the high accuracy in native 
radiographs. In the preoperative measurements differences 
between LAMA™ and manual observers were as low as 
0.21° or lower. Despite our findings indicating a low likeli-
hood of the AI outperforming human readers in terms of 
absolute deviation from the median, the impact of these 
deviations on clinical decision-making would be mini-
mal. Consequently, the application for long-leg analysis in 
patients with varus leg alignment is feasible for clinical prac-
tice. Our findings confirm a considerable intra-reader vari-
ability for manual measurements that has been reported in 
the literature. While HKA and MAD showed intra-observer 
ICCs of 0.98 or higher, repeated measurements for mLDFA 
and MPTA showed a higher variability. In accordance to 
previous studies, JLCA showed by far the highest variability 
with ICCs demonstrating moderate to excellent reliability. 
In contrast, repeated measurements for AI-aided measure-
ments demonstrated perfect reproducibility with an ICC 
of 1.0 for all measurements preoperatively and after HTO. 
These excellent results for measurements postoperatively 
after HTO showed no significant differences compared to 
manual measurements. The analysis of postoperative X-rays 
after osteotomy might pose a challenge to the software due 
to altered bone morphology and the presence of osteosynthe-
sis material. In our study, the AI software showed erroneous 
results in 9/1140 measurements (0.79%). These incorrect 
measurements were found on two native preoperative and 
three postoperative radiographs. The detailed error analy-
sis revealed that an incorrect landmark placement was the 
primary cause for erroneous results, both pre- and postop-
eratively. In two of the postoperative cases, the incorrect 
landmark setting occurred in the proximal tibia, where the 
proximal tibial joint line was placed at the plate medially 
rather than the tibial plateau. Naturally, this resulted in sig-
nificant deviations for JLCA and MPTA. In the third post-
operative erroneous case the distal femoral joint line was 
incorrectly marked and JLCA and mLDFA showed implau-
sible values.

Preoperatively, in one case the distal femoral joint line 
was incorrectly marked due to advanced medial OA, result-
ing in significant deviations for JLCA and mLDFA. In the 
second erroneous preoperative image, the calibration ball 
was incorrectly identified resulting in an erroneous estima-
tion of the magnification factor and incorrect MAD values, 
while angle measurements were not altered. It needs to be 
emphasized that all results provided by an AI software in the 
medical field need to be confirmed by medical professionals. 
The erroneous measurements in this study are illustrated 
in the supplement material and were clearly discernible for 
physicians with experience in musculoskeletal imaging.

This study has some limitations that need to be consid-
ered when interpreting the results. First, sample size was 
relatively small, which may limit the generalizability of 
the findings in larger populations. Second, the accuracy of 
the automated analysis is dependent on the quality of the 
radiographs, and variations in image quality across different 
healthcare facilities may affect the algorithm’s performance. 
Furthermore, the study compared the automated analysis 
with manual measurements that are not infallible and may 
themselves have inherent limitations.

However, the findings of this study support the use of 
AI-based analyses for long-leg radiographs in patients with 
varus malalignment and after HTO. In clinical practice, 
the use of an AI-based software that offers fully automated 
measurements could increase the availability of accurate 
alignment measurements without the need for additional 
personnel resources. An instant visual report with accurate 
results accompanying each image could enhance awareness 
and enable early detection of malalignment. This study dem-
onstrates that the AI-aided software is also applicable for 
postoperative radiographs following HTO. This enables an 
accurate analysis of postoperative alignment and can be used 
for patient education. Furthermore, this technology offers the 
potential to enhance the precision and reproducibility, miti-
gating the significant deviations in manual measurements.

Conclusion

An AI-based software can provide accurate and reproducible 
measurements of varus malalignment and postoperatively 
after HTO. Consequently, the implementation for fully auto-
mated long-leg analyses is feasible in the clinical setting for 
patients with varus leg alignment and after HTO and could 
support clinical workflows. However, results need to be vali-
dated by medical professionals.
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